a & g ) a A v @ < A 2 a o A
ul'ﬁ]ﬂaw-!,@u-u@ﬂ“ﬁﬂﬁﬂ\ula5‘1@ﬂﬁ“l/‘l-'ﬂﬁufJVIQVLTJ-Lf]u-LLf)UWEJi‘UQ‘U@Qﬂ\ﬁ\iﬁﬁ‘ﬂ“ﬂ

@ Y
UNANINNTNITTU LWNBTLUND

@

a a e’dy I 1 zi'? = [ a =% a
nondinusiiludiunilwesmsanmaunangaslsyaninnmansauiiudia
MUNMFAAAMANT MAIFIANAFAAS LA INGNTAONNUADS
AUZINGIMAAT PNDINTAINMINOD

= =1
1MsANYT 2558

r'd
a a A 4 a [
AVANTUDIYWIANINIUNNIINGIQY

v
& o

o 1 4 b4 o < a a = =2 Ql' v oa o
unAngalazuiNdeyaaiuAN1aIne InusAauATNsAnEN 2554 nliEnnslupaatiny U19W14 (CUIR)
HuiilsdeyaeslidnidnaetneTnuindeinuneiudsanan s
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



¢»-n-ABSORBING IDEALS AND ¢-GENERALIZED-n-ABSORBING IDEALS
OF COMMUTATIVE SEMIRINGS

Miss Pattarawan Petchkaew

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2015
Copyright of Chulalongkorn University



Thesis Title ¢»-n-ABSORBING IDEALS AND ¢-GENERALIZED-
n-ABSORBING IDEALS OF COMMUTATIVE

SEMIRINGS
By Miss Pattarawan Petchkaew
Field of Study Mathematics
Thesis Advisor Associate Professor Amorn Wasanawichit, Ph.D.
Thesis Co-Advisor Assistant Professor Sajee Pianskool, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in
Partial Fulfillment of the Requirements for the Doctoral Degree

.................................... Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

.................................... Chairman

(Associate Professor Ajchara Harnchoowong, Ph.D.)

.................................... Thesis Advisor

(Associate Professor Amorn Wasanawichit, Ph.D.)

.................................... Thesis Co-Advisor
(Assistant Professor Sajee Pianskool, Ph.D.)

.................................... Examiner

(Associate Professor Yotsanan Meemark, Ph.D.)

.................................... Examiner

(Assistant Professor Tuangrat Chaichana, Ph.D.)

.................................... External Examiner

(Assistant Professor Sureeporn Chaopraknoi, Ph.D.)

.................................... External Examiner

(Associate Professor Somporn Sutinuntopas, Ph.D.)



1v
fnsmssa mrsuda : ledail-8u-neureitaaz lefail-naiena l-Su-ueu
%0359 INIAAUR (4 -n-ABSORBING IDEALS AND ¢ -GENERALIZED--
ABSORBING IDEALS OF COMMUTATIVE SEMIRINGS) 0. N/3nu13nend]
WUEHEN : 37, AT, 0UT NAUITRL, 0 A INTinuTIN - HeLATe oS

ana, 111 nih,

< da
“luﬂy;]uwumauu wuzhuuinaved ledail-dgund, ledatl-wu-usuwesi

a9 G

o Ay 1 7 A
waz lodail-naiona IS u-ueures DevesiSeadud & Aendnuald lilugud e

Y

A d o = [ o = 1 A 1
Wﬂaﬁaﬂ%ummmmm”laﬂamwmeum R 'lﬂmwmm”laﬂamwmmm R 119919 AIN

= a =

a v 2 <] Ja a YR
LL‘L!'JT’]@l’l’iﬁ’luﬂﬂ"ufJ’lfJiJ’li]’lﬂ]l@ﬂﬁﬂﬁﬂJﬂiJ, E)ﬂm’au-LL’O‘]JG]fE]ﬁJmaz]l@ﬂmNum/n]lﬂ

99 u
aaA v a

v ] 4 o w =2 a A
LfJ‘Ll LL@‘U“D”[’)'E‘]NEUENi\‘]ﬁa‘Uﬂﬂul@ﬂﬁﬂymﬂllmﬂuﬂuﬂ AU Li”lﬂﬂ’]slﬂ’r)ﬂm/\l-ﬂjjilﬂm,

loRa-1Bu-teuweitaas lodail-nuisna lU-Su-teuwseitalulasadenassay

Uszinm nande Ne3e (Taeala), NS awanisuazns swoaawdIu Tuyuuesianu

a

m"lﬂmmu Li?@ﬁ’)ﬁ]ﬁ@ﬂﬂ’)?hﬁuwu‘ﬁi ‘H’JNllﬂﬂaw ‘]J‘ﬁ‘JJﬂiJ, hl’f) aail L@“Ll !Lf]‘U“]f’t)ﬁN

QU

waz loRal-nadena lU-du-nevyeits uazannsaazd 18 lofail-Uguaiiludule

a

a a ] ] 1 <
fAan-du-teuweitaas lodal-wu-uouwesteluilulofa-Usuni udeg1elsda

9 QU

v
1Y 1

wagemailuledatl-nadon lu-Bu-neuvesis

a a 4 4 Aan
MA_ AdlaenaasLag aeipyolian

a a J A A A o
ANYINITNDUNINDT ANYUDYD ﬂ.ﬂﬂ?ﬂ‘]&lﬂ’iﬁﬂ

a a J A A A '
T1U1IW AUAITAT AYUDYD ’E'J.‘V]‘]_ﬁﬂ‘]eni?ll



4 4 5572830223 : MAJOR MATHEMATICS

KEYWORDS : k- IDEALS/ SUBTRACTIVE EXTENSIONS/ ¢-PRIME IDEALS/

¢-PRIMARY IDEALS/$-n-ABSORBING IDEALS/¢-Gn-ABSORBING IDEALS
PATTARAWAN PETCHKAEW : ¢-n-ABSORBING IDEALS AND
¢-GENERALIZED-n-ABSORBING IDEALS OF COMMUTATIVE SEMI-
RINGS. ADVISOR : ASSOC. PROF. AMORN WASANAWICHIT, Ph.D.,
CO-ADVISOR : ASST. PROF. SAJEE PIANSKOOL, Ph.D., 111pp.

In this dissertation, we introduce the concepts of ¢-primary ideals, ¢-n-
absorbing ideals and ¢-generalized-n-absorbing ideals of a commutative semir-
ing R with nonzero identity where ¢ is a function from the set of ideals of R
into the set of ideals of R or the empty set. These are extended from primary
ideals, n-absorbing ideals and generalized n-absorbing ideals of commutative rings
with nonzero identity, respectively. We investigate ¢-primary ideals, ¢-n-absorbing
ideals and ¢-generalized-n-absorbing ideals in three types of semirings structures;
namely, semirings (in general), quotient semirings and semirings of fractions in var-
ious points of view. In addition, we examine relationships among ¢-primary ideals,
¢-n-absorbing ideals and ¢-generalized-n-absorbing ideals and can conclude that
¢-primary ideals and ¢-n-absorbing ideals do not imply each other; nevertheless,

both imply ¢-generalized-n-absorbing ideals.

Department : .....Mathematics and...... Student’s Signature.............................
....Computer Science..... Advisor’s Signature............cccccceeeeienn.
Field of Study : ....... Mathematics....... Co-advisor’s Signature........................

Academic Year: ............ 2015, 0.



vi

ACKNOWLEDGEMENTS

I am greatly indepted to my thesis advisors, Associate Professor Dr. Amorn
Wasanawichit and Assistant Professor Dr. Sajee Pianskool, not only for coaching
my research but also for broadening my academic vision. I appreciated all their
contributions of times and ideas to make my Ph.D. experience productive and
stimulating. Sincere thanks and deep appreciation are also extended to Associate
Professor Dr. Ajchara Harnchoowong, the chairman, Associate Professor Dr. Yot-
sanan Meemark, Assistant Professor Dr. Tuangrat Chaichana, Assistant Professor
Dr. Sureeporn Chaopraknoi and Associate Professor Dr. Somporn Sutinuntopas,
the committee members, for their times, suggestions and helpful comments. More-
over, I feel very thankful to all of my teachers who have taught me for my knowledge
and skills. Also, I wish to express my thankfulness to my friends and my family
for their encouragement throughout my study.

Finally, I would like to thank the Development and Promotion of Science and
Technology Talents Project (DPST) for financial support throughout my under-
graduate and graduate study.



CONTENTS

page
ABSTRACT IN THAI ..o e iv
ABSTRACT IN ENGLISH . ..o v
ACKNOWLEDGEMENTS ... e vi
CONTEN TS vii
CHAPTER
[ INTRODUCTION ... e 1
II PRELIMINARIES ... e 6
2.1 Definitions and Fundamental Results in Semirings .................. 6
2.2 Fundamental Results in Quotient Semirings........................ 16
2.3 Fundamental Results in Semirings of Fractions..................... 25
IIT GENERALIZATIONS OF PRIMARY IDEALS OF SEMIRINGS ..... 29
3.1 ¢-Primary Ideals of Semirings ............ ... i, 30
3.2 ¢-Primary Ideals in Decomposable Semirings ...................... 41
3.3 ¢-Primary Ideals in Quotient Semirings and in Semirings of
Fractions . ... ... i 47
IV GENERALIZATIONS OF n-ABSORBING IDEALS OF SEMIRINGS 51
4.1 ¢-n-Absorbing Ideals of Semirings ................ ... ... ... ... .. 52
4.2 ¢-n-Absorbing Ideals in Decomposable Semirings .................. 68
4.3 ¢-n-Absorbing Ideals in Quotient Semirings and in Semirings of
Fractions . ... ... 7
V GENERALIZATIONS OF Gn-ABSORBING IDEALS OF SEMIRINGS 81
5.1 ¢-Gn-Absorbing Ideals of Semirings.............. .. .. ... . ..., 82
5.2 ¢-Gn-Absorbing Ideals in Decomposable Semirings................. 95
5.3 ¢-Gn-Absorbing Ideals in Quotient Semirings and in Semirings of
Fractions. ... 103
VI CONCLUSIONS ..o 106
REFERENCES .. 109



CHAPTER 1
INTRODUCTION

Research on semirings has been studied in many ways such as prime and
semiprime ideals, quotient semirings, additive-regular semirings, etc. One of those
that we are interested in is prime ideals. It is natural that almost research of prime
ideals of semirings are extended from results of prime ideals of rings.

One knows that prime ideals play an important role in rings. Recall that a
proper ideal I of a commutative ring R with nonzero identity is said to be a
prime tdeal if whenever a,b € R with ab € I, either a € I or b € I. In 2003, D.
D. Anderson and E. Smith [4] generalized the concept of prime ideals to weakly
prime ideals of a ring. They defined a weakly prime ideal [ of a commutative
ring R with nonzero identity to be a proper ideal and if whenever a,b € R with
ab € I — {0}, either a € I or b € I. After that, in 2005, S. M. Bhatwadekar
and P. K. Sharma [11] generalized the concept of weakly prime ideals to almost
prime ideals of a ring. They defined an almost prime ideal I of a commutative
ring R with nonzero identity to be a proper ideal and if whenever a,b € R with
abe I — 1% eitheraclorbel.

In 2008, D. D. Anderson and M. Batanieh [3] generalized the concept of prime
ideals, weakly prime ideals and almost prime ideals to ¢-prime ideals of a commu-
tative ring R with nonzero identity where ¢ : #(R) — #(R)U{@} is a function in
which Z(R) is the set of ideals in such ring. They defined a ¢-prime ideal I of
a commutative ring R with nonzero identity to be a proper ideal and if whenever
a,b € R with abe I —¢(I), eithera e I orbe I.

We can see that the direction of this extension of prime ideals of commuta-
tive rings with nonzero identity starting with changing the condition that ab € I

to ab € I — {0} which is called weakly prime ideals. Later, the condition that



ab € I — {0} of weakly prime ideals was changed to ab € I — I* which is called
almost prime ideals. This is one of natural ways to generalize prime ideals by
subtracting some ideals from the ideal I. This led to the extension of prime ideals
by changing the condition that ab € I to ab € I — ¢(I) where ¢ is a function from
Z(R) into .#(R) U {@} which can be defined in several ways, e.g., ¢(J) = & for
all ideals J, ¢(J) = {0} for all ideals J, ¢(J) = J? for all ideals J, ¢(J) = J"
where n € N for all ideals J, etc. This makes the definition of ¢-prime ideals both
support old definitions and extend them. This is very interesting and becomes an
inspiration of doing this research.

Many concepts of rings are extended to those of semirings so are the concepts
of prime ideals and weakly prime ideals. J. S. Golan [17] introduced the concept of
prime ideals of a semiring in 1999. He defined a prime ideal I of a commutative
semiring R with nonzero identity to be a proper ideal and if whenever a,b € R
with ab € I, then a € I or b € I. After that, V. Gupta and J. N. Chaudhari [20]
introduced the notion of weakly prime ideals of a semiring in 2008. They defined
a weakly prime ideal I of a commutative semiring R with nonzero identity to be
a proper ideal and if whenever a,b € R with ab € I —{0}, thena € [ or b € I. This
brought us to extend the concepts of prime ideals, weakly prime ideals of semirings
and ¢-prime ideals of rings to ¢-prime ideals of semirings. In the same fashion as
the idea of ¢-prime ideals of rings, for a semiring R, we define ¢ to be a function
from Z(R) into #(R) U {@} where .#(R) is the set of ideals of the semiring R
and define a ¢-prime ideal I of a commutative semiring R with nonzero identity
to be a proper ideal and if whenever a,b € R with ab € I — ¢(I), either a € I or
bel.

The inspiration of the next target of this research arose from the following. In
2007, A. Badawi [10] introduced the notion of 2-absorbing ideals of a ring. He
defined a 2-absorbing ideal I of a commutative ring R with nonzero identity
to be a proper ideal and if whenever a,b,c € R with abc € I, either ab € [
or ac € I or be € I. After that, in 2011, D. F. Anderson and A. Badawi [2]
generalized this to n-absorbing ideals (with integer n > 2) of a ring. They defined



an n-absorbing ideal I of a commutative ring R with nonzero identity to be
a proper ideal and if whenever xy, 2o, ..., 2,11 € R with zyx9---2,.1 € I, then
T1Tg -+ Ty 1Tip1 - Tpy1 € I for some i € {1,2,...,n + 1}. Next, in 2012, M.
Ebrahimpour and R. Nekooei [16] gave the definition of (n — 1,n)-¢-prime ideals
(with integer n > 2) of a ring. They defined an (n — 1, n)-¢-prime ideal I of
a commutative ring R with nonzero identity to be a proper ideal and if whenever
x1,%o, ...,y € R with zyzy -z, € I — ¢(I), then z129- -2 1T41 -2, € 1
for some ¢ € {1,2,...,n}. Obviously, (n — 1,n)-¢-prime ideal is just a ¢-(n — 1)-
absorbing ideal.

In our work, we also extend n-absorbing ideals and (n — 1, n)-¢-prime ideals of
a ring to n-absorbing ideals and ¢-n-absorbing ideals of a semiring. We define an
n-absorbing ideal I of a commutative semiring R with nonzero identity to be
a proper ideal and if whenever z,x9,..., 2,11 € R with z129--- 2,41 € I, then
XL+ Xy 1Ty Tpyq € I for some ¢ € {1,2,...,n+ 1}. Besides, we define a
¢-n-absorbing ideal I of a commutative semiring R with nonzero identity to be
a proper ideal and if whenever z1, s, ..., 2,41 € R with 2129+ 2,01 € [ — ¢(I),
then iz« x; 1Xip1 - Tpy1 € I for some i € {1,2,...,n + 1}. Moreover, we
obtain that our first results of ¢-prime ideals of semirings are the specific case of
the results of ¢-n-absorbing ideals of semirings.

Afterwards, we would like to generalize the concept of ¢-prime ideals in other
ways. We found that, in 2012, A. Y. Darani [15] generalized the idea of ¢-prime
ideals to ¢-primary ideals of a ring. He defined a ¢-primary ideal I of a commu-
tative ring R with nonzero identity to be a propper ideal and if whenever a,b € R
with ab € I — ¢(I), either a € I or b" € I for some positive integer n.

By the same idea as our first results, our interest is also to extend the concept
of ¢-primary ideals of rings to ¢-primary ideals of semirings. Primary ideals of a
semiring have been introduced and studied by S. E. Atani and M. S. Kohan in 2010
[9]. They defined a primary ideal I of a commutative semiring R with nonzero
identity to be a proper ideal and if whenever a,b € R with ab € I, then a € |

or b" € I for some positive integer n. Subsequently, in 2011, J. N. Chaudhari



and B. R. Bonde [12] generalized the notion of primary ideals of semirings to
weakly primary ideals of semirings. They defined a weakly primary ideal I of a
commutative semiring R with nonzero identity to be a proper ideal and if whenever
a,b € R with 0 £ ab € I, then a € I or b" € I for some positive integer n.

In this dissertation, we also aim to extend the concepts of primary ideals, weakly
primary ideals of semirings and ¢-primary ideals of rings to ¢-primary ideals of
semirings. We define a ¢-primary ideal I of a commutative semiring R with
nonzero identity to be a proper ideal and if whenever a,b € R with ab € I — ¢(I),
either a € I or b" € I for some positive integer n. In addition, we obtain that the
concepts of ¢g-primary ideals and ¢-n-absorbing ideals do not imply each other.

Finally, our last target is set according to the following idea. In 2015, S.
Chinwarakorn and S. Pianskool [14] defined a new type of ideals which is still
a generalization of primary ideals and n-absorbing ideals of a ring. They de-
fined a generalized n-absorbing ideal (simply Gn-absorbing ideal) I of a
commutative ring R with nonzero identity to be a proper ideal and if whenever
X1, Ty, Tpr1 € R with 129+ 2,41 € I, then (x129 -+ 2 @01+ Tpy1)* € 1
for some positive integer o and for some i € {1,2,...,n+ 1}.

For the final part of this dissertation, we extend the idea of generalized n-
absorbing ideals of a ring to ¢-generalized-n-absorbing ideals of a semiring. We
define a ¢-generalized-n-absorbing ideal (simply ¢-Gn-absorbing ideal) I
of a commutative semiring R with nonzero identity to be a proper ideal and if when-
ever Ty, Ta, ..., Tni1 € R with xyxe -+ 2,01 € I — (1), then (129 2 12441 - - -
ZTpt1)® € I for some positive integer a and for some ¢ € {1,2,...,n+ 1}.

In this dissertation, we organize our work as follows. Next chapter contains
three sections. The first section introduces basic definitions, notation, examples,
elementary properties and some of our results in semirings. The second section
contains definitions of @-ideals (partitioning ideals), quotient semirings, homo-
morphisms and isomorphisms; in addition, some of our results are given. The last
section discusses about semirings of fractions and we obtain some results which

are used in other chapters.



In Chapter III, we define almost primary ideals, n-almost primary ideals, w-
primary ideals and ¢-primary ideals of semirings. Some results in this chapter are
analogous to the results given in [15].

In Chapter IV, we give the notion of n-absorbing ideals, weakly n-absorbing
ideals, almost n-absorbing ideals, m-almost n-absorbing ideals and w-n-absorbing
ideals of semirings; in addition, we extend these to ¢-n-absorbing ideals of semirings
and investigate them in the same fashion as the results in Chapter III. Moreover,
we obtain other results which are not analogous to the results in Chapter III. Be-
sides, we provide some forms of n-absorbing ideals which are not (n — 1)-absorbing
ideals of the semiring Zg .

In Chapter V, we introduce the concepts of generalized n-absorbing ideals,
weakly generalized n-absorbing ideals, almost generalized n-absorbing ideals, m-
almost generalized n-absorbing ideals and w-generalized n-absorbing ideals of semir-
ings and extend these to ¢-generalized-n-absorbing ideals of semirings. Almost
results of this chapter are investigated in the same manner as the results of Chap-
ter IV. Moreover, some forms of generalized n-absorbing ideals which are not n-
absorbing ideals of the semiring ZJ are obtained.

The contents of Chapter III, Chapter IV and Chapter V are divided into three
sections. The first sections are ¢-primary ideals of semirings, ¢-n-absorbing ideals
of semirings and ¢-generalized-n-absorbing ideals of semirings, respectively. The
second sections of those three chapters concern with decomposable semirings. In
the last section, we focus our work on quotient semirings and semirings of fractions.

In the final chapter, Chapter VI, we summarize the main concept of our research

and give relationships among each chapter.



CHAPTER II
PRELIMINARIES

In this chapter, we provide some definitions, notations and results which will be
used for this dissertation. All contents of this dissertation are investigated in
three main types of semiring structures; namely, semirings, quotient semirings and
semirings of fractions, so we divide this chapter into three sections. The first
section is definitions and fundamental results in semirings. The second section
is fundamental results in quotient semirings and the last section is fundamental
results in semirings of fractions.

Throughout this work, let Z denote the set of integers, N the set of natural
numbers (positive integers), Z{ the set of nonnegative integers, QF the set of
nonnegative rational numbers, R the set of nonnegative real numbers and Z,, =

{0,1,2,...,n — 1} where n € N.

2.1 Definitions and Fundamental Results in Semirings

First of all, the definition of semirings along with some results based on [17] by J.

S. Golan are presented.

Definition 2.1.1. [17] A semiring R is defined as an algebraic system (R, +,-)
on which the operations of addition + and multiplication - have been defined such

that the following conditions are satisfied:

(1) (R,+) is a commutative monoid with identity element 0, called the zero;
(2) (R,-) is a semigroup (we write ab instead of a - b for all a,b € R);
(3) the multiplication distributes over the addition; and

(4) r0=0=0r for all r € R.



Let R be a semiring. Then R is said to be commutative if ab = ba for all
a,be R. If 1 € R and al = a = 1la for all a € R, then 1 is called the identity of
the semiring R. If R contains an identity 1 # 0, then R is called a semairing with

nonzero tdentity. Moreover, 1 € R stands for the identity of the semiring R.

By the definition of semirings, it is easy to see that semirings are generaliza-
tions of rings. Therefore, every ring is a semiring. However, the converse of this
statement is not true. For example, ZJ under usual addition and usual multiplica-
tion is a semiring but is not a ring. Moreover, from now on, if we give examples of
semirings by omitting their binary operations, it means that their operations are

usual addition and usual multiplication.

Example 2.1.2. [17] (1) Z{, Q4 and R are commutative semirings with nonzero
identity which is the number 1.

(2) ZZ[t], the set of polynomials in ¢ over the semiring Zg, is a commutative
semiring with nonzero identity which is the constant polynomial 1 under usual
addition and usual multiplication of polynomials.

(3) Let B = {0,1}. Then B forms a semiring under operations + and - given

as follows:

+10 1 <10 1
0(0 1 and 00 O
11 1 110 1

Then B is a commutative semiring with nonzero identity which is the element 1.
In fact, this semiring B is called the Boolean semiring. Moreover, BJt], the set
of polynomials in ¢ over the semiring B, is a commutative semiring with nonzero
identity which is the constant polynomial 1.

(4) Let R = {0,1,u}. Then R forms a semiring under operations + and - given

as follows:



+10 1 wu 10 1 wu

010 1 wu 010 0 O
and

111 1 wu 110 1 wu

uUlu u u ul| 0 u wu

Then R is a commutative semiring with nonzero identity which is the element 1.

a
(5) Let R = a,b,c,d € Z$ ». Then R is a noncommutative semir-
c d
ing with nonzero identity under usual addition and usual multiplication
01

of matrices.

In this research, all considered semirings are assumed to be commutative semir-
ings with nonzero identity. Moreover, all referred rings in this dissertation are com-
mutative rings with nonzero identity. Thus we simply write “semiring”or “ring” in
stead of “commutative semiring with nonzero identity”or “commutative ring with

nonzero identity”, respectively.

Definition 2.1.3. [17] A nonempty subset [ of a semiring R is called an ideal

of R if it satisfies the following conditions:

(1) if a,b € I, then a+b € I; and

(2) ifa € I and r € R, then ar € I.

If a is an element in a semiring R, then aR = {ar | r € R} is an ideal of R,
called a principal ideal. From the definition of ideals of semirings, if we consider
the semiring Zg , then ideals of ZI may not be in the form mZ; where m € Zg.

Examples of ideals of Z$ are mZg for allm € Z§, Z$ —{1} and {0,3}U{5,6,7,...}.

Notation 2.1.4. [17] Let I and J be ideals of a semiring R and m a positive
integer. Let

I+J={a+blaclandbe J},

=1

a; € I and bileoralliE{l,Q,...,n}} and



I = {Zaﬂai2~-aim n € N and ail,aig,...,aimelfor all 7 € {1,2,,71}}

=1

Proposition 2.1.5. [17] Let I and J be ideals of a semiring R and m a positive
integer. Then the following statements hold.

(1) I+ J is an ideal of R containing both I and J.
(2) 1J is an ideal of R contained in I and J.

(8) I"™ is an ideal of R contained in I; in addition, if ny,ny € N are such that

ny > N, then I™ C [,

Notation 2.1.6. [17] Let A be a nonempty subset of a semiring R. Let

<A> = { ZCLZ'Ti

=1

n € N,a; € A and r; € R for alli€{1,2,...,n}}.

Proposition 2.1.7. [17] Let A be a nonempty subset of a semiring R. Then (A)

is the smallest ideal of R containing A.

For a nonempty subset A of a semiring R, the ideal (A) is said to be the ideal
generated by A. If A= {a}, then (A) = (a) = aR, see [17].

Proposition 2.1.8. [17] If I and J are ideals of a semiring R, then I 4+ J is the
unique minimal member of the family of all ideals of R containing both I and J

and I N J is the unique mazimal member of the family of all ideals of R contained

i I and J.

Definition 2.1.9. [17] An ideal I of a semiring R is called a k-ideal (subtractive
tdeal) of R if whenever z,y € R and z,x +y € I, then y € I.

Certainly, k-ideals are ideals but the converse is not true. For example, the
ideal Z§ — {1} of the semiring Z is not a k-ideal because 2,2+ 1 € Z§ — {1} but
1 ¢ Z¢ — {1}. Moreover, k-ideals play a very important role in this dissertation
because several of our main results need the property of k-ideals. In the following,

we provide examples of k-ideals as well as examples of ideals which are not k-ideals.
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Example 2.1.10. [17] (1) Consider the semiring Z and the ideal I = 2Z; of Z .
To show that [ is a k-ideal, let a,b € Z§ be such that a,a +b € I. Then a = 2n
and a + b = 2m for some n,m € Z§. Thus 2n + b = 2m. Next, we see 2n,b,2m
as elements of Z, and hence we obtain that b = 2(m — n). Since b € Z7, we have
m —mn € Z¢. Then b € 2Z¢ = I. Therefore, I is a k-ideal of Z.

(2) mZ¢ is a k-ideal of the semiring Zg for any m € Z .

(3) Consider the semiring R = {0,1,u} given in Example 2.1.2 (4). Let I =
{0,u}. Then [ is an ideal of R which is not a k-ideal because u,u + 1 = wu € I but
1¢1.

(4) Consider the semiring Z [t]. Let I be the ideal of Z [t] generated by ¢ + 1,
thatis I = {(t+1)f(t)| f(t) € ZT[t]}. Then (t+1)% € I. Since (t+1)3t+(t3+1) =
(t+1)> € land (t+1)3t € I but t>+ 1 ¢ I, the ideal I is not a k-ideal.

By Proposition 2.1.8, we know that any sum of ideals is an ideal but this
statement is not true for k-ideals. For example, 2Z and 3Z7 are k-ideals of the
semiring Zg but 2Z§ +3Z§ = ZJ —{1} is not a k-ideal. Moreover, Proposition 2.1.8
also shows that the intersection of ideals is an ideal and this statement holds for

k-ideals as we shown in the next result.

Proposition 2.1.11. Let R be a semuring. If I and J are k-ideals of R, then INJ
1s a k-ideal of R.

Proof. Assume that I and J are k-ideals of R. Then I N J is an ideal of R. Let
a,b € R be such that a,a+b € I NJ. Since [ is a k-ideal and a,a + b € I, we
obtain b € I. Similarly, b € J. Hence b € I N J. Therefore, I N J is a k-ideal
of R. O

An element a of a semiring R is said to be multiplicatively regular if there
exists an element b of R satisfying aba = a. A semiring R is called a multiplica-
tively regular semiring if each element of R is multiplicatively regular, see [17].

From Proposition 2.1.11, it is suspected that if I and J are k-ideals of a semir-
ing R, then IJ is a k-ideal of R or not. In 1999, J. S. Golan shown that if R is
a multiplicatively regular semiring, then I.J = J N J for all ideals I and J of R.
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Hence, we can conclude that if I and J are k-ideals of a multiplicatively regular
semiring R, then I.J is a k-ideal of R by Proposition 2.1.11.

In rings, we know that any union of ideals of rings need not be an ideal but if
a union of ideals is an ideal, then it must be equal to one of them. However, this

statement is not true in general if we consider in semirings.

Example 2.1.12. Consider the semiring Zg. Let A = Z§ —{1,2,5} and B = 5Z .
Then A and B are ideals of Zg such that A is not a k-ideal because 3,3+ 1 € A
but 1 ¢ A. Let I = AUB = Z7 —{1,2}. Hence [ is an ideal of ZJ but I # A and
[+ B.

In the next proposition, we show that, for semirings, if the union of k-ideals is

an ideal, then it is equal to one of them.

Proposition 2.1.13. Let R be a semiring and A,B k-ideals of R. If | = AUB
is an ideal of R, then I = A or I = B (certainly, I must be a k-ideal of R).

Proof. Let I = AU B be an ideal of R. Suppose that I # A and I # B. Then
B Z Aand A € B. Thus there exist a € A— B and b € B— A. Since [ is an ideal,
a+bel=AUB. Hence a+b € Aora+be B. Without loss of generality,
suppose that a+b € A. Then b € A because A is a k-ideal. This is a contradiction.
Therefore, I = A or [ = B and then [ is a k-ideal of R. m

Notation 2.1.14. [17] Let R be a semiring, I an ideal of R and a € R. Let
(I:a)={x € R|xa € I}.

Example 2.1.15. Consider the ideal 6Z; of the semiring ZJ. Then (6Z] : 2) =
{x € Z |2z € 62} = 3Z¢ .

Proposition 2.1.16. Let R be a semiring and a € R. Then the following state-

ments hold.
(1) If I is an ideal of R, then (I : a) is an ideal of R and I C (I : a).

(2) If I is a k-ideal of R, then (I : a) is a k-ideal of R.
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(3) If I and J are ideals of R such that I C J, then (I :a) C (J : a).

(4) {a) € ({a)” : a).

Proof. (1) Let I be an ideal of R. Then I is a nonempty subset of R. Let b € I.
Then ba € I because [ is anideal. Thusb € (I : a), i.e., (I : a) is a nonempty subset
of R. In addition, it is obvious that I C (I : a). Next, let x,y € (I : a) and r € R.
Then xa € I and ya € I. Since [ is an ideal, we obtain (z + y)a = za + ya €
and rza € I. Then  +y € (I : a) and rz € (I : a). Therefore, (I : a) is an ideal
of R.

(2) Let I be a k-ideal of R. Then (I : a) is an ideal of R by (1). Next, let
x,y € R be such that z,x +y € (I : a). Thus za € [ and za + ya = (r +y)a € 1.
Since I is a k-ideal and za, za + ya € I, it follows that ya € I. Hence y € (I : a).
Therefore, I is a k-ideal of R.

(3) Assume that [ and J are ideals of R such that [ C J. Let z € (I : a).
Then za € I so that xa € J. Hence x € (J : a). Therefore, (I : a) C (J : a).

(4) Let x € (a). Then x = ra for some r € R. Hence za = ra?, that is

za € (a)®. Thus = € ((a)” : a). Therefore, (a) C ((a)®: a). O

The reverse inclusion in the statement (4) of Proposition 2.1.16 is not true as

shown in the following example.

Example 2.1.17. Consider the semiring R = {0, 1, u} given in Example 2.1.2 (4).
Since 1 € R, we obtain (u)> = Ru®. Then (u)’ = Ru? = Ru = (u) = {0,u}. Since
lu =u € {0,u} = (u)?, we gain 1 € ((u)” : u). Hence ({(u)?: u) ¢ (u) because

1 ¢ (u).

Definition 2.1.18. [17] Let R be a semiring. A proper ideal I of R is said to be

a prime tdeal if whenever a,b € Rand ab € I, thena e I orbe [.

There are many researchers interested in prime ideals of both rings and semir-
ings. Moreover, it is well-known that all ideals of the ring Z are in form mZ where
m € Z and its prime ideals are {0} and (p) where p is a prime number. Since nZ;

where n € Z7 are one type of ideals of the semiring Zg, it is interesting to know



13

all prime ideals of Z§. This is done by V. Gupta and J. N. Chaudhari given in the

following example.

Example 2.1.19. [21] In the semiring Z7, all the prime ideals of Zj are {0},

(p) = pZg for some prime number p and (2,3) = ZI — {1}.

As above example, of course, it is easy to find ideals of the semiring Z; which
are not prime ideals. In the following, we provide an example of an ideal of other

semiring which is not a prime ideal.

Example 2.1.20. We know that the ideal I = Z§ — {1} of the semiring Z{ is a
prime ideal. However, if ¢ is an indeterminate, then I[t] is an ideal of the semiring
Zg [t] which is not a prime ideal because (14-2t+3t2)(3+t) = 3+7t+11t2+3t3 € I[t]
but 1+ 2t +3t2,3+t ¢ I[t].

We know what prime ideals of the semiring Zg are and Example 2.1.20 shows
that there is a prime ideal I of the semiring Zj such that I[t] is not a prime ideal
of the semiring Zg [t] where ¢ is an indeterminate. This makes us wonder what

prime ideals of the semiring Zg [t] are and the answer is provided as follows.

Proposition 2.1.21. [17] Let R be a semiring, I an ideal of R and t an inde-
terminate over R. Then I[t] is a prime ideal of R[t] if and only if I is a prime
k-ideal.

Example 2.1.22. Consider the semiring Z7. Then 11Z is a prime k-ideal of Zg
from Example 2.1.10 (2) and Example 2.1.19. Hence 11Z[t] is a prime ideal of

the semiring Zg [t] where ¢ is an indeterminate.

Definition 2.1.23. [17] Let R be a semiring. The radical of an ideal I of R,
denoted by VI, is defined to be the set of all a € R for which a” € I for some

positive integer n.

For an ideal I of a semiring R, one can show that v/I is an ideal of R con-

taining I, see [17]. Moreover, if we consider the semiring Zg, then, for examples,
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224 = {r € Z§ | r™ € 2Z7 for some n € N} = 2Z7

\VZi — {1} ={r € Z& | 7" € Z¢ — {1} for some n € N} = Z} — {1},
\/9ZS = {r € Z{ | " € 9Z] for some n € N} = 3Z .

Proposition 2.1.24. Let R be a semiring and I an ideal of R. Then the following

statements hold.

(1) VI =/VI.
(2) For alln € N, VI = /1.

Proof. (1) Since /T is an ideal of R, we obtain /I C v/+/I. Thus it remains to
show that /v C VI. Let a € VVI. Thus a™ € /I for some m € N. Then
(am)l € I for some l € N, i.e., a™ € I. Hence a € VI Therefore, VI = V V.

(2) Let n € N. Since I"™ C I, we have V" C VI. To show that VI C V17,
let x € v/I. Then there exists m € N such that 2™ € I. Thus z™z™---2™ € I".

n copies

Hence 2™ € I", and so = € v/I*. Then VI C v/I". Therefore, VI = /I" for all
n € N. O

The following proposition is a tool that helps us to find the radicals of the

principal ideals of the semiring ZJ more easily.

Proposition 2.1.25. Let m be a positive integer. The radical of the ideal mZg of

the semiring Zg is rZg where r is the product of all distinct prime factors of m.

Proof. Let m = p{"'p5? - - - po for some distinct prime numbers py, pa, . . ., p, and for
some aq, Q, . ..,a, € N. We would like to show that \/m—Zar = p1p2 - ~anf{. Let
a € \/mZF. Then a® € p2'p3? - - - porZ for some a € N. Since pS'p3? - - - ponZ$ C
piZg foralli € {1,2,...,n}, weobtain a® € p;Z§ foralli € {1,2,... ,n}. Thusa €
pid for alli € {1,2,...,n} because p;Z7 are prime ideals for all i € {1,2,...,n}.
Hence a € pr1Z§ NpsZg O -+~ NppZg C pZpaZy -+ - pulf = p1pa - - - pug . There-
fore, /mZg C pipa-- - puZs.

Conversely, we show that pips - - paZg C \/m—Zar. Let x € pips -+ puZg . Thus
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T =pips---pul for some l € Z§. Let 8 =0a; +as+ -+ a,. Then 8 € N and
P = (p1p2 .. .pnl)ﬂ
= (p1pa - - - pal) ozt ton
= pipy? e py (pP T g TS T A plib stk an ezt tan)
€ Py ps? i L
Hence z € /p{pS2 - - - panZed = /mZ. Thus pips - - - pug € /mZ; .
Therefore, we can conclude that \/m+Z(T = pip2 - Py O

Example 2.1.26. Consider the semiring Z .
(1) The radical of the ideal 85Z7 = (5-17)Z¢ is (5 - 17)Z¢ = 85Z .
(2) The radical of the ideal 120Z§ = (23 -3-5)Z{ is (23 - 5)Zs = 30Z .
(3) The radical of the ideal 900Z§ = (22 - 3% 5%)Z¢ is (2-3-5)Z¢ = 30Z .

A semiring R is said to be decomposable if it can be written as a product
of semirings, i.e., R = Ry X Ry X -+ X R, for some semirings Ry, R, ..., R,
where m € N with m > 2. Moreover, the ideals of a decomposable semiring
Ry x Ry x --- x R, are of the form I; x Iy x --- x I,,, where I; is an ideal of R; for
allie {1,2,...,m}.

The following proposition shows that the radical of anideal I = I} x Iy x - - - x I,
of a decomposable semiring R = Ry X Ry X --- X R, is equal to a product of the

radicals of each component of I.

Proposition 2.1.27. Let R = Ry X Ry X --- X R,,, be a decomposable semiring and
Iy xIyx---x I, anideal of R. Then /I, x I x -- = I XTIy % - x /1.

Proof. First, let (a1, as,...,am,) € V11 X I3 X -+ X I,. Then there is n € N such
that (a1, ag,...,a,)" € [ xIox---x1I,. Thatis (a},al,...,ar) € [ xIox- X Ip,.
Thus (a1, a2,...,0m) € VI X /Io x -+ X \/T,,. Hence I} x I x --- x I, C
VI X Iy x - x /T,

Next, let (z1, T2, ..., Tm) € V11 X/ I3 X+ -X+/I,,. There are ny,ns,...,n, € N

such that (27, x5?, ..., 2'm) € I} X Iy X -++ X L. Thus (z1,xa,...,T,)""2" " =

) m

nNIN2-Nm  NIN2Nm T
(arretim gianzsmm o gmnzeim) e [ [y X+ X I, Then (21,9, ..., %) €

rY'm
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VI X Iy x -+ x I,,. Hence /I} x \/Iy X -+ x \/T,, C/I; X Iy X -+ X I,.
Therefore, \/I; X Iy X -+ X L, = \/I1 x /Iy X -+ x /1. O

Next, we show a relationship between being k-ideals of ideals of decomposable

semirings and being k-ideals of each components of those ideals.

Proposition 2.1.28. Let R = Ry X Ry X --- X R,, be a decomposable semiring
and I = I, x Iy x --- x I,,, an ideal of R. Then I is a k-ideal of R if and only if I
is a k-ideal of R; for alli € {1,2,...,m}.

Proof. Assume that [ is a k-ideal of R. We prove that [; is a k-ideal of R; for all
i €{1,2,...,m}. Without loss of generality, we show that [, is a k-ideal of R;.
Let z,y € Ry be such that z,z +y € ;. Then (z,0,...,0),(z +y,0,...,0) € I.
Hence (z,0,...,0),(z,0,...,0) 4+ (y,0,...,0) € I. Since [ is a k-ideal, we obtain
(y,0,...,0) € I. Thus y € I; and so I is a k-ideal of R;.

Conversely, assume that I; is a k-ideal of R; for all ¢ € {1,2,...,m}. We
show that I is a k-ideal of R. Let (z1,za,...,2m), (Y1,%2,---,Ym) € R be such
that (z1,22,...,Tm), (L1, T2, ., Tm) + (Y1,Y2, -, Ym) € I. Then (x; + y1, 22 +
Y2, -y Tm+Ym) € 1. Since I; is a k-ideal and z;, z;+y; € I; foralli € {1,2,...,m},
we gain y; € [; for all i € {1,2,...,m}. Hence (y1,¥2,...,Ym) € I. Therefore, I is
a k-ideal of R. [

2.2 Fundamental Results in Quotient Semirings

In this section, we provide some idea, elementary properties and some of our fun-
damental results which relate to partitioning ideals and quotient semirings.

There are some results concerning relationships between ¢-prime ideals (¢-
primary ideals) of rings in general and ¢-prime ideals (¢-primary ideals) of quo-
tient rings in [3] (in [15]) and then we extend those results to semirings. This made
us interested in quotient semirings. First of all, we would like to recall notion of
quotient rings.

Let R be a ring and I an ideal of R. Recall that R/I = {a+ [ | a € R} and
@, © are defined on R/I as follows:
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(a+D)@b+I1)=(a+b)+1 and (a+1)O(b+I)=ab+ 1

for all a,b € R. Then (R/I,®,®) is a ring and is called the quotient ring.
Nevertheless, for an ideal I of a semiring R, the set {a + I | a € R} need not
be a partition of R (unlike the set {a + I | @ € R} where R is a ring) as shown in

the following example.

Example 2.2.1. Consider the semiring Zg. Let I = {0,3}U{5,6,7,...}. Then I

is an ideal of ZJ. Thus

1+17=1{1,4U{6,7,8,9,...}
2+ =1{25'U{78,09,10,...}.

Hence 14+ 7 # 2+ 1 and (1+1)N(2+ 1) # @. Therefore, {a+ I | a € Z§} is not

a partition of Z .

We would like to search for some sets which are partitions of semirings playing
the same role as the set {a+1 | a € R} where [ is an ideal of a ring R. Nevertheless,

there are some types of ideals that lead to some partitions of semirings.

Definition 2.2.2. [1] An ideal I of a semiring R is called a partitioning ideal
if there exists a subset () of R such that:

(1) R=U{g+1]qe @},
(2) if q1,q2 € Q, then (¢ + 1) N (g + I) # @ if and only if ¢; = ¢o.

Therefore, if [ is a partitioning ideal of a semiring R, then there exists a sub-
set, say @, of R such that {¢+ I | ¢ € Q} is a partition of R. We also call I a
partitioning ideal via the set QQ or simply call a Q-ideal.

Let Z} be the nonnegative integers modulon € N, that is, Z& = {0,1,...,n — 1}
where @ = {a + kn |k € ZJ} for any a € ZJ. Then P. J. Allen showed in [1] that
Z} forms a semiring under addition and multiplication modulo n; in addition, Z}

is also a ring.
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Example 2.2.3. (1) Consider the semiring Z{ and its ideal I = 4ZJ. Let Q =
{0,1,2,3}. Since

0+1=40,4,8,12,...}, 1+1={1,59,13,...},

2+1=1{2,6,10,14,...}, 3+1={3,7,11,15,...},

we obtain U{qg+1 | ¢ € Q} = Zg . Next, let 1, g2 € Q be such that (q; + 1) N (g +
I) # @. From writing explicit elements of the sets 0+ I, 1+ I, 2+ I and 3 + I,
we can conclude that ¢; = ¢». Therefore, I is a Q-ideal of Z .

(2) Consider the semiring Z§ and its ideal I = {0,2,4}. Let Q; = {0,1}, Q2 =
{0,3} and Q3 = {0,5}. Since 0+1 ={0,2,4} and 1+71 ={1,3,5} =3+1=5+1,
we obtain U{g+ 1 |q € Q1} =U{qg+1|qe @} =U{q+1]|qeQs} =25 If
q1,q2 € Q are distinct, then (¢, +1) N (g2 + ) = @. Then [ is a Q;-ideal of Z .
Similarly, I is also a Qy-ideal and a Qz-ideal of Z .

Example 2.2.3 (2) shows that it is possible to have several subsets @ of a

semiring R which make an ideal I of R be a partitioning ideal via those sets.

Example 2.2.4. [1] (1) Consider the semiring Zg. Let n € Z§. If n € Z§ — {0},
then nZ{ is a Q-ideal where Q = {0,1,2,...,n — 1}. If n = 0, then nZJ is a
Q-ideal where Q = Z§. Moreover, the ideal ZJ — {1} is not a partitioning ideal.

(2) Let R be a nonempty well-ordered set and define a + b = max{a, b} and
ab = min{a, b} for each a,b € R. Then R together with the two defined operations
forms a semiring. If » € R, then the set I, = {x € R|x < r} is an ideal of R. Tt
is clear from the definition of addition on R that 0+ I, = I, and = + I, = {z} for
each x > r. Thus [, is a Q-ideal where () = {0} U{zx € R|z > r}.

Proposition 2.2.5. [7] If I is a partitioning ideal of a semiring, then I is a k-ideal.

However, the converse of Proposition 2.2.5 is not true. For example, in the
semiring R = (Z;,gcd, lem), where ged is the greatest common divisor and lem
is the least common multiple, the ideal 2Z is a k-ideal but is not a partitioning

ideal, see [7].
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Let I be a )-ideal of a semiring R and ¢;,q2 € (. By the statement (1) in
Definition 2.2.2, there are ¢3,q4 € @ such that ¢ + ¢o + I C g3+ I and ¢192 +
I C g4+ 1. The uniqueness of g3 and ¢4 is guaranteed by the statement (2)
of Definition 2.2.2. To see this, suppose that there exist ¢j,¢; € @ such that
a+q@+ICag+1and qge+1 Cqp+ 1. Thus (gs+ 1) N (g5 +1) # @ and
(g +1)N (g, + 1) # @. Hence ¢3 = ¢4 and ¢4 = ¢j. The notion of the uniqueness
of g3 and ¢4 leads us to define binary operations on the set {¢+1 | ¢ € Q} in order
to form a new semiring.

Let I be a partitioning ideal via the set @) of a semiring R and R/I = {q+ I |
q € Q}. Then R/I forms a semiring under the binary operations @ and ©® defined

as follows:
(@ +1D)®(@+)=g+I1 and (+1)O(g+I)=qu+]1

where ¢3,q, € () are the unique elements such that ¢4 + ¢ + 1 C g3 + I and
¢1g2+1 C g+ 1. This semiring R/I is called the quotient semiring of R by I,
see [6].

In addition, for a semiring R and a (-ideal I of R, since R is a commutative
semiring with nonzero identity 1, then R/I is a commutative semiring with nonzero
identity q; + I where ¢; € ) such that 14+ I C ¢, + I; moreover, its zero element
is qo + I where gy € @ such that 0+ 1 C gy + I.

Example 2.2.6. Let R = Z§ and I = 6Z;. Then I is a Q-ideal where QQ =
{0,1,2,3,4,5}. Hence R/I = {q+ 6Z{ |q € Q} = {6Z,1 + 6Z¢,2 + 6Zf,3 +
6Zd,4 + 67,5 + 6Z7 } is a quotient semiring of R by I which is a commutative
semiring with nonzero identity 1+ 6Z¢. Next, we provide examples of addition &
and multiplication ® of some elements of R/I. We obtain (1+6Z7)® (2+6Z7) =
3+ 6Z¢ and (1 + 6Z7) ® (2 + 6Z8) = 2 + 67 .

If R is a semiring and [ is a partitioning ideal of R via the set (), then we use
the notation R/l instead of the quotient semiring of R by I when we would like
to specific that I is a partitioning ideal of R via the set Q).

From Example 2.2.3 (2), there are three quotient semirings of R by I that are
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R/l ={q+1]qe @}, R/lg, ={q+1|q€Q:}and R/Ig, ={q+1|q€ Qs}.
It is suspected that they are different or not.

Definition 2.2.7. [1] A mapping ¢ from a semiring R into a semiring R’ is called
a homomorphism if p(a+0b) = p(a)+¢(b) and p(ab) = p(a)p(b) for all a,b € R.
An isomorphism is a one-to-one and onto homomorphism. Semirings R and R’
is said to be isomorphic (denoted by R = R’) if there exists an isomorphism

from R onto R'.

The following theorem shows that the quotient semirings of R by a partitioning

ideal of R via the set ()1 and via the set ()o are isomorphic.

Theorem 2.2.8. [1] Let I be an ideal of a semiring R. If Q1 and Qo are subsets
of R such that I is both a QQ1-ideal and a (Qs-ideal, then

({C] + I}(IGQN ®Q17 ®Q1) = ({q + [}QGQ27 @sz ®Q2)'

One knows that if R is a ring and [ is an ideal of R, then ideals of the quotient
ring R/I are in the form J/I where J is an ideal of R and J contains I; however, not
all ideals of a semiring R containing a partitioning ideal I can be formed ideals of
its quotient semiring R/I. J. N. Chuadhari and D. R. Bonde introduced, in 2014,
another kind of ideals of semirings that lead to ideals of its quotient semirings.

Moreover, these ideals are a generalization of k-ideals.

Definition 2.2.9. [13] Let [ be an ideal of a semiring R. An ideal P of R con-
taining I is said to be a subtractive extension of I if whenever z,y € R and

rxe€l,r+ye€ P, theny e P.

Note that, every k-ideal of a semiring R containing an ideal I of R is a sub-
tractive extension of I; nevertheless, the converse of this statement is not true as

shown in the following.

Example 2.2.10. Let [ = 47§ x{0} and P = 2ZJ x (Z§ —{1}). Then I and P are
ideals of the semiring R = Z; x Zg such that I C P. Since (4,2),(4,2) +(2,1) =
(6,3) € P but (2,1) ¢ P, it follows that P is not a k-ideal of R. Let x € I and
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r+y € P. Thus z = (4n,0) for some n € Z§ and z +y = (2m,l) for some
m € Zg and for some | € Z§ — {1}. Let y = (a,b) for some a,b € ZS. Then
(2m,l) =z +y = (4n,0) + (a,b) = (4n +a,b). Hence 4n +a = 2m and b = [, and
so we obtain a € 2ZJ and b € Z§ — {1}. That is y = (a,b) € P. Therefore, P is a

subtractive extension of I.

Next, we provide a result showing that the radicals of k-ideals are subtractive

extension of those k-ideals.

Proposition 2.2.11. Let R be a semiring and I a k-ideal of R. Then V1 is a

subtractive extension of I.

Proof. Let a,b € R be such that a € I and a + b € V/I. Then there exists n € N
such that (a +b)" € 1. Since

Y P Y (L P

and I is a k-ideal containing a, we obtain " € I. Hence b € v/I. Therefore, v/T is

a subtractive extension of I. O

Theorem 2.2.12. [13] Let R be a semiring, I a Q-ideal of R and P an ideal of R

containing I. Then following statements are equivalent.
(1) P is a subtractive extension of I.
(2) I is a Q'-ideal of P where Q' = Q N P.
(3) P/I={q+1:qe€QnN P} is an ideal of a semiring R/I.
(4) P/I S R/I.

Theorem 2.2.13. [13] Let I be a Q-ideal of a semiring R. Then L is an ideal
of R/I if and only if there exists an ideal P of R such that P is a subtractive
extension of I and P/I = L.
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Theorem 2.2.14. [13]| Let I be a Q-ideal of a semiring R. Then a subset L of
R/I is a k-ideal of R/I if and only if there exists a k-ideal P of R with I C P and
P/l =1L.

Therefore, we can conclude that ideals (k-ideals) of a quotient semiring R/I
where I is a Q-ideal of a semiring R must be in the form P/I = {¢+1:q € QN P}
where P is a subtractive extension of I (a k-ideal containing I'). Hence, from now
on, when we mention about any ideal P/I of a quotient semiring R/I where I is a
(Q-ideal of a semiring R, we usually assume that P is a subtractive extension of I.

The rest of results in this section are needed in other chapters.

Lemma 2.2.15. Let R be a semiring, I a Q-ideal of R, P a subtractive extension

of  anda € R. Ifa+ 1 € P/I, then a € P.

Proof. Let a+1 € P/I ={q+1:q€ QN P}. Then there exists a ¢ € QN P such
that a +1 = g+ I. Thus there is an € [ such that a = ¢+ x. Since I C P, we
obtain x € P. Therefore, a =g+ x € P. O

Proposition 2.2.16. Let R be a semiring, I a QQ-ideal of R and P a subtractive
extension of I. Then (g1 +1)(g2+1) - (¢ +1) € P/I if and only if 12+ - ¢ € P
fOT all 41,492, ---,0n € Q

Proof. Let q1,q2, . ..,q, € Q. First, assume that (g1 +1)(qa+1) - (g, +1) € P/I.
Then (g1 +I)(g2+ 1)+ (gn + I) = g + I for some unique element ¢ € @ N P such
that ¢1q2---q, +1 C g+ 1. Since ¢ € P and I C P, we obtain ¢+ 1 C P. Then
G192+ qn € ¢+ I C P. Therefore, q1q2---q, + 1 € P.

Conversely, assume that ¢iqz - - - ¢, € P. Suppose that (¢ +1)(qe+1) -+ (g +1)
= q + I for some unique element ¢ € @) such that ¢1q2---¢q, + 1 C q+ I. Hence
4192 - - - qn € q + I and so there exists y € I such that ¢q1q2---¢, = ¢ + y. Since
9192 - qn € P, we must have ¢ +y € P. Thus we get ¢ € P because P is a
subtractive extension of I and y € I,q+y € P. Thus ¢ € Q N P. Therefore,
(g +D)(g+1)(g.+1)=q+1€ P/ O
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For an ideal I of a semiring R, the radicals of ideals which are subtractive

extensions of I are also subtractive extension of 1.

Lemma 2.2.17. Let R be a semiring and I an ideal of R. If P is a subtractive

extension of I, then /P is also a subtractive extension of I

Proof. Assume that P is a subtractive extension of I. Then /P is an ideal and
I CPCVP. Let z,y € Rbesuch that z € I and z+y € v/P. Then (x+y)" € P

for some n € N. That is

n n n
"+ "y + A TR vyt +y" € P.
1 2 n—1

We obtain z" + <711) T (Z) "4 ( " 1> zy" ' € I because z € I.
n —

Since P is a subtractive extension of I, it follows that y” € P. Hence y € v/P.
Therefore, v/ P is a subtractive extension of 1. O

Consequently, we can conclude that if I is an ideal of a semiring R and P is a
subtractive extension of I, then /P is also a subtractive extension of I. Hence,
if we assume further that [ is a @)-ideal of a semiring R, then not only P/I is an
ideal of R/I but also /P/I. This raises to a question whether /P/I and /P/I

are identical.

Proposition 2.2.18. Let R be a semiring, I a Q-ideal of R and P a subtractive
extension of I. Then NP/I = \/P/I.

Proof. First, let ¢+ 1 € \/ﬁ/[ where ¢ € Q N+/P. Then there is n € N such that
¢" € P. By Proposition 2.2.16, we have (¢+ I)(¢+1)---(¢+I) € P/I. That is

n copies

(¢4 I)" € P/I and hence q + I € \/P/I. Thus vVP/I C \/P/I.
Next, let ¢ + I € \/P/I. Then there is an n € N such that (¢ + I)" € P/I.
That is (¢ +I)(¢g+1)---(¢+ 1) € P/I. By Proposition 2.2.16, we get ¢" € P.

~

n copies

Hence ¢ € VPN Q and so ¢+ I € v/P/I. Then /P/I C \/P/I.
Therefore, v/P/I = /P/I. O
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Throughout this dissertation, the symbol ¢ is assumed to be a function from
Z(R) into .# (R)U{@} where .#(R) is the set of ideals of a semiring R. Moreover,
if R is a semiring and there is a function ¢ : #(R) — #(R) U {@}, then R is
called a semiring with ¢.

For a semiring R and any two functions ¢,y : F(R) — F(R) U{D}, we
define p; < ¢y if 1(1) C po(I) for each I € #(R) in the same manner as given
in [3].

Let R be a semiring and I a -ideal of R. Moreover, let ¢ be a function
from Z(R) into #(R) U {@} such that ¢(L) is a subtractive extension of I for all
ideal L of R where L is a subtractive extension of /. We define ¢; : S (R/I) —
F(R/T)U{@} by ¢1(J/I) = (¢(J))/I for each ideal J of R where J is a subtractive
extension of I.

We call R a semiring with ¢ satisfying the property (*) if R is a semiring
with ¢, I is a Q-ideal of R and ¢; is a function from % (R/I) into .#(R/I) U {2}
where ¢ and ¢; are defined in the previous paragraph.

The following theorem is very important that we use it in proving the main

theorems of the last section in every chapter later.

Theorem 2.2.19. Let R be a semiring with ¢ satisfying the property (x), I a Q-
ideal of R and P a subtractive extension of I. Then (¢1 + I)(ga+ 1)+ (g + 1) €

P/I — ¢;(P/I) if and only if 1q2 -+ - qn € P — ¢(P) for all ¢1,q2,--.,qn € Q.

Proof. The proof is completed by Proposition 2.2.16. O]

From the Proposition 2.2.5 and the ideal 2Z] of the semiring (Zg, gcd, lem),
we know that every (Q-ideal is a k-ideal but not vice versa. Nevertheless, ()-ideals
and k-ideals are coincide in some semirings such as strongly Euclidean semirings
which were introduced by J. S. Golan in 1999 [17]. In strongly Euclidean semiring,
not only @-ideals and k-ideals are coincide but also principal ideals. Moreover, in

every chapter after this, there are results relate to strongly Fuclidean semirings.

Definition 2.2.20. [17] A semiring R is called a Euclidean semiring if there
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exists a function d : R—{0} — Zg such that if a,b € R with b # 0 then there exist

unique elements ¢,r € R such that a = bq + r where either = 0 or d(r) < d(b).

Definition 2.2.21. [17] A semiring R is called a strongly Euclidean semiring
if there exists a function d : R — {0} — Z§ such that

(1) d(ab) > d(a) for all a,b € R — {0} and

(2) if a,b € R with b # 0 then there exist unique elements ¢, € R such that
a = bq + r where either r = 0 or d(r) < d(b).

By the definition of strongly Euclidean semirings, every strongly Euclidean

semiring is a Euclidean semiring.

Theorem 2.2.22. [18] Let R be a strongly Euclidean semiring. Then the following

statements are equivalent.
(1) I is a Q-ideal of R.
(2) I is a k-ideal of R.
(8) I is a principal ideal of R.

Example 2.2.23. [18] The semiring Z; is a strongly Euclidean semiring. Hence
the ideals aZg where a € Zg are Q-ideals and k-ideals. Moreover, we can conclude
that the ideal Z — {1} = (2, 3) is not a Q-ideal and not a k-ideal because it is not
a principal ideal of ZI. All prime k-ideals of the semiring Z; are {0} or pZ{ for
some prime number p (see Example 2.1.19 and Example 2.2.4 (1)).

2.3 Fundamental Results in Semirings of Fractions

In 1999, J. S. Golan extended the concept of rings of fractions to the notion of
semirings of fractions by using a straightforward adaptation of the method used
for rings. In this section, we introduce the idea of semirings of fractions. Besides,

our fundamental results of semirings of fractions are given.
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Definition 2.3.1. [17] An element a of a semiring R is said to be multiplicatively

cancellable if ba = ca only when b = ¢ for all b,c € R.

Let R be a semiring and S a set of all multiplicatively cancellable elements
of R. We would like to show that S is closed under multiplication. Let a,b € S
and x,y € R be such that xab = yab, then xa = ya because b € S, and so v =y
since a € S. Hence ab € S. Therefore, we can conclude that S is closed under

multiplication. Moreover, it is easy to see that 1 € S and 0 ¢ S.

Example 2.3.2. Consider the semiring Z§. Then Z; — {0} is the set of all

multiplicatively cancellable elements of Z .

Note that the set of all multiplicatively cancellable elements of semirings must
not be empty because all considered semirings containing the identity element and
it certainly contained in this set.

In 1999, J. S. Golan [17] gave the construction of semirings of fractions as
follows. Let R be a semiring and S the set of all multiplicatively cancellable

elements of R. Define a relation ~ on R x S as follows:
(a,s) ~ (b,t) if and only if at = bs

for all (a,s),(b,t) € R x S. Then ~ is an equivalence relation on R x S.
For (a,s) € R x S, denote the equivalence class of ~ containing (a, s) by 9,
s
and denote the set of all equivalence classes of ~ by Rg. Then Rg forms a semiring

under operations

a b at+bs a b ab
sTiT T d (;)(z)—g

for all a,b € R and s,t € S. This new semiring Rg is called the semiring of
fractions of R with respect to S.
Since R is a commutative semiring with nonzero identity 1, it follows that Rg

is a commutative semiring with nonzero identity T addition, its zero element

is 1> see [5].
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In 2008, R. E. Atani and S. E. Atani [5] investigated the ideal theory in semir-
ings. We are interested in many of their results and apply them in this dissertation.
Moreover, R. E. Atani and S. E. Atani [5] also examine ideals of quotient semir-

b
ings. Let I be an ideal of R. If a € [ and t € Rg, then t = — for some b € R
c

b b
and ¢ € S; in addition, at = a (—) — 2 The ideal of Rs generated by I,
c c

is defined to be the set Zaiti

a; € I,t; € Rgand n € N}, and is called the
i=1

extension of I to Rg, denoted by IRg.

Definition 2.3.3. [5] Let R be a semiring, S the set of all multiplicatively can-

cellable elements of R and J an ideal of Rg. Then the contraction of J in R,

denoted by J N R, is defined as
r
JnR={rer|seJ}.

Proposition 2.3.4. [5] Let R be a semiring and S the set of all multiplicatively
cancellable elements of R. If J is an ideal of Rg, then J N R is an ideal of R.

Proposition 2.3.5. [5] Let R be a semiring and S the set of all multiplicatively
cancellable elements of R. Assume that I,J and K are ideals of R and let L be an

ideal of the semiring Rs. Then the following statements hold.

(1) x € IRg if and only if it can be written in the form x = a for some a € I
c

andc € S.
(2) (LNR)Rs = L.
(8) (INJ)Rs =1RsN JRs.

Proposition 2.3.6. [5] Let R be a semiring, S the set of all multiplicatively can-
cellable elements of R and I a k-ideal of R. Then IRg is a k-ideal of the semir-
g Rg.

Finally, we provide some results regarding semirings of fractions which are
applied to the proof of some results in the last section of Chapter III, Chapter V
and Chapter V1.
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Proposition 2.3.7. Let R be a semiring, S the set of all multiplicatively can-
cellable elements of R and I an ideal of R. Then VIRs = /IRg.

Proof. First, let % € VIRs. By Proposition 2.3.5, there exist a € VI and u € S
such that % = %. Thus zu = at. Since a € VI, there is n € N such that a” € I.
Hence z"u™ = (zu)" = (at)” = a™t"™ € I. So we get (%)n = f:;j: € IRg.
Therefore, % € v/IRg, and then vVIRs C v/IRg.

)

Next, let y € VIRg. Then there is an m € N such that (—)m € IRg. Thus
S

s

there exist b € I and v € S such that vy _ —. Hence y™v = bs™ € I, and
sm v

so (yv)™ = y™u™ € I. Thus yv € VI, and then v _ 9 ¢ VIRg. Therefore,

VIRs C VIRs. S O
Let R be a semiring with ¢ and S the set of all multiplicatively cancellable
elements of R. We define ¢g : Z(Rg) — #(Rs)U{@} in the same manner as seen
in [3] by ¢s(J) =d(JNR)Rs if p(JNR) € #(R) and ¢s(J) =D if (JNR) =&
for all J € Z(Rg).
The following theorem as well as Theorem 2.2.19 are important results because

they are main tools for providing one of main results in other chapters.

Theorem 2.3.8. Let R be a semiring with ¢, S the set of all multiplicatively
cancellable elements of R and I an ideal of R with ¢(I)Rs C ¢s(IRg). For

ﬂaﬁa"wﬂ € RS; Zf (ﬂ)(ﬁ)(ﬁ) € IRS - ¢S(IRS’)7 then T1Tg -+ TpV €
S1 S2 Sn S1  S2 Sn

I —¢(I) for somewv € S.

Proof. Let ﬁ, ﬁ, ce In ¢ Rg be such that (ﬂ)(ﬁ) e (&) € IRs — ¢s(IRg).
S1 89 Sn, S1° 82 Sn,
Since ¢(I)Rs C ¢s(IRs), we obtain ————" & IRg—¢(I)Rg. Then there exist
8189+ Sp
a € I and v € S such that T2t O g. Thus z129 - 2,0 = a8189---8, € 1.
S§189++Sp v
If 2125 - - 2,0 € G(I), then =2 =12 € ¢(I)Rs which is a contra-

S$1S9 - Sp S182 - SpU
diction. Therefore, zyzo - x,v € I — ¢(I). O



CHAPTER I11
GENERALIZATIONS OF PRIMARY IDEALS OF
SEMIRINGS

In ring theory, there are many generalizations of prime ideals and one of those is
known as primary ideals. A proper ideal I of a ring R is said to be a primary tdeal
if whenever a,b € R with ab € I, either a € I or 0" € I for some positive integer n.
Hence prime ideals are primary ideals but not vice versa. For example, 9Z is a
primary ideal of the ring Z but it is not a prime ideal of Z because 3-3 =9 € 9Z
but 3 ¢ 9Z. In 2005, S. E. Atani and F. Farzalipour [8] generalized the concept of
primary ideals to weakly primary ideals of rings. They defined a weakly primary
ideal I of a ring R to be a proper ideal and if whenever a,b € R with 0 # ab € I,
then a € I or b" € I for some positive integer n. Thus every primary ideal is a
weakly primary ideal. Nevertheless, weakly primary ideals need not be primary
ideals. For example, {0} is a weakly primary ideal of the ring Z;o and 2 - 5 € {0}
but 2 ¢ {0} and 5" ¢ {0} for all n € N. Hence {0} is not a primary ideal of the
ring Zig. Therefore, weakly primary ideals are generalizations of primary ideals.

Many types of ideals of rings are generalized to the similar types of ideals of
semirings. Primary ideals also play such that role. The notion of primary ideals of
a semiring have been introduced and studied by S. E. Atani and M. S. Kohan in
2010 [9]. They defined a primary ideal I of a semiring R to be a proper ideal and
if whenever a,b € R with ab € I, then a € I or 0" € I for some positive integer n.
After that, in 2011, J. N. Chaudhari and B. R. Bonde [12] generalized the notion
of primary ideals of semirings to weakly primary ideals of semirings. They defined
a weakly primary ideal I of a semiring R to be a proper ideal and if whenever
a,b € R with 0 # ab € I, then a € I or b" € I for some positive integer n.

A. Y. Darani [15] generalized the notion of primary ideals and weakly primary
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ideals to ¢-primary ideals of rings in 2012. He defined a ¢-primary ideal I of
a ring R to be a proper ideal and if whenever a,b € R with ab € I — ¢(I), either
a € I or b" € I for some positive integer n.

At this point of view, we extend the concepts of primary ideals, weakly primary
ideals and ¢-prime ideals of semirings and ¢-primary ideals of rings to ¢-primary
ideals of semirings. We divide this chapter into three sections that are ¢-primary
ideals of semirings, ¢-primary ideals in decomposable semirings and the last one

is ¢-primary ideals in quotient semirings and semirings of fractions.

3.1 ¢@-Primary Ideals of Semirings

For the sake of completeness, we begin with a definition that is used throughout
this chapter. We would like to restate the definitions of primary ideals and weakly
primary ideals of semirings; in addition, we define almost primary ideals, n-almost
primary ideals and w-primary ideals of semirings in the same manner as almost
primary ideals, n-almost primary ideals and w-primary ideals of rings given in [15].

A tool that we use most frequently in this chapter is the radicals of ideals. So,
first of all, we would like to recall them. The radical of an ideal I of a semiring R
is denoted by vI and VI = {a € R|a™ € I for some n € N} is an ideal of R.
Hence, for an ideal I of a semiring R containing a, we can write a € v/I in stead
of the statement that a™ € I for some positive integer n; moreover, we use a € v/1

from now on.

Definition 3.1.1. Let R be a semiring.

A proper ideal I of R is said to be primary if whenever a,b € R and ab € I,
thena € I or b e /1.

A proper ideal I of R is said to be weakly primary if whenever a,b € R and
O#abel, thenae lorbeI

A proper ideal I of R is said to be almost primary if whenever a,b € R and
abEI—Iz,thenaelorbGﬁ.

A proper ideal I of R is said to be n-almost primary (n € N with n > 2) if
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whenever a,b€ Randabe I —I", thena e I or b e V1.
A proper ideal I of R is said to be w-primary if whenever a,b € R and

abe I —N> 1" thena €I orbe I

Proposition 3.1.2. Let p be a prime and n a positive integer. Then p"Zg is a

primary ideal of the semiring Zg .

Proof. Let a,b € Z§ be such that ab € p"Zg. Then ab = p"l for some [ € Z .
Case 1: Assume that p" is a factor of a. Thus a = p"h for some h € Z7. Hence
a € pZs.

Case 2: Assume that p" is not a factor of a. Then p is a factor of b. Thus b = pm
for some m € Z$. Hence b" = (pm)" = p"m" € p"Zg. Therefore, b € \/prZg .

From any cases, we can conclude that p"Z is a primary ideal of Z . O

As above definitions, it is easy to see that the zero ideal is a weakly primary
ideal, an almost primary ideal, an n-almost primary ideal and an w-primary ideal
because I —{0}, I —I* I —1" and I —N_;I™ must be the empty set. Nevertheless,
the zero ideal may be a primary ideal of some semirings and probably not be a

primary ideal of other semirings as shown in the following example.

Example 3.1.3. (1) Consider the semiring Rf and its ideal {0}. Let a,b € R
such that ab € {0}. Thus a =0 or b =0, and so a € {0} or b € \/{0}. Hence the
ideal {0} is a primary ideal of the semiring R .

(2) Consider the ideal {(0,0)} of the semiring Qf x Qf. Let a,b € QF — {0}.
Since (a,0) - (0,b) = (0,0) € {(0,0)} but (a,0) ¢ {(0,0)} and (0,b)" = (0,b") ¢
{(0,0)} for all n € N. That is (a,0) ¢ {(0,0)} and (0,b) ¢ \/{(0,0)}. Therefore,

the ideal {(0,0)} is not a primary ideal of the semiring Qf x Qg .

From the definition of almost primary ideals and n-almost primary ideals, one
can see that 2-almost primary ideals are just almost primary ideals.

In the following, we would like to define the main character of this chapter that
is ¢-primary ideals of semirings which is defined in the same fashion as ¢-primary

ideals of rings given by A. Y. Darani in 2012.
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Definition 3.1.4. A proper ideal I of a semiring R with ¢ is said to be ¢-primary
if whenever a,b € R and ab € I — ¢(I), thena € I or b € /1.

Next, we provide relationships between ¢-primary ideals and primary ideals

(weakly primary ideals, w-primary ideals, almost primary ideals, n-almost primary

ideals) in the same manner as found in [15].

Example 3.1.5. Let R be a semiring.

(1)

(2)

(3)

(6)

Define ¢y : S (R) — FZ(R)U{D} by ¢x(I) = @ for all I € Z(R). Then [

is a ¢g-primary ideal if and only if I is a primary ideal.

Define ¢g : Z(R) — #(R)U{D} by ¢o(I) = {0} for all I € #(R). Then [

is a ¢p-primary ideal if and only if I is a weakly primary ideal.

Define ¢, : Z(R) — F(R)U{D} by ¢1(I) =1 for all I € #(R), (ie., ¢
is the identity function). Then [ is a ¢;-primary ideal if and only if I is a

proper ideal.

Define ¢, : Z(R) — F(R)U{@} by ¢o(I) = I? for all [ € .#(R). Then I is

a ¢o-primary ideal if and only if [ is an almost primary ideal.

Define ¢,, : S (R) — J(R) U {@} by ¢n(I) = I" for all I € F(R) (n €
N with n > 2). Then [ is a ¢,-primary ideal if and only if [ is an n-almost

primary ideal.

Define ¢, : F(R) — FZ(R) U {2} by ¢,(I) = N3, I" for all I € F(R).

Then [ is a ¢,-primary ideal if and only if I is an w-primary ideal.

From the definition of ¢-primary ideals and Example 3.1.5, we can conclude

that ¢-primary ideals of semirings are a generalization of primary ideals, weakly

primary ideals, almost primary ideals, n-almost primary ideals and w-primary

ideals of semirings depending on the defined function ¢. Moreover, from now on,

we use the notation ¢gz, ¢o, 1, P2, dn and ¢, instead of functions from #(R) into

J(R) U {@} which are defined as above.
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Recall that the notation ¢; < @9 means ¢1(I) C po(I) for all I € F(R)
where R is a semiring and ¢4, 3 : Z(R) — Z(R)U{@} are functions. In the next
proposition, we show that if ¢; < @9, then ¢i-primary ideals imply o-primary

ideals.

Proposition 3.1.6. Let R be a semiring, I a proper ideal of R and p1 < o where
1 and @y are functions from Z(R) into S (R)U{@}. If I is a p1-primary ideal,

then I is a po-primary ideal.

Proof. Assume that I is a @i-primary ideal. Let a,b € R be such that ab €
I — @y(I). Since p1(I) C @o(I), we obtain ab € I — @y(I). Thena € I or b e V1

because [ is a ¢q-primary ideal. Therefore, I is a po-primary ideal. O]

Relationships between ¢-primary ideals and primary ideals (weakly primary
ideals, almost primary ideals, n-almost primary ideals, w-primary ideals) are al-
ready shown in Example 3.1.5. Furthermore, from Proposition 3.1.6, we obtain
relationships among primary ideals, weakly primary ideals, almost primary ideals,

n-almost primary ideals and w-primary ideals.

Corollary 3.1.7. Let I be a proper ideal of a semiring and n € N with n > 2.

Consider the following statements:
(1) I is a primary ideal.
(2) I is a weakly primary ideal.
(8) I is an w-primary ideal.
(4) I is an (n+ 1)-almost primary ideal.
(5) I is an n-almost primary ideal.
(6) I is an almost primary.

Then (1) = (2) = (3) = (4) = (5) = (6).
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Proof. The result follows from the fact that @ C {0} C N, [" C [*1 C [* C [?

(0 < o < P < i1 < ¢ < ¢2) where n € N such that n > 2. O

As a result of Corollary 3.1.7, we obtain that w-primary ideals imply n-almost
primary ideals for all positive integer n > 2. Nevertheless, the converse might not
be true, although we still cannot find a counter-example. For a positive integer
n > 2, we remark that if an ideal I of a semiring R is a counter-example of
this statement, if exists, it, at least, must not be an idempotent ideal and must
satisfy the condition that I™ # N°_,I™ because if I is an idempotent ideal or

m

I" =nN>_,I"™ then I —I" =1 —N%°_,I"™ so that I is an n-almost primary ideal if
and only if I is an w-primary ideal.
However, if a proper ideal [ is assumed to be an n-almost primary ideal for all

n € N with n > 2, then [ is an w-primary ideal.

Proposition 3.1.8. Let R be a semiring and I a proper ideal of R. Then I is an

w-primary ideal if and only if I is an n-almost primary ideal for all n > 2.

Proof. Assume that [ is an w-primary ideal. The proof is clear by Corollary 3.1.7.

Conversely, assume that [ is an n-almost primary for all n > 2. Let a,b € R
be such that ab € I — @,(I) =1 — N, I". Then ab € I — I' where [ € N — {1}.
Since I is an [-almost primary ideal, we obtain a € I or b € /I. Therefore, I is

an w-primary ideal. O

We would like to point out here that many results in this chapter are concerned
with k-ideal I of a semiring R with ¢ such that ¢(I) is also a k-ideal and some-
times including ¢(I) C I. Thus, it is natural to verify whether this situation is
reasonable. Note that, for any k-ideal I of a semiring R with ¢, if the function ¢
is the identity map, then it is clear that ¢(I) is a k-ideal. Moreover, there are
many functions ¢ which make ¢(I) k-ideals. In the next example, we provide some

functions ¢ that not only make ¢(I) a k-ideal but also make ¢(I) a subset of I.

Example 3.1.9. Consider the semiring Z; with ¢,. Then 8Z{ is a k-ideal of Z .
Recall that ¢, is a function defined by ¢o(I) = I? for all I € #(Zf). Thus
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$2(8ZF) = (8Z¢)* = (8ZJ)(8Z¢) = 64Z§ and hence ¢o(8Z7) is a k-ideal. In
addition, ¢o(8Z¢) = 64Z; C 8Z .

However, there is a semiring R with ¢ in which ¢ is a function such that ¢(17)

is not a k-ideal of R and ¢(I) € I while I is a k-ideal of R.

Example 3.1.10. Consider the semiring ZJ. Then 3Z7 is a k-ideal of Zj. Let
J =27¢. Define ¢ : I (Z§) — F(Z)U{D} by ¢(I) =T+ J for all [ € F(Z).
Then ¢(3Z§) = 3Zi +27Z¢ = Zg —{1}, and so ¢(3Z ) is not a k-ideal of Z§ because
2,2+ 1€Zf — {1} but 1 ¢ Z$ — {1}. Furthermore, ¢(3ZJ) = Zd — {1} € 3Z.

Since the empty set is a subset of any sets and primary ideals are just ¢g-
primary ideals, primary ideals imply ¢-primary ideals for any ¢ but not vice versa

as shown in the following example.

Example 3.1.11. Consider the semiring Z7 and its ideal 30Z. Since 5-6 = 30 €
30ZF but 5 ¢ 30Z and 6" ¢ 30Z7 for all n € N, ie., 5 ¢ 30Z; and 6 ¢ /30Z] .
Thus 30Z§ is not a primary ideal of the semiring Z;. Define ¢ : S(ZJ) —
F(Z5) U{a} by ¢(I) = I + 32§ for all [ € F(Z§). Hence 30Z; — #(30ZF) =
30Z¢ — (30Z3 +3Z7) = @ because 30Z¢ C 30Z§ +3Z7. Thus 30Z¢ is a ¢-primary
ideal of the semiring Zg. Therefore, 30Z; is a ¢-primary ideal but not a primary

ideal of the semiring Z .

In the next theorem, we provide conditions showing that k-ideals and I? € ¢(I)

are sufficient for a ¢-primary ideal I to be a primary ideal.

Theorem 3.1.12. Let R be a semiring with ¢ and I a proper k-ideal of R such
that ¢(I) is a k-ideal. If I is a ¢-primary ideal with I* € ¢(I), then I is a primary

ideal.

Proof. Assume that I is a ¢-primary ideal with I? € ¢(I). Let a,b € R be such
that ab € 1. If ab € I — ¢(I), then a € I or b € /T because I is ¢-primary. So we
suppose that ab € ¢(1).

Case 1: Assume that al Z ¢(I) or bl Z ¢(I). Without loss of generality, suppose
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that al € ¢(I). Then there exists xy € I such that axy ¢ ¢(I). Since ab, zy € I, we
obtain ab+azxy € I. If ab+axy € ¢(I), then axy € ¢(I) because ¢(I) is a k-ideal and
ab, ab+ axy € ¢(I) which is a contradiction. Thus a(b+ o) = ab+axe € I — ¢(I).
Since I is ¢-primary, a € I or b+ zo € v/I. Since /I is a subtractive extension
of I by Proposition 2.2.11, we obtain a € I or b € /1.

Case 2: Assume that al C ¢(I) and bI C ¢(I). Since I* € ¢(I), there exist
x1,29 € I such that z129 ¢ ¢(I). Then (a + 22)(b + z2) = ab + axs + bx; +
x1xy € I — ¢(I) because ¢(I) is a k-ideal. Since [ is ¢-primary, a + x; € I or
b+ 2 € VI. Since xr1,x9 € I, Iis a k-ideal and VT is a subtractive extension of T
by Proposition 2.2.11, we obtain a € I or b € V1.

Therefore, I is a primary ideal. O

In the next example, we show that there is a proper k-ideal I of a semiring R

with ¢ such that ¢(7) is a k-ideal and I is a ¢-primary ideal with 12 Z ¢([).

Example 3.1.13. Consider the semiring R = Z; and the ideal I = p"ZJ where
p is a prime number and n € N. Then [ is a proper k-ideal of R. Define ¢ :
F(R) - F(R)U {2} by ¢(J) = ¢Z{ for all J € F(R) where ¢ is a prime
number such that ¢ # p. Thus ¢(I) = ¢Z¢ is a k-ideal. By Proposition 3.1.2,
I is a primary ideal of R so is a ¢-primary ideal of R. Moreover, we obtain

I? = p"Z§ - p"L§ = p™Z§ € qZ§ = ¢(I).

The converse of Theorem 3.1.12 is not true in general and we provide an ex-

ample to confirm this.

Example 3.1.14. Consider the semiring R = Z§ and the ideal I = 25Z7. Then I
is a primary k-ideal of R and I? = (25Z7)? = 625Z¢. Next, we define ¢ : Z(R) —
F(R)U {2} by ¢(nZs) = 5nZg for all n € Z§ and ¢(J) = J otherwise. Thus
O(I) = ¢(25Zg) = 125Z¢ , and so ¢([I) is a k-ideal of R. Hence [ is a primary ideal
of R while I? = 625Z§ C 125Z = ¢(I). Therefore, the converse of Theorem 3.1.12

is not true as desired.

Next, the consequences of Theorem 3.1.12 are provided.
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Corollary 3.1.15. Let R be a semiring with ¢ and I a proper k-ideal of R such
that ¢(1) is a k-ideal and ¢(I) C I. If I is a ¢-primary ideal but not a primary

ideal, then /T = \/o(I).

Proof. Assume that [ is a ¢-primary ideal but not a primary ideal. By Theorem
3.1.12, we obtain I? C ¢(I). Since vI = v/I? by Proposition 2.1.24 (2), we
have /I = V12 C /é(I). Since ¢(I) C I, we obtain \/¢(I) C v/I. Therefore,
VT = /&) 0

The next example shows that the converse of Corollary 3.1.15 is not true.

Example 3.1.16. Consider the semring Z; and its ideal I = p?Z; where p is
a prime number. Then [ is a primary k-ideal of ZJ. We define ¢ : Z(R) —
F(R)U{@} by ¢(J) = pJ if J is a principal ideal of Z] and ¢(J) = J? otherwise
for all J € #(R). Thus ¢(I) = ¢(p*Z$) = p(p*Z§) = p*Z¢ is a k-ideal of Z7; in
addition, ¢(I) = p*Z¢§ C p?Z¢ = I. Moreover, \/o(I) = \/d(p*Z) = /P*ZS =
pZE = \/pZ—ZaL = /T by Proposition 2.1.25. Hence I is a primary ideal of Zg and
VI = \/W . Therefore, the converse of Corollary 3.1.15 is not true.

Corollary 3.1.17. Let R be a semiring with ¢ < ¢3 and I a proper k-ideal of R.

If I is a ¢-primary ideal such that ¢(I) is a k-ideal, then I is an w-primary ideal.

Proof. Assume that I is a ¢-primary ideal. If I is a primary ideal, then [ is an
w-primary by Corollary 3.1.7. So assume that [ is not a primary ideal. Then
I? C ¢(I) by Theorem 3.1.12. Thus I? C ¢(I) C ¢3(I) = I* C I?, and hence
I? = ¢(I) = I3. Thus ¢(I) = I" for each n > 2. Therefore, I is an n-almost
primary ideal for all n > 2. By Proposition 3.1.8, we can conclude that I is an

w-primary ideal. O]
The next example shows that the converse of Corollary 3.1.17 is not true.

Example 3.1.18. Consider the semiring R = Z§ x Z§ and its ideal I = {(0,0)}.
Then [ is a k-ideal. Since I" = {(0,0)}" = {(0,0)} for all n € N, it follows
that N>, I™ = {(0,0)}. Then I —N,I" = {(0,0)} — {(0,0)} = @, so that
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I is an w-primary ideal. We define ¢y : S (R) — F(R) U {D} by ¢y(J) = &
for all J € #(R). Then ¢y < ¢5. Since (2,0) - (0,3) = (0,0) € I — ¢u(I)
but (2,0) ¢ {(0,0)} and (0,3)" = (0,3") ¢ {(0,0)} for all n € N. That is
(2,0) ¢ {(0,0)} and (0,3) ¢ /{(0,0)}. Therefore, the ideal {(0,0)} is not a

¢z-primary ideal of the semiring R.

Corollary 3.1.19. Let R be a semiring. If I is a weakly primary k-ideal but not
a primary ideal, then I* = {0}.

Proof. Assume that [ is a weakly primary k-ideal but not a primary ideal. Since
I is a weakly primary ideal, I is a ¢o-primary ideal. Then I? C ¢o(I) = {0} by
Theorem 3.1.12. Hence I? = {0}. O

From Corollary 3.1.19, we realize that the square of a weakly primary k-ideal
which is not a primary ideal must be the zero ideal. However, since {0} is a primary
ideal of the semiring R{ by Example 3.1.3 (1) and {0}* = {0}, it follows that the
converse of Corollary 3.1.19 is not true.

Before moving to the next theorem, we would like to recall some notation that
are used in the following theorem. For given ideals I of a semiring R containing a,
(I :a)={x € R|za € I} is an ideal of R containing I; moreover, if [ is a k-
ideal, then (I : a) is a k-ideal. Furthermore, if [ and J are ideals of a semiring R

containing a such that I C J, then (I : a) C (J : a).

Theorem 3.1.20. Let R be a semiring with ¢ and I a proper ideal of R and

¢(I) C I. The following statements are equivalent.
(1) I is a ¢-primary ideal.
(2) For anyx € R—~1,(I:2)=1TU(¢(I): ).

Proof. To show (1) = (2), suppose that I is a ¢-primary ideal. Let 2 € R — /1.
Since I C (I : ) and (¢(I) : ) C (I : x), we obtain I U (¢(I) : ) C (I : x). Next,
let @ € (I :x). Then ax € I. If ax ¢ ¢(I), then a € I because [ is a ¢-primary
ideal and 2 ¢ /1. If ax € ¢(I), then a € (¢(I) : ). Hence (I : x) C TU($(I) : ).
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Therefore, (I :x) =1U (¢(I) : x).

To show (2) = (1), assume that the statement (2) holds. Let a,b € R be such
that ab € I — ¢(I). If b € /I, then we are done. Suppose that b ¢ /I. Thus
(I :b) =1U(¢(I):b). Since ab € I — ¢(I), we acquire a € (I : b) — (¢(I) : b).
Hence a € I. Therefore, I is a ¢-primary ideal. O

Recall that a ¢-primary ideal I of a semiring R is a proper ideal of R in which
ab € I — ¢(I) implies a € I or b € /T for a,b € R. We notice that this definition
is given via using the elements of those semirings. In the following result, the

definition via elements can be replaced by the definition via ideals.

Theorem 3.1.21. Let R be a semiring with ¢ and I a proper k-ideal of R such that
(1) and /T are k-ideals and ¢(I) C I. The following statements are equivalent.

(1) I is a ¢-primary ideal.

(2) For anyx € R—~1,(I:2)=TU(o(I): x).

(3) Foranyx € R—VI,(I:2)=1or (I:2)=(o(I): z).

(4) For ideals A and B of R, AB C I and AB € ¢(I) imply A C I or B C /1.

Proof. We obtain (1) < (2) by Theorem 3.1.20.

To show (2) = (3), suppose that the statement (2) holds. Let z € R — /1.
Since I and ¢([) are k-ideals, (I : z) and (¢(I) : z) are k-ideals. Therefore,
(I:z)=1or (I:z)=(¢(I):x) by Proposition 2.1.13.

To show (3) = (4), assume that the statement (3) holds. Let A and B be
ideals of R such that AB C I. Suppose that A ¢ I and B ¢ v/I. We would like
to show that AB C ¢(I). Let b € B.

Case 1: Assume that b ¢ /I. Then (I : b) = I or (I : b) = (¢(I) : b) by
the statement (3). Since Ab C AB C I, we obtain A C (I : b). Since A € I
and A C (I : b), we obtain (I : b) # I. Thus (I : b) = (¢(I) : b). Therefore,
A C (¢():b), and hence Ab C ¢(I).

Case 2: Assume that b € /1. Since B € /1, there is ' € B — +/I. Similarly
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to Case 1, we obtain AV C ¢(I). It is clear that b+ € B. If b+ ¥ € VI,
then o' € V1 because b,b+ b € VI and VI is a k-ideal. Thus b+ € B — V1,
and hence A(b+ V') C ¢(I) is obtained similarly to Case 1. Let a € A. Then
ab',ab+ ab' € ¢(I). Since ¢(I) is a k-ideal, ab € ¢(I). Hence Ab C ¢(1).

Any cases show that Ab C ¢(I). Therefore, AB C ¢(I) because b is an arbitrary
element of B.

To show (4) = (1), assume that the statement (4) holds. Let z,y € R be such
that zy € I — ¢(I). Then (x) (y) C I. If (z) (y) C ¢(I), then xzy € ¢(I) which
is a contradiction. Then (x) (y) Z ¢(I). By statement (4), we obtain (x) C I or
(y) CV/I. Hence x € I or y € v/I. Therefore, I is ¢-primary. O

Next, we would like to recall from Chapter II that a strongly Euclidean semir-
ing R is a semiring which is consistent with conditions that for a function d :
R — {0} — Z§ such that d(ab) > d(a) for all a,b € R — {0} and if a,b € R with
b # 0 then there exist unique elements ¢, € R such that a = bg + r where either
r=0ord(r)<db).

The advantage of strongly Euclidean semirings that we use in this research is
that k- ideal and principal ideal are coincide which was studied by V. Gupta in
2006 [18].

Let R be a semiring. Then [ is a ¢o-primary ideal if and only if [ is an almost
primary ideal where ¢, is given in Example 3.1.5 (4). In the next theorem, we
show that if (a) is a ¢o-primary ideal, then (a) is a primary ideal for any element
a in a strongly Fuclidean semiring under some conditions.

As a consequence of Proposition 2.1.16 and Example 2.1.17, we gain that
(a) C ({a)* : a) for any element a of a semiring but not vice versa. Thus a semiring
in Example 2.1.17 is an example of a semiring such that ((a)” : a) # (a); never-
theless, in the following theorem, we suppose the condition that ((a)* : a) = (a)

holds.

Theorem 3.1.22. Let R be a strongly Euclidean semiring and a € R such that
((a)? : a) = (a) . Then (a) is a ¢-primary ideal for some ¢ with ¢ < ¢o if and only
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if (a) is a primary ideal.

Proof. 1If (a) is a primary ideal, then (a) is ¢-primary for any ¢. Next, we assume
that (a) is a ¢-primary ideal for some ¢ with ¢ < ¢9. Then (a) is a ¢o-primary
ideal by Proposition 3.1.6. We would like to show that (a) is a primary ideal. Let
2,y € R be such that zy € (a). If zy € (a) — (a)’, then z € (a) or y € /{a)
because (a) is ¢o-primary. So we assume that zy € (a)®. Since R is a strongly
Euclidean semiring, (a) and (a?) are k-ideals. Note that (z+a)y = zy +ay € (a) .
Case 1: Assume that (z + a)y € (a) — (a)®. Since (a) is ¢o-primary, z + a € (a)
or y € \/{a). Hence x € (a) or y € \/{a) because (a) is a k-ideal and a € (a).
Case 2: Assume that (z 4+ a)y € (a)* = (a2). Since (a?) is a k-ideal and zy, zy +
ay € (a?), we obtain ay € (a®). Thus y € ((a)” : a) = (a).

Therefore, (a) is a primary k-ideal. O

Next, we provide an example to confirm that there exists a strongly Euclidean

semiring R such that ((a)* : a) = (a) for some a € R.

Example 3.1.23. Let R =Z and a € Z; —{0}. Then R is a strongly Euclidean
semiring by Example 2.2.23. Since (a) C ((a>2 : a) by Proposition 2.1.16 (4), it
remains to show that ((a)”: a) C (a). Let = € ((a)* : a). Then za € (a)* = a®Z.
Thus za = a*r for some r € Z;. Because a # 0, we obtain x = ar € (a). Hence

((a)? : a) C (a). Therefore ((a)?: a) = (a).

3.2 ¢-Primary Ideals in Decomposable Semirings

In this section, we concern with relationships among primary ideals, weakly pri-
mary ideals and ¢-primary ideals of decomposable semirings.

For a decomposable semiring R = Ry X Ry X -+ X R, (m € N with m > 2) such
that R; is a semiring with ¢; for all i € {1,2,...,m} and an ideal I} X I X - - X I,,
of R, it follows that ¢ (1) X @o(I3) X -+ - X @ (I, is an ideal of R or the empty set.
Hence there is a function ¢ : #(R) — J(R)U{@} such that ¢([y x Iy x -+ - x I,) =
01(11) X pa(ls) X -+ X (L) for all Iy x Iy X --- x I, € #(R); in addition, we
denote the function ¢ which is defined as the previous by ¢ = ¢1 X po X -+ X .
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The property of decomposable semirings frequently used in this section is

Proposition 2.1.27: /Iy x Iy X -+ x I, = /I; x \/Iy x -+ x \/I,,, for any ideal

I x Iy x --- x I, of a decomposable semiring.
Next, we would like to show that a nonzero weakly primary ideal Iy X Is X - - - X I,
of a decomposable semiring R; X Ry X --- X R, which has at least one of I; must

not be proper.

Proposition 3.2.1. Let R = R; X Ry X --- X R, be a decomposable semiring and
I =1 x Iy x---x1I,, anonzero proper ideal of R. If I is a weakly primary ideal,

then I; = R; for some i € {1,2,...,m}.

Proof. Suppose that I is a weakly primary ideal of R. Since [ is a nonzero ideal,

there is (a1, as,...,a,) € I such that (a1,as,...,a,) # (0,0,...,0). Thus
(0,0,...,0) # (a1, a9, ... ,am) = (a1,a9, ..., am_1,1)(1,1,... 1 a,) € I.

Since I is a weakly primary ideal, (ay, as, . .., am—1,1) € Tor (1,1,...,1,an) € V1.
Since VI = I} X I X --- X I, = T} x /T X - -+ x \/T,,,, we obtain 1 € I, or
1 € /I, for some i € {1,2,...,m — 1}, i.e., 1 € I; for some j € {1,2,...,m}.
Therefore, I; = R;. O

As a consequence of Corollary 3.1.7 and since {0} is a weakly primary ideal but
not a primary ideal of the semiring Z,, primary ideals imply weakly primary ideals
but not vice versa. Nevertheless, in a decomposable semiring, weakly primary

ideals and primary ideals are coincide provided they are nonzero proper k-ideals.

Proposition 3.2.2. Let R= Ry X Ry X --- X R, be a decomposable semiring and
I =1 x Iy x---x I, anonzero proper k-ideal of R. Then I is a weakly primary

tdeal iof and only if I is a primary ideal.

Proof. Suppose that I is a weakly primary ideal of R. We obtain from Proposi-
tion 3.2.1 that I; = R; for some i € {1,2,...,m}. Then I* # {0}. Thus I is a pri-
mary ideal by Corollary 3.1.19. The converse holds because of Corollary 3.1.7. [
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From Proposition 3.2.2, nonzero weakly primary ideals and nonzero primary
ideals are coincide because I is a k-ideal and there is at least one of I; which is
equal to R;. In the following theorem, we assume these conditions hold while the
condition that “I is a nonzero ideal”’can be omitted. We still obtain the same
result; in addition, we also show that any proper components of I are primary

ideals.

Theorem 3.2.3. Let R = Ry X Ry X --- X R,, be a decomposable semiring and
I =1 x Iy x --- x I, a proper k-ideal of R which at least one I; = R; where

i€{1,2,...,m}. Consider the following statements:

(1) I is a weakly primary ideal of R.

(2) I is a primary ideal of R.

(3) If I; # R; where j € {1,2,...,m}, then I; is a primary ideal of R;.
Then (1) and (2) are equivalent and (2) implies (3).

Proof. Obviously, (2) = (1).

To show (1) = (2), assume that [ is a weakly primary ideal of R. Then
I? # {0} because I; = R;. Thus I is a primary ideal of R by Corollary 3.1.19.

To show (2) = (3), assume that [ is a primary ideal of R. Furthermore, suppose
that I; # R; for some j € {1,2,...,m}. To show that I; is a primary ideal of R;,
let a,b € R; be such that ab € I;. Then

0,...,0,a,0,...,0)(0,...,0,b,0,...,0) = (0,...,0,ab,0,...,0) € I.
Since I is a primary ideal, (0,...,0,a,0,...,0) € Tor (0,...,0,b,0,...,0) € VI =

1 X oo X m- ence a € I; or b € i ererore, 1; 1s a primary ldea
VI VI, H I or b I;. Therefore, I; i i ideal
of Rj. UJ

From the previous theorem, one should suspect whether the statement (3)
implies the statement (1) and the statement (2) or not. The next example clarifies

this.
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Example 3.2.4. Let p, ¢ be prime numbers (not necessary distinct) and n a posi-
tive integer. Consider the semiring R = Zj x Z{ x Z$ and [ = p"Z{ x q™Z¢ x Z .
We know that p"ZJ§ and ¢™Z are primary ideals of the semiring ZJ. Since
(0,0,0) # (p™, 1,2)(1,¢™, 3) = (p*,¢™,6) € I but (p",1,2) ¢ I and (1,¢™,3) ¢ VI
because 1 ¢ ¢™Z$ and 1 ¢ \/p”—Zar . Therefore, I is not a weakly primary ideal

of R, and so I is not a primary ideal of R.

Example 3.2.4 confirms that the conditions in Theorem 3.2.3 are not enough to
make (3) imply (1) and (2). In the next result, we assume that there is exactly one
I; such that I; # R; where i € {1,2,...,m} instead of the condition that I; # R;
for some i € {1,2,...,m} in Theorem 3.2.3 for making (3) imply (1) and (2).

Theorem 3.2.5. Let R = Ry X Ry X --+ X R, be a decomposable semiring and
I =1 x Iy x -+ x I, a proper k-ideal of R with ezxactly one I; # R; where

i€ {1,2,...,m}. The following statements are equivalent.
(1) I is a weakly primary ideal of R
(2) I is a primary ideal of R.
(8) I; is a primary ideal of R;.

Proof. We obtain (1) < (2) and (2) = (3) by Theorem 3.2.3.

To show (3) = (2), assume that I; is a primary ideal of R;. Let (a1, as, ..., an),
(b1,bo,...,by,) € R be such that (a1by,...,a;_1b;_1, a;b;, a;v1biv1, ..y amby) € 1.
Notethat [ = Ry x-+ - XR; 1 XI;xR;11X---XR,,. Since a;b; € I; and I; is a primary
ideal of R;, we have a; € I; or b; € \/I;. Hence (ay,...,a; 1,0, 011, ., 0n) €
Ry X -+ X Ri 1 XI; X Riygy X+ X Ry, = 1Tor (by...;bi1,bi,bis1,...,bp) €
Ry X - X Ry x\I; x Rizy x - X R, = V. Therefore, I is a primary ideal
of R. O

Corollary 3.2.6. Let R = R X Ry X -+ X R, be a decomposable semiring with ¢
and I = I X Iy X -+ X I, a proper k-ideal of R with exactly one I, # R; where
ie{1,2,...,m}. If I; is a primary ideal of R;, then I is a ¢-primary ideal of R.
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Proof. The proof is completed by the fact that every primary ideal is a ¢-primary
ideal. 0

The converse of Corollary 3.2.6 is not true and we provide an example to

support this.

Example 3.2.7. Consider the semiring R = Z§ x Z¢ X --- x Z§ and its ideal
I =202 XZ¢ x---xZg. Then I is a k-ideal of R. Define ¢ : #(R) — . (R)U{2}
by ¢(J) = V/J for all J € F(R). Thus ¢(I) = VI = /202 X Zj x -+ x Z§ =
V20ZT X \JTE % - x \JLT =102 x ZF x - x Z¢. Hence I — ¢(I) = (20Z x

Zd x - X Z§) — (102§ x Zg x -+ X Z§) = @ because 20Zs C 10Z;. Therefore,

the ideal I is a ¢-primary ideal of R. However, 20Z{ is not a primary ideal of Zg

because 4 - 5 = 20 € 20Z¢ but 4 ¢ 20Z§ and 5" ¢ 20Z; for all n € N.

Corollary 3.2.6 shows that if I; is a primary k-ideal of a semiring R;, then
the ideal I = Ry x --- X R;_1 X I; X Rjy1 X -+ X R, is a ¢-primary ideal of
the decomposable semiring Ry x Ry X --- X R, with ¢. Next, we take care of
the case that I; is a weakly primary ideal of R; under the same conditions as in

Corollary 3.2.6.

Theorem 3.2.8. Let R = Ry X Ry X --- X R, be a decomposable semiring and
I =1 x Iy x -+ x I, a proper k-ideal of R with exactly one I; # R; where
ie{1,2,...,m}. If I; is a weakly primary ideal of R;, then I is a ¢-primary ideal
of R for all ¢, < ¢.

Proof. Without loss of generality, we assume that ¢ = 1. Then I = 1; X Ry X --- X
R,,. Since [ is a k-ideal, I; is a k-ideal by Proposition 2.1.28. Assume further that
I, is a weakly primary ideal of R;. We show that I = I; x Ry X --- X R, is a
¢-primary ideal of all ¢, < ¢. If I; is a primary ideal of Ry, then I is a ¢,-primary
ideal of R by Corollary 3.2.6. So assume that [; is not a primary ideal. Thus
I? = {0} by Corollary 3.1.19. Consider the element (zy,xs,...,7,) € ¢,(I) =
N " C 1?2 = (I1xRyx+ X Rp)2 CIZXRyx-+ X Rpy = {0} x Ry x -+ x R,. Let
(a1, a9, ...,am),(b1,ba, ..., by) € R be such that (ai,as,...,amy)(b1, b2, ..., 0y) =
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(aiby, agby, ..., amby) € I — ¢, (I). Then a1by € I; —{0}. Thus a; € I or by € /I,
because I is a weakly primary ideal of R;. Hence (ay, a9, ..., ay) € I} X Ry X -+« X

Ry or (by, by, ... by) € VI X Ry X -+ X Ry = /I} X Ry X -+ X Ry, = /1. Thus

I is a ¢,-primary ideal of R. Therefore, in any cases, I is a ¢,-primary ideal, and

hence I is a ¢-primary ideal for all ¢, < ¢. O

Finally, we obtain a generalization of ¢-primary ideals of decomposable semir-

ings with two components.

Theorem 3.2.9. Let R = Ry X Ry be a decomposable semiring and ¢ = @1 X pa
where each p; : I (R;) — J(R;) U{@} is a function. Then the ¢-primary ideals
of R have exactly one of the following three types:

(1) I x Iy where I; C ;(1;) for all j € {1,2} and at least one I; is a proper
ideal of R; for some i € {1,2}.

(2) I x Ry where I is a @i-primary ideal of Ry which must be primary if
©2(R2) # Ra.

(3) Ry x Iy where Iy is a wo-primary ideal of Re which must be primary if
¢1(R1) # Ri.

Proof. First, we would like to show that an ideal of R having one of these three
types is a ¢-primary ideal.

(1) Assume that (1) holds. Then I} x Iy — ¢(I; X I3) = &, and so [ X I is a
¢-primary ideal.

(2) Assume that (2) holds. If [; is primary, then I; X Ry is primary and hence
is ¢-primary. So suppose that I; is a ;-primary ideal of Ry and ¢o(R2) = Rs.
Let (a,b),(¢,d) € Ry x Ry be such that (ac,bd) € I} X Ry — ¢(I; X Ry) = (I —
©1(I1)) x Ry. Since I is ¢i-primary, a € I} or ¢ € v/I,. Hence (a,b) € I x Ry or
(¢,d) € I} x Ry = /I; x Ry. Therefore, I, x Ry is a ¢-primary ideal of R.

The other case is similar to the previous one.

Next, we suppose that I x I5 is a ¢-primary ideal of R. Thus I; or I5 is a proper

ideal of R. Without loss of generality, assume that I; is a proper ideal. We would
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like to show that I; x I, is exactly one of these three types. Assume a,b € R; with
ab € I —¢1(11). Then (a,0)(b,0) = (ab,0) € I} x Iy — ¢(I1 X I3). Since I} x I5 is a
¢-primary ideal of R, we obtain (a,0) € I; x I or (b,0) € /I, x I, = /I, x \/I,.
Hence a € I; or b € /T;. Therefore, I; is a ¢;-primary ideal of Ry. If I; C ¢;(I;)
for all j € {1,2}, then (1) is obtained. Suppose that I € ¢1([1) or Iy € @o(I5).
Without loss of generality, assume that Iy € ¢1(f1). Then there is z € I} — o1 ([1).
Let y € I,. Then (z,1)(1,y) = (z,y) € I X Iy — ¢(I; x I3). Since I} x I5 is a
¢-primary ideal of R, we gain (x,1) € I} x I or (1,y) € VI1 x I, = /I, x V1.
Hence Iy = Ry or I; = R;. Since [y is a proper ideal, I, = Ry. Now, we can
conclude that I x Ry is a ¢-primary ideal of R where [; is a (j-primary ideal
of Ry. It remains to show that Iy is actually primary if po(R2) # Ry. Assume
that wo(Rs) # Ro. Then 1 ¢ po(Rs). Let a,b € Ry be such that ab € I;. Thus
(a,1)(b,1) = (ab,1) € I} x Ry — ¢(I; X Ry). Since I} X Ry is a ¢-primary ideal
of R, we have (a,1) € I x Ry or (b,1) € /I; X Ry = /I, x \/I,. Hence a € I, or
b € \/I,. Therefore, I, is a primary ideal of R;. O

3.3 ¢@-Primary Ideals in Quotient Semirings and in Semir-

ings of Fractions

In this final section, we are interested in ¢-primary ideals of quotient semirings
and ¢-primary ideals of semirings of fractions.

Recall that if R is a semiring, I is a ()-ideal of R and ¢ is a function from
J(R) into Z(R) U {@} such that ¢(L) is a subtractive extension of I for all
ideal L of R where L is a subtractive extension of I, then we define ¢; : #(R/I) —
F(R/1YU{2} by ¢1(J/I) = (¢(J))/I for each ideal J of R where J is a subtractive
extension of .

Recall further that R is a semiring with ¢ satisfying the property (x) if R is
a semiring with ¢, I is a @-ideal of R and ¢; is a function from #(R/I) into
J(R/I)U{@} where ¢ and ¢; are defined as in the above paragraph.

First of all, we would like to present relationships between ¢-primary ideals of
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semirings and ¢-primary ideals of quotient semirings.

Theorem 3.3.1. Let R be a semiring with ¢ satisfying the property (x), I a Q-
tdeal of R and P a subtractive extension of I. Then P is a ¢-primary ideal of R
if and only if P/I is a ¢r-primary ideal of R/I.

Proof. Suppose that P is a ¢-primary ideal of R. Then P/I is an ideal of R/I
because P is a subtractive extension of /. Next, we would like to show that P/I is
a ¢r-primary ideal of R/I. Let ¢1 +1,q2+1 € R/I be such that (¢1 +1)(g2+1) €
P/I — ¢;(P/I). By Theorem 2.2.19, we have ¢1qo € P — ¢(P). Since P is ¢-
primary, ¢; € P or g, € VP. Hence ¢, + I € P/l or g+ 1€ \/ﬁ/[ = \/P_/[ by
Proposition 2.2.18. Therefore, P/I is a ¢;-primary k-ideal of R/I.

Conversely, assume that P/I is a ¢;-primary ideal of R/I. We show that P is
a ¢-primary ideal of R. Let a,b € R be such that ab € P — ¢(P). Then there exist
q1,q2 € @ such that a € ¢ + I and b € g5 + I. Thus there are x,y € I such that
a = q+rand b = g+y. Since 12 +qy+q@r+ry = (@1 +)(ge+y) = ab € P—¢(P)
and P and ¢(P) are subtractive extensions of I, we acquire ¢;q2 € P — ¢(P). By
Theorem 2.2.19, we obtain (¢ + I)(qe + 1) € P/I — ¢;(P/I). Since P/I is ¢;-
primary, (¢ +I) € P/I or (g2 +I) € \/P/I = v/P/I by Proposition 2.2.18. Thus
q1 € Por ¢ € VP by Lemma 2.2.15. Hencea = q; +x € Porb=q, +y € v/P.

Therefore, P is a ¢-primary ideal of R. O

Example 3.3.2. Consider the semiring ZJ. Let P = 4Z§ and I = 127Z.
Then P is a k-ideal of Z; containing I and I is a Q-ideal of Z; where Q =
{0,1,2,3,4,5,6,7,8,9,10,11}. Thus P is a subtractive extension of I. Define
¢ F(Ls) — (L) u{a} by ¢(J) = 3Z if J is a subtractive extension of [
and ¢(J) = J otherwise for all J € .Z(Z{). Moreover, we define ¢; : S (R/I) —
S (R/T)U{@} by ¢1(J/I) = (3Z])/I for each ideal J of R where J is a subtractive
extension of I. Hence Z{ is a semiring with ¢ satisfying the property (*). Since
P is a primary ideal by Proposition 3.1.2, P is a ¢-primary ideal of R. Therefore,
P/I = 4Z7 /127§ is a ¢;-primary ideal of the quotient semiring ZJ /127 .
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Corollary 3.3.3. Let R be a semiring with ¢ satisfying the property (x), I a Q-
ideal of R. Then I is a ¢-primary ideal of R if and only if the zero ideal of R/I is

a ¢r-primary ideal.

Proof. The result follows from the fact that I is a @)-ideal, then [ is a k-ideal by

Proposition 2.2.5 and so [ is a subtractive extension of itself. n

Toward the end of this section, we deal with semirings of fractions. First, we
would like to recall that for an ideal I of a semiring R, the ideal generated by [
of Rg where S is the set of all multiplicatively cancellable elements of R is the set
of all finite sums a1$1 + asSs + - - - + a, s, where a; € I and s; € Rg and is denoted
by I Rg; in addition, we know that x € I Rg if and only if it can be written in the
form x = % for some a € I and ¢ € S. Recall further that for an ideal J of Rg,
the contraction of Jin Ris JN R = {r ER ‘ g € J} which is an ideal of R.

Let R be a semiring with ¢ and I an ideal of R. Then either ¢(/) is an ideal
of Ror ¢(I) = @. If ¢(I) is an ideal, then ¢(I)Rg is the set of finite sums given

as above. Otherwise, ¢(I)Rs = &.

Proposition 3.3.4. Let R be a semiring with ¢, S the set of all multiplica-
tively cancellable elements of R and I a ¢-primary ideal of R with ¢(I) C I and
VINS=@. If IRg # ¢(I)Rg, then IRsN R =1.

Proof. Assume that IRg # ¢(I)Rs. Since I C IRg N R, it remains to show that
IRsNR C I Letx e IRsNR. Then % € IRg. Thus there exist a € I and
s € S such that % = g. Hence zs =a € I. If zs ¢ ¢(I), then = € I because I is
¢-primary and VI NS = @. So assume that s € ¢(I). Then % = f—j € ¢(I)Rs,
and hence z € ¢(I)Rg N R. Then IRgyNR C I or IRsN R C ¢(I)Rs N R.
Since I C IRs N R and ¢(I)Rs N R C IRs N R, we obtain I = IRg N R or
d(I)RsNR=IRsNR. If (I)Rs N R=1IRsN R, then ¢(I)Rs = I Rs and leads

to a contradiction. Therefore, IRsN R = 1. O

We end this chapter with relationships between ¢-primary ideals of semirings

and ¢-primary ideals of semirings of fractions. Recall that for a semiring R with ¢,
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we define ¢g : S (Rg) — F(Rs)U{D} by ¢s5(J) = ¢(JNR)Rs if (JNR) € Z(R)
and ¢s(J) = @ if $(J N R) = @ for all J € .7 (Rs).

Theorem 3.3.5. Let R be a semiring with ¢, S the set of all multiplicatively
cancellable elements of R and I an ideal of R with I NS = & and ¢(I)Rs C
¢s(IRs). If I is a ¢-primary ideal of R, then IRg is a ¢ps-primary ideal of Ryg.

Proof. Assume that [ is a ¢-primary ideal of R. Then IRg is a proper ideal
of Rg since INS = @. Let g,% € Rg be such that % € IRs — ¢s(IRs). By
Theorem 2.3.8, there is v € S such that zyv € I — ¢(I). Since I is ¢-primary, it
followsthatxeloryveﬁandso%EIRsor%:%eﬁRgzmby
Proposition 2.3.7. Therefore, I Rg is a ¢g-primary ideal of Rg. O]



CHAPTER IV
GENERALIZATIONS OF n-ABSORBING IDEALS OF
SEMIRINGS

In rings, there are other ways to generalize prime ideals besides primary ideals,
for instance, 2-absorbing ideals. In 2007, A. Badawi [10] introduced the concept
of 2-absorbing ideals of a ring. He defined a 2-absorbing ideal I of a ring R
to be a proper ideal and if whenever a,b,c € R with abc € I, either ab € I or
ac € I or bc € I. Thus every prime ideal is a 2-absorbing ideal. Nevertheless,
2-absorbing ideals need not be prime ideals. For example, 217Z is a 2-absorbing
ideal of the ring Z and 3 -7 = 21 € 21Z but 3 ¢ 21Z and 7 ¢ 217Z. Then 21Z
is not a prime ideal of the ring Z. Hence 2-absorbing ideals are generalizations of
prime ideals. In 2011, D. F. Anderson and A. Badawi [2] generalized the concept
of 2-absorbing ideals to n-absorbing ideals (with integer n > 2) of a ring. They
defined an n-absorbing ideal I of a ring R to be a proper ideal and if whenever
X1, T, ..., Tpr1 € R with xyx9-- 2,01 € I, then xyx9 -+ 2, 12511 -+ - xpsq € I for
some ¢ € {1,2,...,n+ 1}. From the definition of n-absorbing ideals, it is easy to
see that if n,n’ are positive integers such that n < n’ and I is an n-absorbing ideal,
then I is an n/-absorbing ideal. Moreover, if n = 1, then a l-absorbing ideal is
just a prime ideal. However, n’-absorbing ideals need not be n-absorbing ideals for
any n,n’ € N with n < n’. For example, 427 is a 3-absorbing ideal but is not a 2-
absorbing ideal because 2-3-7 =42 € 42Z but 2-3 = 6 ¢ 427, 2-7 = 14 ¢ 427 and
3.7 =21 ¢ 427. Therefore, n’-absorbing ideals are generalizations of n-absorbing
ideals for any n,n’ € N with n < n’.

After that, in 2012, M. Ebrahimpour and R. Nekooei [16] introduced the con-
cept of (n — 1,n)-¢-prime ideals (with integer n > 2) of a ring. They defined an

(n — 1,n)-¢-prime ideal I of a ring R to be a proper ideal and if whenever
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X1, Toy ..., Ty € R with xy29---x, € I — ¢(I), then x5 217441z, € [ for
some i € {1,2,...,n}. Then an (n—1,n)-¢-prime ideal is just an (n—1)-absorbing
ideal if ¢ : Z(R) — Z(R)U{@} is a function with ¢[.#(R)| = {o}.

In this chapter, we also extend n-absorbing ideals and (n — 1, n)-¢-prime ideals
of a ring to n-absorbing ideals and ¢-n-absorbing ideals of a semiring. Like Chap-
ter 111, we divide this chapter into three sections. They are ¢-n-absorbing ideals of
semirings, ¢-n-absorbing ideals in decomposable semirings and the last section is
¢-n-absorbing ideals in quotient semirings and semirings of fractions. Some results
of this chapter are parallel to the results of Chapter III. Besides, we obtain rela-
tionships between ¢-n-absorbing ideals and ¢-n’-absorbing ideals for any n,n’ € N

with n’ # n.

4.1 ¢@-n-Absorbing Ideals of Semirings

We start this chapter with definitions that we use throughout this chapter like
Chapter III. In this chapter, we define n-absorbing ideals of semirings in the same
fashion as m-absorbing ideals of rings given in [2]; moreover, we define weakly
n-absorbing ideals, almost n-absorbing ideals, m-almost n-absorbing ideals and
w-n-absorbing ideals of semirings in the same manner as weakly primary ideals,
almost primary ideals, m-almost primary ideals and w-primary ideals of semirings
given in Chapter III.

Let n and m be positive integers. We denote 2; ,,+1 the element of R obtained by
eliminating x; from the product xyxs - - - 2,11 Where z1,29,..., 2,41 € R; in addi-
tion, we denote 2, ;,.1nt1 the element of R obtained by eliminating x;,, ..., z;,
from the product zyxs--- 2,41 where z1,29,..., 2,01 € R and {iy,...,i,} C
{1,2,...,n+ 1}. For an ideal I of a semiring R containing x1, s, ..., Tpi1, from

now on we use the statement z;,,41 € I for some i € {1,2,...,n+ 1} in stead of

the statement that xixe -« ;1241 -+ Tpy1 € I for some i € {1,2,...,n+ 1}.

Definition 4.1.1. Let R be a semiring and n a positive integer.

A proper ideal I of R is said to be n-absorbing if whenever xy,xs,..., 2,01 € R
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and ©1%g - - Tpqy € I, then &, € I for some ¢ € {1,2,...,n+ 1}. Moreover, we
denote 0-absorbing ideal the ideal R.

A proper ideal I of R is said to be weakly n-absorbing if whenever 1, xo, ...,
Tp1 € Rand xyg -+ - 241 € I —{0}, then &;,,41 € I for some i € {1,2,...,n+1}.

A proper ideal I of R is said to be almost n-absorbing if whenever x1, xs, ...,
Tpy1 € Rand 2129+ -+ 241 € I — I?, then 2,41 € I for some i € {1,2,...,n+1}.

A proper ideal I of R is said to be m-almost n-absorbing (m € N with m >
2) if whenever z1,29,...,2,41 € R and 129 -+ - 21 € [ — I, then Z; ,,41 € I for
some i € {1,2,...,n+1}.

A proper ideal I of R is said to be w-n-absorbing if whenever x1,x,..., 2,1

€ Rand z1x9 -+ Tpyy € I —N0°_ I™, then &;,11 € I for some i € {1,2,...,n+1}.

Because [ — {0}, — I?,1 — I" and [ — N2, I are equal to the empty set if
I is the zero ideal, it follows that the zero ideal is a weakly n-absorbing ideal,
an almost n-absorbing ideal, an m-almost n-absorbing ideal and an w-n-absorbing
ideal in the same manner as given in Chapter III. Moreover, in Chapter III, we
show that the zero ideal is not a primary ideal of some semirings while it may be

a primary ideal of other some semirings, so is an n-absorbing ideal.

Example 4.1.2. (1) Let n be a positive integer. Consider the semiring Qg and
its ideal {0}. Let zy,@9,..., 7,41 € QF be such that zyxy--- 1,1 € {0}. Then
there exists z; = 0 for some 7 € {1,2,...,n 4+ 1}. Hence &;,+; = 0 where j €
{1,2,...,n+ 1} — {i}. Therefore, z,,+1 € {0} and so {0} is an n-absorbing ideal
of the semiring Qg .

(2) Consider the semiring RS x Rf x Rf and its ideal {(0,0,0)}. Let a,b,c €
Ry —{0}. Since (a,b,0)(a,0,c)(0,b,¢) = (0,0,0) € {(0,0,0)} but (a,b,0)(a,0,c) =
(a?,0,0) ¢ {(0,0,0)}, (a,b,0)(0,b,¢) = (0,b*0) ¢ {(0,0,0)} and (a,0,c)(0,b,¢) =
(0,0,¢) ¢ {(0,0,0)}, it follows that {(0,0,0)} is not a 2-absorbing ideal of the

semiring Ry x Ry x R

From the definition of n-absorbing ideals, one can see that 1-absorbing ideals

are just prime ideals; moreover, we call prime ideals instead of 1-absorbing ideals
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from now on.

From Definition 4.1.1, it is easy to see that if n and n’ are positive integers such
that n < n’ and I is an n-absorbing ideal (a weakly n-absorbing ideal, an almost n-
absorbing ideal, an m-almost n-absorbing ideal and an w-n-absorbing ideal), then
I is an n'-absorbing ideal (a weakly n’-absorbing ideal, an almost n’-absorbing
ideal, an m-almost n’-absorbing ideal and an w-n’-absorbin g ideal). However, the
converse of this statement is not true in general and we provide an example to

confirm.

Example 4.1.3. Consider the semiring Z7. The ideal 36Z{ is a 4-absorbing ideal
of the semiring ZJ but is not a 3-absorbing ideal of the semiring Z; because

22.32 € 36Z but 223 ¢ 36Z and 2- 32 ¢ 36Z .

In the following proposition, we provide a result that helps us find an example
of m-absorbing ideals but not (n — 1)-absorbing ideals of the semiring ZJ more

easily.

Proposition 4.1.4. Let n be a positive integer with n > 2 and py, pa, . .., pn prime
numbers (not necessary distinct). Then pips -+ paZg is an n-absorbing ideal but

not an (n — 1)-absorbing ideal of the semiring Zg .

Proof. First, we would like to show that the ideal p;py - - - p,Z¢ is an n-absorbing
ideal of the semiring Z(J{. Let z1,29,..., 2,41 € Za“ be such that z1z9-- 2,11 €

pip2 - PZg. Then zymy---xpy 1 = pipa---ppa for some a € ZS. Since p; is

a prime number for all i € {1,2,...,n}, it follows that p; is a factor of z; for
some j € {1,2,...,n+1}. Hence there is {z;,, Tip, ..., 2, . } C{x1,22,. .., Tps1}
for some m € Z¢ and for some distinct iy,4s,...,0_m € {1,2,...,n + 1} such

that @;, @4, - x;, . = pipa---pyh for some h € ZI. By choosing all distinct
T its Tivmras - Liy € {21, %2, .., Tpgr b — {@iy, iy, - -, 24, } and by multi-
plying, @i, @i, -+ @i, = (0, Tiy = iy )(Tiy i1 Tiy_prn ** " Tiy) = P1P2 - Pphl for
some | € Z;. Hence x;, s, -+ x;, € piba-- - pula. Therefore, pips-- - p,Zgs is an
n-absorbing ideal of the semiring Z .

Next, it remains to show that pipy - p,Z¢ is not an (n — 1)-absorbing ideal
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of the semiring Zg. Since pi,p2,...,pn € Zg but pi, & pipa---puZg for all
i € {1,2,...,n}, the ideal pipy- - p,Zd is not an (n — 1)-absorbing ideal of the

semiring Zg . [

Example 4.1.5. Consider the semiring Z .

(1) Since 32 = 2°,48 = 21 . 3! and 72 = 23 - 3%, it follows that 32Z, 487Z; and
7273 are 5-absorbing ideals but are not 4-absorbing ideals of Z .

(2) Since 128 = 27,288 = 2° . 3% and 1080 = 23 - 3% . 5! it follows that
1287 ,288Z7 and 1080Z; are 7-absorbing ideals but are not 6-absorbing ideals
of Zg .

In Chapter III, ¢-primary ideal is the main character. Similarly, in this chapter

we have a main character as well, it is a ¢-n-absorbing ideal.

Definition 4.1.6. Let R be a semiring with ¢ and n a positive integer. A proper
ideal I of R is said to be ¢-n-absorbing if whenever zi,...,z,,7 € R and

Ty Tppr € I — (1), then ;41 € I for some i € {1,...,n+1}.

From the definition of ¢-n-absorbing ideals, we can define a function ¢ in several
ways and we also can substitute n by any positive integers. This is the difference
from the main characters of Chapter III which has exactly one thing that can
be changed that is function ¢. So we are interested in relationships between ¢-
n-absorbing ideals and ¢-n/-absorbing ideals where n,n’ € N with n # n/. In
addition, we call ¢-prime ideals in stead of ¢-1-absorbing ideals in the same fashion
as we call prime ideals in stead of 1-absorbing ideals.

In the following result, we give the equivalent definition of ¢-n-absorbing ideals.

Theorem 4.1.7. Let R be a semiring with ¢, I a proper ideal of R and n,n’
positive integers with n' > n. Then I is a ¢-n-absorbing ideal if and only if
whenever x1xy -+ Xy € I —@(I) for any x1,xs,..., Ty € R, then xyxy, - -2, € 1

for some distinct iy,1i9,...,1, € {1,2,...,n'}.

Proof. First, let I be a ¢-n-absorbing ideal of R and x1, z, ..., x,» € R be such that

T1Tg Ty = T1To -+ Tp(Tpy1Tpao - Tp) € I — @(I). Since I is a ¢-n-absorbing
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ideal, 129 2, € I OF & p(Tps1Tnto - Tyw) € I for some i € {1,2,...,n}. If
T1%9 -y, € I, then we are done. So we suppose that &; ,Tn11Tpy2 - Tp € 1.
Since z129 -+ ¢ (1), we obtain T; nTpi1Tnia - T = TinTni1(Tpio - Tp) €
I—¢(I). Thus &; n@pi1 € I Or T jynt1(Tnsz - Tp) € I forsomej € {1,2,...,n+
1} — {i} because [ is a ¢-n-absorbing ideal. If Z;,z,41 € I, then we are done.
If not, we continue this process, and hence we obtain z; x;, ---z; € [ for some
distinct iy, 4s,...,4, € {1,2,...,n'}.

Conversely, the proof is clear by choosing n’ = n + 1. O]

Corollary 4.1.8. Let R be a semiring, I a proper ideal of R and n,n’ positive
integers with n' > n. Then I is an n-absorbing ideal if and only if whenever
1T Ty € I for x1,29,..., 2y € R, then x;x;,---x;, € I for some distinct

11,02, ...,0n € {1,2,...,71’}.

Proof. The proof is completed by the fact that an n-absorbing ideal is just a ¢g-
n-absorbing ideal. O]

We know that n-absorbing ideals imply n/-absorbing ideals for any n,n’ € N
with n < n/; moreover, this statement is also true for ¢-n-absorbing ideals as shown

in the next result.

Proposition 4.1.9. Let R be a semiring with ¢, I a proper ideal of R and n
a positive integer. If I is a ¢-n-absorbing ideal, then I is a ¢-n'-absorbing ideal

for all n' € N with n’ > n.

Proof. Assume that I is a ¢-n-absorbing ideal of R. Let n’ € N be such that
n’ > n. Note that, if n’ = n, then there is nothing to do. So we assume that
n' > n. Let x1,z9,...,2,41 € R be such that 129+ 21 € I — ¢(I). We
obtain from Theorem 4.1.7 that z;, z;, - - - z;, € I for some distinct 41,19,...,17, €

{1,2,...,n" + 1}. By choosing all distinct

in+1,in+2,...,in/ < {1,2,...,71’-'—1}—{il,iQ,...,in}
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and by multiplying, @;, s, -+ 2, = (T, @iy~ @4,) (Tinsy Tinyo - @) € 1. Hence
I is a ¢-n'-absorbing ideal of R. Therefore, I is a ¢-n’-absorbing ideal for all

n' > n. O

The converse of Proposition 4.1.9 is not true in the same fashion as n’-absorbing

ideals do not imply n-absorbing ideals where n',n € N with n’ > n.

Example 4.1.10. Consider the semiring ZJ with ¢, and its ideal 24Z7. Recall
that ¢, is the function defined by ¢o(I) = I? for all I € #(Z{). Since 24 = 23 -3,
it follows that 24Z; is a 4-absorbing ideal of ZJ by Proposition 4.1.4. Hence
2474 is a ¢o-4-absorbing ideal of ZJ. Since 2 -3 -4 = 24 € 24ZF — ¢(24Z§) =
2UZE — (24ZT)? = 24ZT — 5T6Z3 but 2-3 = 6 ¢ 2477, 2- 4 = 8 ¢ 247 and
3-4=12¢ 247} . Therefore, 247 is not a ¢y-2-absorbing ideal of Z .

Corollary 4.1.11. Let R be a semiring with ¢. Then every ¢-prime ideal of R is
a ¢-n-absorbing ideal of R for all n € N.

Recall that the radical of an ideal I of a semiring R is denoted by v/I and
VI ={a € R|a™ € I for some n € N} is an ideal of R.

Lemma 4.1.12. Let R be a semiring with ¢, n a positive integer and I a proper
ideal of R with ¢(vT) = \/(6(I)). If I is a ¢-n-absorbing ideal, then ™ € T —¢(I)
for all x € VT — ¢(\/1).

Proof. Assume that I is a ¢-n-absorbing ideal of R. Let 2 € VI — ¢(\/7 ). Then
x € V/I—/6(I) because ¢(v/I) = \/(¢(I)). Since x & /d(I), we obtain 2™ ¢ ¢(I)
for all positive integer m. Since z € VI, we acquire 2! € I for some | € N. Then
gt eI —¢(I). If I < n, then 2™ € I — ¢(I). Suppose that [ > n. Thus z" € I by
Theorem 4.1.7. Therefore, 2™ € I — ¢(I). O

In the following example, we show that there is a ¢-n-absorbing ideal I of a
semiring with ¢ such that ¢(v/I) = \/¢(I); in addition, we also provide an example
of ¢-n-absorbing ideal of R such that \/¢(I) # ¢(V/1).
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Example 4.1.13. Consider the semiring ZJ and its ideals 125Z; and 45Z; . Define
¢ I(L) — F(L$)U{a} by ¢(I) = 3I for all I € F(Z7). Note that 125Z;
and 457, are ¢-3-absorbing ideals of the semiring Z; because 125 = 5% and 45 =
32.5. Since \/¢(125ZJ) = /3(125Z]) = /375Z = /3 -53ZJ = 15Z§ and
¢(\/1252 ) = ¢(5Z3) = 3(5Z3) = 15Z7, we obtain \/¢(125Z7) = ¢(1/125Z).
Next, we consider the ideal 45Z. Because \/¢(45Z) = \/3(45Z) = \/135Z =
V33 BZ§ = 15Z§ but ¢(v/4A5Z§) = ¢(\/3%-BLf) = $(15Z5) = 3(15Z§) =
4577, it follows that /G(45Z7) # ¢(\/45LJ).

Proposition 4.1.14. Let R be a semiring with ¢, n a positive integer and I a

proper ideal of R such that ¢(\I) = \/(6(I)). If I is a ¢-n-absorbing ideal, then
V1 is a ¢-n-absorbing ideal.

Proof. Assume that I is a ¢-n-absorbing ideal. Let zy,25,...,2,01 € R be
such that z1xs---2pe1 € VI — qﬁ(\/T) Then (zyz---xp1)” € I — ¢(I) by
Lemma 4.1.12. That is #7ah - -- 27, € I—-¢(I). Since [ is ¢p-n-absorbing, 27, ,, € I
for some i € {1,2,...,n+1}. Hence #;,,41 € v/I. Therefore, v/T is a ¢-n absorbing
ideal of R. n

Next, we would like to show that ¢-primary ideals and ¢-n-absorbing ideals do

not imply each other as shown in the next example.

Example 4.1.15. Consider the semiring Z; with ¢y. Recall that ¢, is the function
defined by ¢o(I) = {0} for all I € F(Z]).

(1) Consider the ideal 64ZJ of ZJ. We know that 64Z7 is a primary ideal
of Z§ because 64 = 2% so it is a ¢o-primary ideal of Z. Since 2° € 64Z; — {0} =
6475 — ¢po(64Z7) but 25 ¢ 647, it follows that 64Z¢ is not a ¢y-5-absorbing ideal
of Z .

(2) Consider the ideal 70Z§ of Z§. We know that 70Z; is a 3-absorbing ideal
because 70 = 2-5-7, 50 it is a ¢-3-absorbing ideal. Since 14-5 = 70 € 70Zs —{0} =
70Z¢ — ¢o(70Z¢) but 14 ¢ 70ZF and 5™ ¢ T0Z§ for all m € N, i.e., 14 ¢ T0Z;
and 5 ¢ \/T0ZJ, it follows that 70Z7 is not a ¢o-primary ideal of Zg .
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Nevertheless, in case of n = 1, every ¢-prime ideal (¢-1-absorbing ideal) is, in

fact, a ¢-primary ideal.

Proposition 4.1.16. Let R be a semiring with ¢. Then every ¢-prime ideal of R
is a ¢-primary ideal of R.

Proof. Assume that [ is a ¢-prime ideal of R. Let a,b € R be such that ab €
I —¢(I). Thena € I orbe I C+/I. Therefore, I is a ¢-primary ideal. O

Now, we know that every ¢-prime ideal (prime ideal) is a ¢-primary ideal
(primary ideal). However, the converse of this statement is not true as shown in

the next example.

Example 4.1.17. Consider the semiring Z .

(1) From Proposition 3.1.2, the ideal 9Z is a primary ideal of the semiring Z .
Since 3-3 =9 € 9Z7 but 3 ¢ 9Z¢, it follows that 9Z7 is not a prime ideal of the
semiring Z .

(2) The ideal 49Z is a primary ideal of the semiring Z; by Proposition 3.1.2.
Define ¢ : Z(Z§) — F(Z3) U {2} by ¢(I) = I N5Z§ for all I € F(Zg). Since
497¢ is a primary ideal, it is a ¢-primary ideal. We would like to show that 497
is not a ¢-prime ideal of the semiring Zg. Since 7 -7 = 49 € 49Z$ — ¢(49Z¢) =
4974 — (49Z¢ NBZS) = 49Z§ — 2457 but 7 ¢ 4977, it follows that 49Z¢ is not

a ¢-prime ideal of the semiring Z; as desired.

In rings and semirings, one can show that if I is a primary ideal, then /T is
a prime ideal. This leads us to consider in sense of ¢-primary ideals and ¢-prime
ideals of semirings. In the next proposition, we show that if I is a ¢-primary ideal

of a semiring R with ¢ under some conditions, then v/I is a ¢-prime ideal of R.

Proposition 4.1.18. Let R be a semiring with ¢. If I is a ¢-primary ideal of R
with \/&(I) = (1), then /T is a ¢-prime ideal of R, so that /T is a ¢-primary
ideal of R.

Proof. Suppose that I is a ¢-primary ideal of R with /¢(I) = ¢(\/I). Let a,b € R
be such that ab € /I — ¢(v/I). Then there is n € N such that (ab)” € I. If
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(ab)™ € ¢(I), then ab € \/¢(I) = ¢(+/I) which is a contradiction. Thus a"b" =
(ab)* € I — ¢(I). Since I is ¢-primary, a® € I or b* € /I. Hence a € VT or
b € V1. Therefore, \/T is ¢-prime so is a ¢-primary ideal of R. m

We provide an example to confirm that there is a ¢-primary ideal of a semir-
ing R with ¢ such that \/¢(I) = ¢(v/T); moreover, in this example we also provide
an example of ¢-primary ideal of R such that /(1) # ¢(\/I).

Example 4.1.19. Consider the semiring Z: and its ideals 7Z§ and 8Z;. Define
¢ F(L) — F(Z) U{o} by ¢(nZf) = 2nZf for all n € Z§ and ¢(J) =
{0} otherwise. Since 7Z{ and 8Z§ are primary ideals of the semirimg Zg, the
ideals 7Zd4 and 8Z; are ¢-primary ideals of the semirimg ZJ. Since \/¢(7Z§) =
VIAZT = 1475 = $(TZF) = ¢(\/TLS), it follows that /@(TZS) = o(\/TZT).
Because /@(8Z) = /162§ = 2Z¢ and ¢(\/8Z7) = ¢(2ZF) = 4Z, we obtain
that \/o(8Z7) # 6(/8Z7).

In the same fashion as in Chapter III, we give relationships between ¢-n-
absorbing ideals and n-absorbing ideals (weakly n-absorbing ideals, almost n-
absorbing ideals, m-almost n-absorbing ideals, w-n-absorbing ideals) by using the

notation ¢g, @1, ¢2, ¢, and ¢, given in Example 3.1.5.
Example 4.1.20. Let R be a semiring and n a positive integer. Then
(1) I is a ¢pg-n-absorbing ideal if and only if I is a n-absorbing ideal,
(2) I is a ¢g-n-absorbing ideal if and only if I is a weakly n-absorbing ideal,
(3) I is a ¢y-n-absorbing ideal if and only if I is a proper ideal,
(4) I is a ¢o-n-absorbing ideal if and only if I is an almost n-absorbing ideal,

(5) I is a ¢,,-n-absorbing ideal if and only if I is an m-almost n-absorbing ideal,

and

(6) I is a ¢,-n-absorbing ideal if and only if I is an w-n-absorbing ideal.
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Almost all of the results that we show from now on are parallel to the results

of Chapter III.

Proposition 4.1.21. Let R be a semiring, n a positive integer, I a proper ideal
of R and @1 < @y where ¢y and @y are functions from & (R) into S (R)U{@}. If

I is a py-n-absorbing ideal, then I is a ws-n-absorbing ideal.
Proof. The proof is similar to that of Proposition 3.1.6. m

Corollary 4.1.22. Let I be a proper ideal of a semiring and n,m € N with m > 2.

Consider the following statements:
(1) I is an n-absorbing ideal.
(2) I is a weakly n-absorbing ideal.
(3) I is an w-n-absorbing ideal.
(4) I is an (m+ 1)-almost n-absorbing ideal.
(5) I is an m-almost n-absorbing ideal.
(6) I is an almost n-absorbing ideal.
Then (1) = (2) = (3) = (4) = (5) = (0).

From the above corollary, we know that w-n-absorbing ideals imply m-almost
n-absorbing ideals. In the next proposition, we would like to show that if I is an

m-~almost n-absorbing ideal for all m > 2, then [ is an w-n-absorbing ideal.

Proposition 4.1.23. Let R be a semiring, n a positive integer and I a proper ideal
of R. Then I is an w-n-absorbing ideal if and only if I is an m-almost n-absorbing

tdeal for all m > 2.

Proof. The proof for the first direction is clear by Corollary 4.1.22.

Conversely, the proof is similar to one of Proposition 3.1.8. O



62

From Chapter III, we show that being the k-ideals of I and ¢(I) and I* € ¢(I)
are necessary conditions for making ¢-primary ideals imply primary ideals. In the
following theorem, we only change the condition I? ¢ ¢(I) to I"™ € ¢(I) in order

to get the similar result.

Theorem 4.1.24. Let R be a semiring with ¢, n a positive integer and I a
proper k-ideal of R such that ¢(I) is a k-ideal. If I is a ¢p-n-absorbing ideal with
"t & ¢(I), then I is an n-absorbing ideal.

Proof. Assume that [ is a ¢-n-absorbing ideal with 1" & ¢(I). We show that [ is
an n-absorbing ideal of R. Let x1,xs,..., 2,11 € R be such that xyxs-- 2,1 € 1.
If vyzo - 21 € I—¢(I), then &;,,11 € I for some i € {1,2,...,n+1} because [ is
a ¢-n-absorbing ideal, and hence we are done. Suppose that x5 z,11 € ¢(I).
Case 1: Assume that z;,.1] € ¢(I) for some i € {1,2,...,n + 1}. Then there
exists p; € I such that #;,.1p1 € I — ¢(I). Since ¢(I) is a k-ideal, we ob-
tain @;,11(x; +p1) € I — @(I). Since I is a ¢-n-absorbing ideal, Z;,.1 € I or
Tgijymrr(xi +p1) € I for some j € {1,2,...,n + 1} — {i}. Thus &;,41 € I or
Zjnt1 € I because [ is a k-ideal. Hence 2,41 € I for some [ € {1,2,...,n+ 1}.
Case 2: Assume that 2;,41/ C ¢(I) for all i € {1,2,...,n+ 1}.

Subcase 2.1: Suppose that Zy; jy 411> € ¢(I) for some j € {1,2,...,n+1} —
{i}. Then there are p1, pp € I such that Z ;3 n1p1p2 € ¢(1). Since ¢(1) is a k-ideal,
we gain Ty jy i1 (2 +p1)(z; +p2) € I — ¢(I). Because I is a ¢-n-absorbing ideal,
Tpijyner (T +p1) € I or &g jyme1(z; +p2) € 1 or T iy me (w5 +p1) (25 +p2) €1
for some [ € {1,2,...,n+ 1} —{i,5}. Hence &; 11 € I or Tjp41 € I Or Typy1 € 1
because I is a k-ideal. Therefore, Zj,,,41 € I for some h € {1,2,...,n+ 1}.

Subcase 2.2: Suppose that &g 311> C ¢(I) forall j € {1,2,...,n+1}—{i}.

Subcase 2.2.1: Assume that 2 1 ,11° € ¢(I) for some [ € {1,2,...,
n+1} —{i,j}. Then (1 ny1p102p3 € ¢(1) for some py, pe, ps € I. Since ¢(1) is a
k-ideal, we obtain & ; j 1y nt1(2i+p1)(2;+p2)(1+p3) € I —¢d(I). Then ;41 € I or
Zjnt1 € 1 or 41 € I because [ is a ¢-n-absorbing k-ideal. Therefore, &, 41 € 1

for some h € {1,2,... ,n+1}.
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Subcase 2.2.2: Assume that Zy j;.411° C ¢(I) for all I € {1,2,...,
n+1} —{i,j}.
Continue this process, it remains to show the following case.
vz I C () for all {iy,da, ... tnriom ) € {1,2,. ..,
n+1} for 1 < m < n. Since I & ¢(I), there exist pi,pa, ..., pny1 € I such that
P12 Py € O(I). Then (21 + p1)(ze + p2) -+ - (Tpy1 + Pus1) € I — ¢(1). Since 1
is ¢-n-absorbing, (r1 + p1)(r2 +p2) - (Tic1 + Pi1)(Tig1 + Pig1) -+ (Tgr + Poyr)

Assume that z; x;,

for some i € {1,2,...,n+ 1}. Hence Z;,4+1 € I.

Therefore, from any cases, we can conclude that I is n-absorbing. O

In fact, the proof of Theorem 4.1.24 use the same idea as the proof of Theo-

rem 3.1.12 but it is more complicated because n can be arbitrary positive integer.

Corollary 4.1.25. Let R be a semiring, n a positive integer and I a proper k-ideal
of R. If I is a ¢-n-absorbing ideal for some ¢ with ¢ < ¢nyo such that ¢(I) is a

k-ideal, then I is an m-almost n-absorbing ideal for all m > n + 1.

Proof. Assume that [ is a ¢-n-absorbing ideal for some ¢ with ¢ < ¢,, 42 such that
¢(I) is a k-ideal. If I is an n-absorbing ideal, then I is an m-almost n-absorbing
ideal for all m > n + 1. So suppose that I is not an n-absorbing ideal. Then
"1 C ¢(I) by Theorem 4.1.24. Thus I"™' C ¢(I) C ¢, o(I) = "2 C [*T,
and so I"T! = ¢(I) = I"*2. Hence ¢(I) = I"™ for all m > n + 1. Therefore, I is

m-~almost n-absorbing for all m > n + 1. O]

From Corollary 4.1.25, if we consider in case of n = 1, then we obtain the same

result as in Corollary 3.1.17.

Corollary 4.1.26. Let R be a semiring and n a positive integer. If I is a weakly

n-absorbing k-ideal but is not an n-absorbing ideal, then I"t' = {0}.

Proof. Assume that I is a weakly n-absorbing k-ideal but is not an n-absorbing
ideal. Since [ is a weakly n-absorbing ideal, I is ¢y-n-absorbing. Then we obtain

I C ¢o(I) = {0} by Theorem 4.1.24. Therefore, I = {0}. O
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The converse of Corollary 4.1.26 is not true because {0} is an n-absorbing ideal
of the semiring Q¢ by Example 4.1.2 (1) and {0}"*! = {0} for all n € N.

The following result is parallel to Theorem 3.1.20.

Theorem 4.1.27. Let R be a semiring with ¢, n a positive integer and I a proper

ideal such that ¢(I) C I. Then the following statements are equivalent.
(1) I is a ¢p-n-absorbing ideal.

(2) (I : 1’1552"'%) = Ui, ([ : i“m) U(Cb(f) : ~T1952"'$n) for any xyxo-- -1, €
R—-1.

Proof. To show (1) = (2), assume that the ideal I is a ¢-n-absorbing ideal. Let
x1,%9,...,T, € R be such that xjzg---x, € R—1. Let y € (I : x5+ xy,).
Then zyx9---xyy € 1. If xyxg---xy € I — ¢(I), then 2;,,y € I for some i €
{1,2,...,n} because z122---x, € I. Hence y € ({ : 2;,). Otherwise, we assume

that zyzg- - 2,y € ¢(I). Thus y € (¢(1) : x129 - - - x,). This shows that
(I L X1Tg $n) - U;nzl(l : Zil7n) U (Qb(]) L X1Tg an)

On the other hand, we gain (¢(I) : 129+ 2,) C (I : 129 2,) because
¢(I) CI. Lety € ({ : 2;,) for some i € {1,2,...,n}. Thus 2;,y € I, and so

x1x9 - xpy € I. Hence y € (I : x1x9 -+ - x,). Therefore,
UL (L Zin) U (O(L) s o x) C (1 2929+ - - Ty).

So, we can conclude that (I : 129+ x,) = Ul (L i) U (O(]) : xpa -+ - 24).

To show (2) = (1), suppose that (2) holds. Let z1,9,...,2,4+1 € R be such
that zy29 -+ Ty € I — ¢(I). If 129+ -2, € I, then we are done. Suppose that
T1x9 -+ x, & 1. By (2), it follows that

(I:zxe - -xp) =UP (L2 Zin) U (O() : mpza - xp).

Then 41 € (I 1 129+ x) — (O(1) : x129 - - - T,,) since x129 -+ Ty € I — G(1).
Hence z,41 € (I : &;,,) for some ¢ € {1,2,...,n}, and so Z; ,x,41 € I. Therefore,

I is a ¢-n-absorbing ideal. O]
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Next, we are interested in the case n = 1. We obtain the result which is
parallel to Theorem 3.1.21 because ¢-prime ideals and ¢-primary ideals have a

similar structure.

Proposition 4.1.28. Let R be a semiring with ¢ and I a proper k-ideal of R such
that ¢(I) is a k-ideal and ¢(I) C I. The following statements are equivalent.

(1) I is a ¢-prime ideal.

(2) Foranyx e R—1,(I :2)=1U(¢(I) : z).

(3) Foranyxr e R—1,(I:2)=1or({:x)=(¢(I):x).

(4) For ideals A and B of R, AB C I and AB Z ¢(I) imply AC I or BC I.

Proof. To show (1) = (2), suppose that [ is a ¢-prime ideal. Let x € R — I.
Since I C (I : x) and (¢(I) : ) C (I : x), we obtain I U (¢(1) : z) C (I : x).
Let a € (I : ). Then ax € I. If ax ¢ ¢(I), then a € I because [ is a ¢-prime
and x € R — I. So, we assume that ax € ¢(I), then a € (¢(I) : x). Hence
(I:2) CITU(¢(I):z). Therefore, (I :2) =1U(¢(1): x).

To show (2) = (3), assume that the statement (2) holds. Let x € R—1I. Since [
and ¢(I) are k-ideals, (I : x) and (¢(I) : z) are k-ideals. It follows that (1 : x) = I
or (I :x)=(¢(I):x) by Proposition 2.1.13.

To show (3) = (4), suppose that the statement (3) holds. Assume that A and
B are ideals of R such that AB C I. Assume further that A £ I and B € I. We
would like to show that AB C ¢(I). Let a € A.

Case 1: Assume that a ¢ I. Then (I :a) =1 or (I :a) = (¢(I):a) by (3). Since
AB C I, we obtain aB C I. Thus B C (I : a). Since BZ I but B C (I : a), we
have that (I : a) # I. Hence (I : a) = (¢(I) : a). Then B C (I : a) = (¢(I) : a),
and so aB C ¢(1).

Case 2: Assume that a € I. Since A € I, thereis ' € A—I. Then a’'B C ¢([)
is obtained similarly to the previous case. Note that a + a’ € A because a,a’ € A.
If a+a €1, then a’ € I because a € I and [ is a k-ideal which is a contradiction.

Hence a +a' € A— 1, and so (a + a')B C ¢([I) is obtained. Let b € B. Then
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a'b,ab+a'b € ¢(I) because a'B, (a+a')B C ¢(I). Since ¢([) is a k-ideal, ab € ¢(I).
Hence aB C ¢(I).

All cases show that aB C ¢(I). Therefore, AB C ¢(I) because a is an arbitrary
element of A.

To show (4) = (1), assume that the statement (4) holds. Let z,y € R be such
that zy € I — ¢(I). Then (x) (y) C 1. If (z) (y) C ¢(I), then zy € (x) (y) C ¢(I)
which is a contradiction. Thus (z) (y) € ¢(I). Hence x € (z) CTory € (y) C I
by (4). Therefore, I is a ¢-prime ideal. O

From the assumption of Proposition 4.1.28 that I is a proper k-ideal of a
semiring R with ¢ such that ¢(7) is a k-ideal with ¢(/) C I and by the fact that
o(I) C \/o(I); however, in case that I is a ¢-prime ideal but is not a prime ideal,

we obtain Iy/¢(1) C ¢(I).

Corollary 4.1.29. Let R be a semiring with ¢ and I a proper k-ideal of R such
that ¢(1I) is a k-ideal and ¢(I) C I. If I is a ¢-prime ideal but is not a prime ideal,

then I\/o(I) C ¢(1).

Proof. Assume that I is a ¢-prime ideal but is not a prime ideal. Let = € \/W )
We would like to show that Iz C ¢(I). If z € I, then Iz C I? C ¢(I) by
Theorem 4.1.24. So suppose that = ¢ I. By Proposition 4.1.28, we have (I : x) = [
or (I:z)=(¢(I):x). We claim that (I : ) # I. Suppose that (I : z) = I. Since
x € m, there exists m € N such that ™ € ¢(I). By well-ordering principle,
there is the smallest integer n such that 2" € ¢(I) C I. Since z ¢ I, we obtain
n > 1. Then z"' € (I : ) = I. Hence 2" ! € I — ¢(I). Since I is a ¢-prime
ideal, x € I which is a contradiction. Thus (I : ) # I as desired. Then we obtain
(I :x)=(¢(I):x). Hence I C (I : z) = (¢(I) : x), and so [z C ¢(I). Since x
is an arbitrary element in /¢(I), we obtain {ab|a € I and b € \/¢(I)} C &(I).
Therefore, I1/¢(I) = {321, aibi|a; € T and b; € \/o(I)} C &(I) because ¢(I) is
an ideal. O

The converse of Corollary 4.1.29 is not true in general and we provide an

example to confirm this statement as follows.
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Example 4.1.30. Consider the semiring R = Z§ and the ideal I = 5Z¢ of R.
Then I is a k-ideal of R; in addition, v/T = \/5ZJ = 5ZF by Proposition 2.1.25.
Define ¢ : S(Z$) — F(Z$) U {2} by ¢(J) = J N2Z§ for all J € F(ZT).
Then ¢(I) = 5Z¢ N2ZJ = 10Z§ C 5Z¢ = I. By Proposition 2.1.25, we obtain
VI10Z§ = 10Z . Hence I1/¢(I) = 523 \/10Z3§ = (523)(10Z3) = 50Z¢ € 10Z =
d(5Z3) = ¢(I). Since I\/¢(I) C ¢(I) and I = 5Z is a prime ideal of R and then

I is a ¢-prime ideal of R, the converse of Corollary 4.1.29 is not true.
We end this section with the result that is parallel to the Theorem 3.1.22.

Theorem 4.1.31. Let R be a strongly Euclidean semiring, n a positive integer
and a € R such that ((a)* : a) = (a). Then (a) is a ¢p-n-absorbing ideal for some
¢ with ¢ < @9 if and only if (a) is an n-absorbing ideal.

Proof. 1f (a) is an n-absorbing ideal, then (a) is a ¢-n-absorbing ideal for any ¢.
So we assume that (a) is a ¢-n-absorbing ideal for some ¢ with ¢ < ¢;. Then
(a) is a ¢y-n-absorbing ideal. We would like to show that (a) is an n-absorbing
ideal. Let x1,29,...,2,41 € R be such that zyzy -z, € (a). If 29211 €
(a) — (a)?, then &;,1 € (a) for some i € {1,2,...,n + 1} because (a) is a ¢o-n-
absorbing ideal. So we can assume that x1z9--- 2,41 € <a>2. Since R is a strongly
Euclidean semiring, (a) and (a)* are k-ideals. Now we have (1 + a)zy - - - Tpiq =
T1Tg -+ Tyl + Aoz Tpyq € (a).

Case 1: Assume that (21 +a)zy - - Zny1 € (a) — (a)?. Since (a) is ¢o-n-absorbing,
Tol3 - Tpp1 € (a) or (21 + a)Zine1 € (a) for some ¢ € {2,3,...n+ 1}. Hence
Tols - Typp1 € (@) OF T1T5 41 € (a) because (a) is a k-ideal.

Case 2: Assume that (21 +a)zs - - 2,11 € (a)” = (a®). Since (a?) is a k-ideal and
1Ty Tpy1, T1To+** Tpy1 +aTo3 -+ Tpyy € (a), we obtain axews -+ 1,41 € (a?).
Thus 2225 - - Tpy1 € ((a)” : a) = (a).

Therefore, (a) is an n-absorbing k-ideal. O
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4.2 @-n-Absorbing Ideals in Decomposable Semirings

In this section, we not only investigate n-absorbing ideals, weakly n-absorbing
ideals and ¢-n-absorbing ideals of decomposable semirings in the same sense as
Section 3.2 but also obtain the different results from Chapter III such as Theo-
rem 4.2.9 and Theorem 4.2.10.

We begin with some results which are parallel to the results in Section 3.2. The

following proposition is parallel to Proposition 3.2.1.

Proposition 4.2.1. Let R = Ry X Ry X -+ X R,,, where m,n € N withm >n+1
be a decomposable semiring and [ = Iy X I x --- X I, a nonzero proper ideal of R.

If I is a weakly n-absorbing ideal, then I; = R; for some i € {1,2,...,m}.
Proof. Assume that I is a weakly n-absorbing ideal. Since [ is a nonzero ideal,

there is (z1,x2,...,2y) € I such that (zq1,29,...,2y) # (0,0,...,0). Then

(0,0,...,0) # (x1,22,...,Tm)
:(Il,1,...,1)(1,1’2,1,...,1)"'(1,...,1,{[’n+1,...,$m) el

Thus (1, 29,..., 2y, 1,1,....1) € Tor (xq,...,2 1,1, Zi01, o, Tpat, ooy Ty) €1
for some i € {1,2,...,n} because I is a weakly n-absorbing ideal. Hence 1 € I,
for some i € {1,2,...,m}. Therefore, I, = R;. ]

We know that n-absorbing ideals imply weakly n-absorbing ideals but not vice
versa in general. However, the converse of this statement is true if we assume those

ideals are nonzero proper k-ideals.

Proposition 4.2.2. Let R= Ry X Ry X -+ X R,,, where m,n € N withm >n+1
be a decomposable semiring and I = Iy X Iy X --- X I, a nonzero proper k-ideal

of R. Then I is a weakly n-absorbing ideal if and only if I is an n-absorbing ideal.

Proof. Assume that [ is a weakly n-absorbing ideal of R. Then I; = R; for some
i € {1,2,...,m} by Proposition 4.2.1. Thus I"*' # {0}. Therefore, I is an n-

absorbing ideal by Corollary 4.1.26. The converse is clear by Corollary 4.1.22. [
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From Proposition 4.2.2, we can conclude that weakly n-absorbing ideals and
n-absorbing ideals are coincide if we provided they are nonzero proper k-ideals of
decomposable semirings with m components where m > n + 1. In the following
theorem, we omit those conditions and add the condition that at least one I; = R;.
These lead us to get that not only weakly n-absorbing ideals and n-absorbing ideals
are coincide but also get that if I = I1 x Iy x --- x I,,, is an n-absorbing ideal of
R =Ry X Ry X --- x R, and each [; is a proper ideal, then I; is an n-absorbing

ideal of R;.

Theorem 4.2.3. Let R = Ry X Ry X -+ X R, be a decomposable semiring, n a
positive integer and [ = Iy X Iy X -+ X I,, a proper k-ideal of R with at least one

I, = R; where i € {1,2,...,m}. Consider the following statements:

(1) I is a weakly n-absorbing ideal of R.

(2) I is an n-absorbing ideal of R.

(3) If I; # R; where j € {1,2,...,m}, then I; is an n-absorbing ideal of R;.
Then (1) and (2) are equivalent and (2) implies (3).

Proof. To show (1) < (2), if I is an n-absorbing ideal, then [ is a weakly n-
absorbing ideal. Conversely, assume that I is a weakly n-absorbing ideal of R.
Since I; = R;, we obtain I"™' # {0}. Then I is an n-absorbing ideal of R by
Corollary 4.1.26.

To show (2) = (3), assume that [ is an n-absorbing ideal of R and I; # R; for
some j € {1,2,...,m}. Let z1,29,...,2y41 € R; be such that z129 - 2,41 € 1.
Then
(0,...,0,21,0,...,0)(0,...,0,22,0,...,0) -+ (0,...,0,20:1,0,...,0)

=(0,...,0,z929 - - Tpy1,0,...,0) € I.
Since I is an m-absorbing ideal, (0,...,0,21,0,...,0)---(0,...,0,2-1,0,...,0)
0,...,0,2141,0,...,0)---(0,...,0,2,41,0,...,0) € I for some [ € {1,2,...,m}.
Thus (0,...,0,%1,4+1,0,...,0) € I. Hence Z,11 € I;. Therefore, I; is an n-
absorbing ideal of R;. O
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From Theorem 4.2.3, we can conclude that if Iy X Iy x - - - X [,,, is an n-absorbing
ideal (weakly n-absorbing ideal) of Ry X Ry X --- X R,,, then I; with I; # R; is an
n-absorbing ideal of R; where j € {1,2,...,m}. Nevertheless, the converse of this

statement is not true in general as we show in the next example.

Example 4.2.4. Let R= R X Ry X+ X R, = Z$ X Z$ x -+ x Z& and n a pos-
itive integer. Let Iy = pipa -+ ppZg and Iy = q1qa - - - @uZg where p1,pa, ..., Pns q1,
@2, - - -,y are positive primes. Thus I; and I, are n-absorbing ideals of ZJ. Con-

sider
(p1,L,1,...,D)(p2sqa, L, oo, 1) -+ - Py @1, 1, o, 1) (L, gy 1,000 1)

=((pip2  Pn,1G2 " qn, 1,1, ... 1) €[} X [s X Ry X -+ - X Ry,
Since p; ., ¢ Iy and §;,, ¢ Lo foralli,j € {1,2,....,n}, theideal I x [hx Ry x- - - X Ry,

is not an n-absorbing ideal.

In the following result, we assume a stronger condition than conditions given

in Theorem 4.2.3 in order to make (1), (2) and (3) be equivalent.

Theorem 4.2.5. Let R = Ry X Ry X -+ X Ry, be a decomposable semiring, n a
positive integer and I = Iy X Iy X --- X I, a proper k-ideal of R with exactly one

I; # R; wherei € {1,2,...,m}. The following statements are equivalent.
(1) I is a weakly n-absorbing ideal of R.
(2) I is an n-absorbing ideal of R.
(3) 1I; is an n-absorbing ideal of R;.

Proof. We obtain (1) < (2) and (2) = (3) by Theorem 4.2.3. Thus it remains to
show (3) = (2).
Assume I; is an n-absorbing ideal of R;. Let (z11,...,Z1m), (Z21, -+, Tom), - - -,
(T(nt1)15 - - -, T 1ym) € R be such that
(xlla s axlm)(x217 s 7x2m) to (x(n+1)17 s 7x(n+1)m) el

Notethat[:R1><~~-XRi,1><]Z-><RZ-+1><-~-><Rm. Thus
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($11$21 T (D)1 ey T2 L (nA1)is - - s LimT2m - 'l‘(n+1)m) €l

Since I; is an n-absorbing ideal of R;, we obtain j; (n4+1); € I; for some j €

{1, 2, Ce ,n—|— 1} Hence (i[)ll, e ,.Z'lm) cee (33(]'_1)1, . ,x(j_l)m)(w(j+1)1, e ,x(]‘+1)m)

o (T(n41)15 - > Tnpym) € 1. Therefore, I is an n-absorbing ideal of R. ]

Corollary 4.2.6. Let R = Ry X Ry X --- X R,;, be a decomposable semiring with ¢,
n a positive integer and I = Iy X Iy X --- X I, a proper k-ideal of R with exactly
one I; # R; where i € {1,2,...,m}. If I; is an n-absorbing ideal of R;, then I is

a ¢p-n-absorbing ideal of R.
The next example shows that the converse of Corollary 4.2.6 is not true.

Example 4.2.7. Consider the semiring R = Zj x Z§ x Z§ and its ideal [ =
72974 x Zg x Zg. Since 3° = 729 € T29Z but 3% = 243 ¢ T29Z, it follows
that 729Z¢ is not a 5-absorbing ideal of the semiring Z;. Define ¢ : #(R) —
F(R)U{@} by ¢(J) = J + (2Z§ x 3Z§ x 5Z§) for all J € #(R). Then ¢(I) =
(T29Z¢ x 2§ x Z§) + (2Z¢ x 3Z¢ x 5Z¢). Thus I C ¢(I). Hence I — ¢(I) = @.
Therefore, [ is a ¢-5-absorbing ideal of R.

From Corollary 4.2.6, we can conclude that if I; is an n-absorbing ideal of a
semiring R;, then the ideal I = Ry X Ry X -+ X R; 1 X I; X R;y1 X - -+ X Ry, of the
decomposable semiring R = R; X Ry X --- X R, with ¢ is a ¢-n-absorbing ideal
when we provide that [ is a proper k-ideal of R. In the next result, we also assume
I =R XRyX- -+ xRy xI; XxRi;1 X---X R, is a proper k-ideal but we change

to study in case of I; is a weakly n-absorbing ideal of R;.

Theorem 4.2.8. Let R = Ry X Ry X --- X R, be a decomposable semiring, n a
positive integer and I = Iy X Iy X -+ X I,, a proper k-ideal of R with exactly one
I, # R; wherei € {1,2,...,m}. If I; is a weakly n-absorbing ideal of R;, then I is
a ¢-n-absorbing ideal of R for all ¢, < ¢.

Proof. Infact, [ = Ry x--- X R;_1 X I; x Rj11 X--- X R, for some i € {1,2,...,m}.

Without loss of generality, we assume that : = 1. We would like to show that I =
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I X Ry x- - - X R, is a ¢-n-absorbing ideal of R for all ¢, < ¢. By Proposition 2.1.28,
we can conclude that I; is a k-ideal because [ is a k-ideal. If [; is an n-absorbing
ideal of Ry, then [ is an n-absorbing ideal of R by Theorem 4.2.5, and so [ is a
¢-n-absorbing ideal of R. Assume that [; is not an n-absorbing ideal of R;. Thus
I = {0} from Corollary 4.1.26. Consider the element (zy,...,7,,) € ¢u.(I) =
AR I C I = (I x Ry X -+ x Ryp)"™ ™ C IMM x Ry x -+ X Ry, = {0} x Ry x
c X Ry, Let (11, -, Tim), (21, - s Tom)s -+ o5 (T )15 - - - s Tnt1)m) € R be such
that (11221 ()15 - - s T1mTom =+ Tny1ym) € I — @w([). Then x11221 - - T(ngan
€ I, — {0}. Since I; is a weakly n-absorbing ideal, we obtain Z;; (411 € I for
some j € {1,2,...,n+ 1}. Hence (Zj1,(n41)1, Tj2,(n+1)2s - - - » Ljm,(nt1ym) € L. Thus
I is a ¢ ,-n-absorbing ideal. Therefore, in any cases, [ is a ¢,-n-absorbing ideal,

and so [ is a ¢-n-absorbing ideal for all ¢, < ¢. O

The rest of all results in this section except Theorem 4.2.14 is not analogous

to the results in Section 3.2.

Theorem 4.2.9. Let R = Ry X Ry X --- X R, be a decomposable semiring, n a
positive integer with n > 2 and I = Iy X Iy X -+ X I, where I; # {0} for all
i€{1,2,...,m} is a weakly n-absorbing k-ideal. Then I is an n-absorbing ideal

of R or I; is an (n — 1)-absorbing ideal of R; for alli € {1,2,...,m}.

Proof. 1f I is an n-absorbing ideal of R, then we are done. Suppose that I is not
an n-absorbing ideal of R. Then "' = {0} by Corollary 4.1.26. Hence I; # R;
for all j € {1,2,...,m}. Let i,j € {1,2,...,m}. Without loss of generality, we
assume that j < i. We show that I, is an (n — 1)-absorbing ideal of R;. Let
T1,T2,...,T, € R; be such that zy29-- -2, € I;. Since I; # {0}, there exists
0#y €I. So (0,0,...,0)#(0,...,0,x129 - 2,,0,...,0,9;,0,...,0) € I. Thus
(0,0,...,0) % (0,...,0,21,0,...,0,1,0,...,0)(0,...,0,22,0,...,0,1,0,...,0) -
0,...,0,2,0,...,0,1,0,...,0)(0,...,0,1,0,...,0,4:,0,...,0) € I.
Since [ is weakly n-absorbing, 1 € I; or Z;,, € I; for some [ € {1,2,...,n}. Since

I, # R;, we obtain 2;,, € I;. Therefore, I; is an (n — 1)-absorbing ideal of R;. [
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From Theorem 4.2.9, if we consider in case of n = 2, then we can conclude
that if 7 = I} x Iy x --- x I,,, where I; # {0} for all i € {1,2,...,m} is a weakly
2-absorbing k-ideal of a decomposable semiring R = Ry X Ry X -+ X R,,, then [
is a 2-absorbing ideal of R or I; is a prime ideal of R; for all i € {1,2,...,m}.

Let R = Ry xRy X+ --xX R, be adecomposable semiring and I = [{ x Iy x---x 1,
a proper ideal of R with exactly one I; # R; where ¢ € {1,2,...,m}. We obtain
from Theorem 4.2.5 that if I; is an n-absorbing ideal of R;, then I is an n-absorbing
ideal of R. In the next result, we consider in case of every component I; of I is
an n;-absorbing ideal of R;, then we obtain an interesting result which is I is an
n-absorbing ideal where n = n; + ny + - -+ + n,,; in addition, in this theorem n;

can be zero. Recall that a 0-absorbing ideal of a semiring R is R.

Theorem 4.2.10. Let R = Ry X Ry X --- X R, be a decomposable semiring and
I =1 x Iy x---x I, an ideal of R. If I; is an n;-absorbing ideal of R; where
n; € Z§ for all i € {1,2,...,m}, then I is an n-absorbing ideal of R where

n=mny+ng+ -+ ny, sothat I is a ¢-n-absorbing ideal of R.

Proof. Assume that I; is an n;-absorbing ideal of R; where n; € Z7 for all i €

{1,2,...,m}. Let n = ny+ng+- - -+n,,.We show that I is an n-absorbing ideal of R.

Let (xn, T12, - - - 7x1m)7 (9521, L2, - .- ,$2m); S (x(n+1)17 T(n4+1)2y - - - 7x(n+1)m> € Rbe
such that

(3311, L12y - - - 7xlm)($217 T2, ... ,fl’zm) T ($(n+1)1, T(n4+1)2y - - - ,$(n+1)m) el
Then (1'113721 L l’(n+1)1 , L1992 "+ * ilj'(n+1)2 gy ImTom =" x(n+1)m) € I. Since [z is

an n;-absorbing ideal, z1;79; + - + T(n41)i € I; and n; < n+1, we obtain z;,;2;,; - - " Tj, i
€ [; for some distinct j1, jo, ..., jn, € {1,2,...,n+ 1} by Corollary 4.1.8. Suppose
that U {ji, 2, -+ Jni} = {1, J2s -+ -5} Thus {55, 35, ..} € {1,2,...,n+1}
and h < n since ny +ng + -+ - + ny = n. Since {J1, g2, -, Jn b S {51, 55 Tnt
and ;% - - - x5, 5 € I for all i € {1,2,...,m}, we obtain

wjiixjéi e Ilfj;ﬂ' c Iz

By choosing all distinct jj 1, jji9.---5Jn € {1,2,...,n+1}—{j1,75,...,7,}, hence
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Tyt L = (Tgaype - L) (X iy i Zgga) € L
Then we obtain
(%‘317 Ljr2y .- ,xjgm)(l’jgl, Ljt2y - 7$j§m) T (%‘4117 Ljr25-- >xj41m)

Therefore, I is an n-absorbing ideal of R, and hence I is a ¢-n-absorbing ideal

of R. O

Example 4.2.11. Consider the semiring R = ZJ x Z$ x Z$ x Zg .

(1) Then 2Z§ x 6Z¢ x 30Z¢ x Zg is a 6-absorbing ideal of R because 2Z is a
l-absorbing ideal, 6Z is a 2-absorbing ideal, 30Z7 is a 3-absorbing ideal and Zg
is a O-absorbing ideal of the semiring Z .

(2) Then 2%ZJ x 237§ x 27§ x 2°Z7 is a 14-absorbing ideal of R because 2'Z;

is an [-absorbing ideal of the semiring Zg for all [ € N.

From the above theorem, we can conclude that, for an ideal I = I1 x Iy x---x I,
of a decomposable semiring R = R; X Ry X --- X R,,, if every component of [ is a
prime ideal of its semiring, then [ is an m-absorbing ideal of R.

Next, we provide the last theorems concerning ¢-n-absorbing ideals of decom-

posable semirings.

Theorem 4.2.12. Let R = Ry X Ry X -+ X R, be a decomposable semiring, n a
positive integer and ¢ = @1 X 3 X -+ - X @, where each ; : S (R;) — S (R;) U{2}

1s a function. Then the following statements hold.

(1) I x Iy x -+ X I, is a ¢p-n-absorbing ideal of R where I; C ¢;(1;) for all
Jj € A{1,2,...,m} and at least one I; is a proper ideal of R; for some i €
{1,2,...,m}.

(2) Ry Xx Ry X -+ X Ri_1 X I; X Riy1 X +++ X Ry, is a ¢-n-absorbing ideal of R
where I; s a p;-n-absorbing ideal of R; which must be an n-absorbing ideal

if 0;(R;) # R; for some j € {1,2,...,m} — {i}.
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Proof. (1) The result follows from the fact that Iy x Iy x -+ x I, — ¢([1 x Iy x
e x Iy) = @.

(2) Without loss of generality, we assume that [; is a proper ideal of R;. If
I is an n-absorbing ideal of Ry, then I; X Ry X --- X R, is an n-absorbing ideal
of R by Theorem 4.2.5. Thus I; X Ry X --- X R,, is a ¢-n-absorbing ideal of R.
Moreover, assume that [; is a ¢;-n-absorbing ideal of R; and ¢;(R;) = R; for all
j€{1,2,...,m}. We show that I; x Ry X --- X R,, is a ¢-n-absorbing ideal of R.
Let (@11, %12, T1m), (T21, T2z, -, Tom), -+, (T D)1 Tt 1)2s - - > T ym) € R
be such that (11, Z12,. .., T1m)(T21, T22, - - Tom) =+ (T(n41)15 T(nt1)2s - - s Tt 1)m)

€l xRy XX Ry, —¢(l; X Ry X -+ X Ry,). Then

($11$21"'5U(n+1)1 y L21L22 LT (n41)25 - -+ 5171m5132m“’1'(n+1)m)
€l X Ry XX Ry — (1 X Ry X -+ X Ryy,)
=1 X Ry X -+ X Ry, — (p1(11) X pa(Ra) X -+ X ©(Ry))
=1L X Ryx -+ X Ry, — (p1(I1) X Ry X -+ X Ryy,)

= (L —p1(f1)) X Ry X -+ - X Ry

Thus 211221 - - T(ny11 € It — ¢1(L1). Since I is a ¢q-n-absorbing ideal of Ry, we

gain 21 (nt1)1 € Iy for some i € {1,2,...,n+ 1}. It follows that

($11, Z12,. .- ;$1m) T (x(i—l)la T(i—1)25 - - - >x(i—1)m)(x(i+1)1a T(i+1)2s - - - Jx(i+1)m) T
(x(n+1)17513(n+1)2, e 7$(n+1)m) €li X Ry X -+ X Ry,
Therefore, I; X Ry X --- X Ry, is a ¢-n-absorbing ideal of R. O]

If 1; is a ¢;-n-absorbing ideal but is not n-absorbing and ¢;(R;) # R; for some
je{1,2,...,m}, then Ry X Ry X -+~ R;_1 X I; X Rjy1 X -+ X R, does not have
to be a ¢-n-absorbing ideal of Ry X Ry X --- X R, as we show in the following

example.

Example 4.2.13. Consider the semiring ZJ x Zg x -+ x Zg. Let p1,pa, ..., Pps1

'

m copies

are positive primes and I} = p1py -+ poi1Zd . Let o1 0 I(Z§) — F(Z§) U{D} be
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a function such that I is a p;-n-absorbing ideal. Since I1 = pips - - -pn+1Z8“, it is
easy to see that I; is not an n-absorbing ideal. Define ¢, : Z(Z{) — I (Z§)U{o}
by ¢;(I) = {0} for all I € F(ZJ) and for all j € {2,3,...,m}. Then p;(Z{) =
{0}y #£Z§ for all j € {2,3,...,m}. Let ¢ = 1 X o3 X - -+ X ¢p,. Consider

(ph]-u"'71)<p27]-7"'71)"'(pn-i-lal?"'a]-)
:(p1p2"'pn+1>17---71)
€ (I} x ZF x -+ x ZF) — (p1(I1) x {0} x --- x {0})

= (L XZ§ x- XL — d(Iy x L x -+ x ZT)

but
(p1717"'71>"'(piflalu"'71)<pi+1717'"71)”'(pn+1717"'71)
= (Pims1, L. 1) @ L X LS X - X L

for all i € {1,2,...,m} because p; 41 ¢ I for all i € {1,2,...,m}. Therefore,

I, x Z§ x -+- x Z¢ is not a ¢-n-absorbing ideal of Z§ x ZI x -+ x Zd .
0 0 0 0 0

We obtain from Theorem 4.2.12 that the ideals in (1) and (2) are ¢-n-absorbing
ideals of a decomposable semiring R = R; X Ry X --- X R, but we cannot guar-
antee that there are two categories of ¢-n-absorbing ideals of R. However, in case
n = 1, we can conclude that ¢-prime ideals of decomposable semirings with two

components need to be in three formats only as shown in the following theorem.

Theorem 4.2.14. Let R = R; X Ry be a decomposable semiring and ¢ = p1 X o
where each @; : I (R;) — S (R;)U{@} is a function. Then the ¢-prime ideals of R
have exactly one of the following three types:

(1) I x Iy where I; C @;(1;) for all j € {1,2} and at least one I; is a proper
ideal of R; for some i € {1,2}.

(2) I, X Ry where Iy is a p1-prime ideal of Ry which must be prime if p2(Ry) # Rs.

(3) RixIy where Iy is a po-prime ideal of Ry which must be prime if p1(Ry) # Ry.
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Proof. By Theorem 4.2.12, we can conclude that the ideals in the statements (1),
(2) and (3) are ¢-prime ideals.

For the other direction, assume that [; x I is a ¢-prime ideal of R. Thus [,
or I, is a proper ideal of R. Without loss of generality, assume that I, is a proper
ideal. Let a,b € R; be such that ab € I — ¢1(I1). Then (a,0)(b,0) = (ab,0) €
I x Iy — (11 x I). Since I x I is a ¢-prime ideal of R, we obtain (a,0) € I} X I
or (b,0) € I x I. Hence a € I; or b € I;. Therefore, I; is a p;-prime ideal of R;.
If I; C ¢;(I;) for all j € {1,2}, then (1) is obtained. Suppose that I} & ¢;(y) or
I, & o(1). Without loss of generality, assume that I} € ¢1(f;). Then there is
x €l —p1(ly). Let y € Iy. Thus (z,1)(1,y) = (z,y) € I x Iy — ¢(I; X I3). Since
I} x I is a ¢-prime ideal of R, we have (x,1) € I} x Iy or (1,y) € I} x I,. Hence
I, = Ry or I} = Ry. Since [ is a proper ideal, [, = Ry. Then I; X Ry is a ¢-prime
ideal of R where [ is a ¢-prime ideal of R;. It remains to show that [, is actually
prime if @o(Rs) # Rs. Assume further that po(Ry) # Ro. Then 1 ¢ ¢o(Rs). Let
a,b € Ry be such that ab € I;. Thus (a,1)(b,1) = (ab,1) € I} x Ry — ¢(I1 X Ry).
Since I} X Ry is a ¢-prime ideal of R, we have (a,1) € I} X Ry or (b,1) € I X Rs.
Hence a € I or b € I;. Therefore, I is a prime ideal of R;. So, the statement (2) is
obtained. In the same way, if we assume I, is a proper ideal, then the statement (3)

holds. OJ

4.3 ¢@-n-Absorbing Ideals in Quotient Semirings and in

Semirings of Fractions

In this last section, ¢-n-absorbing ideals of quotient semirings and ¢-n-absorbing
ideals of semirings of fractions are discussed. All results of this section are parallel
to the results in Section 3.3.

Recall that if R is a semiring, [ is a (J-ideal of R and ¢ is a function from
J(R) into Z(R) U {@} such that ¢(L) is a subtractive extension of I for all
ideal L of R where L is a subtractive extension of I, then we define ¢; : S (R/I) —
F(R/T)U{@} by ¢1(J/I) = (¢(J))/1 for each ideal J of R where J is a subtractive



78

extension of I.

Recall further that R is a semiring with ¢ satisfying the property (x) if R is
a semiring with ¢, [ is a @-ideal of R and ¢; is a function from #(R/I) into
J(R/I)U {2} where ¢ and ¢; are defined as above paragraph.

Theorem 4.3.1. Let R be a semiring with ¢ satisfying the property (%), n a
positive integer, I a Q-ideal of R and P a subtractive extension of I. Then P is a

¢-n-absorbing ideal of R if and only if P/I is a ¢r-n-absorbing ideal of R/I.

Proof. First, assume that P is a ¢-n-absorbing ideal of R. Then P/I is an ideal of
R/I because P is a subtractive extension of I. Let ¢1+1,q2+1,...,qos1+1 € R/I
be such that (¢; + I)(ga + 1) (qns1 + 1) € P/I — ¢;(P/I). By Theorem 2.2.19,
we obtain ¢i¢qs - - - gnt1 € P—¢(P). Since P is a ¢-n-absorbing ideal, §; ,+1 € P for
some i € {1,2,...,n+1}. Hence (1 +1) - (gi—1+1)(qis1+1) - (gus1+1) € P/I.
Therefore, P/I is a ¢;-n-absorbing k-ideal of R/I.

Conversely, assume that P/[ is a ¢;-n-absorbing ideal of R/I. We show that P
is a ¢-n-absorbing ideal of R. Let x1,22,..., 2,11 € Rbesuch that x1ze--- 2,41 €
P — ¢(P). Then there exist q1,q2...,qn41 € @ such that z; € ¢; + I for all i €
{1,2,...,n+1}. So there is y; € I such that x; = ¢;+y; foralli € {1,2,... ,n+1}.
Hence we obtain (¢1 +v1)(¢2+v2) - - (Gns1+Yn+1) € P—¢(P). Then ¢1q2 -+ gni1 €
P — ¢(P) because P and ¢(P) are subtractive extensions of I. Thus (¢; + I)(g2 +
I)---(qns1 + 1) € P/I — ¢;(P/I) by Theorem 2.2.19. Hence (¢; + I)---(gi—1 +
(g1 + 1) (gny1 + 1) € P/I for some i € {1,2,...,n+ 1} since P/ is a ¢;-n-
absorbing ideal. Then ;i1 € P. Thus i ne1 = (g1 4 1) - (@1 + %i-1)(@is1 +
Yir1) * (qua1 + Yns1) € P. Therefore, P is a ¢-n-absorbing ideal of R. O

Example 4.3.2. Consider the semiring Zg. Let P = 287 and I = 56Z;. Then
P is a 3-absorbing k-ideal of Zg containing I and [ is a Q-ideal of Z; where Q =
{0,1,2,3,...,55}. Thus P is a subtractive extension of I. Define ¢ : Z(ZJ) —
F(Z5) U {2} by ¢(J) = TZ§ for all J € F(Z). Certainly, ¢(L) = TZJ is a
subtractive extension of I = 56Z§ for all L € #(R) where L is a subtractive
extension of I. Define ¢; : Z(R/I) — F(R/I)U{@} by ¢;(J/I) = (TZ§)/I
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for each ideal J of R where J is a subtractive extension of I. Thus Zg is the
semiring with ¢ satisfying the property (). Since P is a 3-absorbing ideal, P is a
¢-3-absorbing ideal. Therefore, P/I = 287 /56Z¢ is a ¢r-3-absorbing ideal of the

quotient semiring Zg /56Z .

Corollary 4.3.3. Let R be a semiring with ¢ satisfying the property (%), n a
positive integer and I a QQ-ideal of R. Then I is a ¢-n-absorbing ideal of R if and

only if the zero ideal of R/I is a ¢r-n-absorbing ideal.

Like Chapter III, this chapter is ended with results regarding ¢-n-absorbing
ideals of semirings of fractions.

Recall that for a semiring R with ¢, we define ¢g : S (Rs) — #(Rs) U{@} by
os(J) =od(JNR)Rs if p(JNR) € F(R) and ¢s(J) = @ if ¢(J N R) = @ for all
J € 7 (Rg).

Proposition 4.3.4. Let R be a semiring with ¢, S the set of all multiplicatively
cancellable elements of R and I a ¢-prime ideal of R with ¢(1) C I and INS = @.
If IRs # ¢(I)Rg, then IRsN R =1.

Proof. Assume that IRg # ¢(I)Rgs. Since I C IRg N R, it remains to show that
IRsNR CI. Letx e IRgsNR. Then % € IRg. Thus there exist a € I and
s € S such that % = %. Hence zs =a € I. If xs € [ — ¢(I), then x € I because
I'is ¢-prime and I NS = @. So assume that xs € ¢(I). Then % = f—j € ¢o(I)Rg,
and hence z € ¢(I)Rg N R. Then IRsN R C I or IRs N R C ¢(I)Rs N R.
Since I C IRs N R and ¢(I)Rs N R C IRs N R, we obtain I = IRg N R or
d(I)RsNR=IRsNR. If 9(I)Rs "R =1RsN R, then ¢(I)Rs = I R which is a
contradiction. Therefore, IR N R = 1. O]

In the last theorem, we would like to show that if I is a ¢-n-absorbing ideal

of R under some conditions, then I Rg is a ¢g-n-absorbing ideal of Rg.

Theorem 4.3.5. Let R be a semiring with ¢, S the set of all multiplicatively
cancellable elements of R and I an ideal of R with INS = & and ¢(I)Rs C
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¢s(IRs). If I is a ¢-n-absorbing ideal of R, then IRg is a ¢s-n-absorbing ideal
Of RS-

Proof. Assume that I is a ¢-n-absorbing ideal of R. Since I NS = @, it fol-

Ty T Tn
lows that IRg is a proper ideal of Rg. Let —1, —2, cee e Rg be such that

51 S2 Sn+1
m a’;‘ o .. xn . .
[ e IRs— ¢s(IRg). Theorem 2.3.8 yields that there is v € S such that
S§182°** Sp+1
T1Ta -+ TV € T —¢(I). Since [ is ¢p-n-absorbing, xyxg - -z, € I or &; n&pi1v € I

. T1To - - X T Tyl
for some i € {1,2,...,n}. Thus ——" € IRg or —“""— € [Rg. Hence
5182+ Sp SinSn+1V

M € IRg for some j € {1,2,...,n+ 1}. Therefore, IRg is a ¢g-n-absorbing
Sjn+1

ideal of Rg. ]



CHAPTER V
GENERALIZATIONS OF Gn-ABSORBING IDEALS OF
SEMIRINGS

This chapter devotes to the last main results of our research. In 2015 [14], S.
Chinwarakorn and S. Pianskool defined a new type of ideals which is still a gen-
eralization of primary ideals and n-absorbing ideals of a ring. They defined a
generalized n-absorbing ideal (simply Gn-absorbing ideal) I of a ring R
to be a proper ideal and if whenever x1,x,..., 2,11 € R with 2129 2,41 € [,
then #;,,1 € VI for some i € {1,2,...,n + 1}. Thus every primary ideal is
a Gn-absorbing ideal but not vice versa. For example, 30Z is a G3-absorbing
ideal of the ring Z and 6 -5 € 30Z but 6 ¢ 30Z and 5 ¢ V/30Z so that 307Z is
not a primary ideal of the semiring Z. Hence Gn-absorbing ideals are a gener-
alization of primary ideals. Moreover, every n-absorbing ideal is a Gn-absorbing
ideal. However, Gn-absorbing ideals need not be n-absorbing ideals. For exam-
ple, the ideal {(0,0)} is a G2-absorbing ideal but is not a 2-absorbing ideal of the
ring Zg X Zg since (2,1)(1,3)(3,3) € {(0,0)} but (2,1)(1,3) = (2,3) ¢ {(0,0)},
(2,1)(3,3) = (0,3) ¢ {(0,0)} and (1,3)(3,3) = (3,0) ¢ {(0,0)}. Therefore, Gn-
absorbing ideals are a generalization of n-absorbing ideals.

In this chapter, we extend the notion of generalized n-absorbing ideals of a ring
to ¢-generalized-n-absorbing ideals of a semiring . We define a ¢-generalized n-
absorbing ideal (simply ¢-Gn-absorbing) I of a semiring R with ¢ to be a
proper ideal and if whenever x1, 29, ..., 2,41 € R with x129--- 2,01 € [ — ¢(1),
then &;,,41 € VI for some i € {1,2,...,n+ 1}.

Like Chapter III and Chapter IV, we divide this chapter into three sections.
They are ¢-Gn-absorbing ideals of semirings, ¢-Gn-absorbing ideals in decompos-

able semirings and ¢-Gn-absorbing ideals in quotient semirings and semirings of
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fractions. Note further that almost all of the results of this chapter are parallel to

the results of Chapter IV.

5.1 @-Gn-Absorbing Ideals of Semirings

In the same fashion as in the previous chapters, we begin this chapter with the def-
initions that we use throughout this chapter. First, we define Gn-absorbing ideals
of semirings similarly to Gn-absorbing ideals of rings given by S. Chinwarakorn
and S. Pianskool in [14]. Moreover, we define weakly Gn-absorbing ideals, almost
Gn-absorbing ideals, m-almost Gn-absorbing ideals and w-Gn-absorbing ideals of
semirings in the same way as weakly n-absorbing ideals, almost n-absorbing ideals,

m-almost n-absorbing ideals and w-n-absorbings given in Chapter I'V.

Definition 5.1.1. Let R be a semiring and n a positive integer.

A proper ideal I of R is said to be generalized n-absorbing, or simply
Gn-absorbing, if whenever x1,25,..., 2,01 € R and zi29--- 2,41 € I, then
Tin41 € VT for some i € {1,2,...,n+ 1}. Moreover, we denote 0-Gn-absorbing
the ideal R.

A proper ideal I of R is said to be weakly generalized n-absorbing, or sim-
ply weakly Gn-absorbing, if whenever x1, o, ..., 2,11 € Rand 0 # x129 - - - 41
€ I, then &;,,4, € VI for some i € {1,2,...,n+1}.

A proper ideal I of R is said to be almost generalized n-absorbing, or sim-
ply almost Gn-absorbing, if whenever x1,25,..., 2,11 € R and xyx9--- 2,41 €
I —I?, then @, € VT for some i € {1,2,...,n+1}.

A proper ideal I of R is said to be m-almost generalized n-absorbing
(m € N with m > 2), or simply m-almost Gn-absorbing, if whenever x4, z,, . . .,
Tpy1 € Randxyxg---xpy € I—1™, then 2,41 € VT for some i € {1,2,..., nt+ 1}.

A proper ideal I of R is said to be w-generalized n-absorbing, or simply w-
Gn-absorbing, if whenever x1,xs,..., 2,11 € Rand x129- -2 € I — N2 17,

n=1

then &;,41 € VI for some i € {1,2,...,n+ 1}.

Hence, the zero ideal is a weakly Gn-absorbing ideal, an almost Gn-absorbing
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ideal, an m-almost Gn absorbing ideal and an w-Gn-absorbing ideal like the pre-
vious chapters.
In the following result, we provide a characterization of being Gn-absorbing

ideals of semirings.

Theorem 5.1.2. Let R be a semiring, I a proper ideal of R and n,n’ positive
integers with n’ > n. Then I is a Gn-absorbing ideal if and only if whenever
1Ty Ty € I for x1,29,..., 20 € R, then x,x;,---x;, € VI for some distinct

’il,ig,...,ine {1,2,...,77,,}.

Proof. First, assume that [ is a Gn-absorbing ideal of R and 1, 22,...,2, € R
with n’ > n be such that xjxe- -2, € I. Then z129 - 2, (Tp1Tpg2 - Tp) € 1.
Since [ is a Gn-absorbing ideal, x1xy- -2, € VT or Tin(Tpi1Tnga - Tp) € VI
for some i € {1,2,...,n}. lf xy29--- 2, € V1, then we are done. Assume that the
other case is yielded. Without loss of generality, we suppose that xoxs-- -z, € VI ,

ie., (woxs---xy)® € I for some a € N. Thus we write

r5xs -y (T Ty g ) = (T3 ) € 1

a0 « « o o « « o o
Then zgx§---x5,, € VT or L IRERE AR AR IERE Ao (ol el PR Aev) B < VT for

some i € {2,...,n + 1} because I is a Gn-absorbing ideal. Then we obtain
T3 Tpy1 € V \/7 = \/7 Or o+ T 1T;41 "'l‘n+1<xn+2xn+3...xn,) c \/\/T —

VI, If xoxs - “Tpy1 € V1, then we are done. If not, by repeating the same

process as above, we obtain x;x;, ---x;, € VT for some distinct 11,09, ..., 0y €
{1,2,...,n'}.
Conversely, the proof is clear by choosing n’ = n + 1. O]

Next, we show that if I is a Gn-absorbing ideal, then [ is a Gn/-absorbing ideal

for all integer n’ > n.

Proposition 5.1.3. Let R be a semiring, I a proper ideal of R and n a positive
integer. If I is a Gn-absorbing ideal, then I is a Gn'-absorbing ideal for alln’ € N

with n' > n.
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Proof. Assume that [ is a Gn-absorbing ideal of R. Let n’ € N be such that n’ > n.
Note that, if n’ = n, then there is nothing to do. So we assume that n’ > n. Let
T1,To, ..., Tpyr1 € R be such that xyxe-- 2,41 € I. Applying Theorem 5.1.2
yields @z, - --x;, € /I for some distinct iy,4s,...,9, € {1,2,...,n +1}. By

choosing all distinct
in+1,in+2,...,in/ € {1,2,...,71/—{—1} - {il,ig,...,in}

and by multiplying, we get x;, 74, - - - 2; , = (T3, T4, - - - T3,,) (xinﬂzcinw = -xn/) e VI.
Hence, I is a Gn'-absorbing ideal of R. Therefore, I is a Gn’-absorbing ideal for

all n’ > n as desired. O

Nevertheless, the converse of the Proposition 5.1.3 is not true as we shown in

the following example.

Example 5.1.4. Consider the semiring Z7. Then 20Z§ is a G2-absorbing ideal
of the semiring Z§ but is not a Gl-absorbing ideal of the semiring Z{ because

4.5 =20 € 20Z¢ but 4* ¢ 20Z¢ for all a € N and 5° ¢ 20Z; for all § € N, i.e.,

4 ¢ \/20Z¢ and 5 ¢ \/20Z .

From the Definition 5.1.1, we can conclude that every primary ideal (weakly
primary ideal, almost primary ideal, m-almost primary ideal and w primary ideal)
is a Gn-absorbing ideal (weakly Gn-absorbing ideal, almost Gn-absorbing ideal,
m-almost Gn-absorbing ideal and w-Gn-absorbing ideal). Moreover, every n-
absorbing ideal (weakly n-absorbing ideal, almost n-absorbing ideal, m-almost
n-absorbing ideal and w-n-absorbing ideal) is a Gn-absorbing ideal (weakly Gn-
absorbing ideal, almost Gn-absorbing ideal, m-almost Gn-absorbing ideal and w-
Gn-absorbing ideal). Certainly, the converse of both statements are not true in

general and we provide an example to confirm.

Example 5.1.5. Consider the semiring Z .

(1) Consider the ideal 100Z{. Form Chapter IV, we know that 100Z§ is a
4-absorbing ideal of the semiring Z;. Then 100Z{ is a G4-absorbing ideal of the
semring Zg. Since 4 - 25 = 100 € 100Z§ but 4 ¢ 100Z¢ and 25 ¢ /100Z{, the
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ideal 100Z is not a primary ideal of the semiring Z .

(2) Consider the ideal 900Z;. The ideal 900Z; is a G3-absorbing ideal of
the semiring ZJ but is not a 3-absorbing ideal of the semiring Z; because 2 - 5 -
9-10 = 900 € 900Z§ but 2-5-9 = 90 ¢ 900Z;, 2-5-10 = 100 ¢ 900Z,
2-9-10 =180 ¢ 900Z§ and 5-9 - 10 = 450 ¢ 900Z .

Consequently, Gn-absorbing ideals are a generalization of primary ideals and
of n-absorbing ideals.

From the fact that Gm-absorbing ideals are a generalization of n-absorbing
ideals, in the following proposition, we provide a result that helps us find examples

of Gn-absorbing ideals which are not n-absorbing ideals.

Proposition 5.1.6. Let n, a1, as,...,q, be positive integers and pi,pa, ..., Pn
prime numbers (not necessary distinct). Then py*ps? - p2nZd is a Gn-absorbing
ideal but not an n-absorbing ideal of the semiring Zg if there is a; > 1 for some

ie{1,2,...,n}.

Proof. First, we show that the ideal p{'p§*---po»ZJ is a Gn-absorbing ideal
of the semiring Z;. Let xy,%,...,7p41 € Z¢ be such that zixy-- 2,1 €
piipy? - ponZy . Then xyxy - - Ty = piipy? -+ p2ma for some a € ZJ. Thus p;
is a factor of x; for some j € {1,2,...,n+1}. Hence there is {z;,, x;,,...,%i, .} C
{x1,29,...,7py1} for some m € Z§ and for some distinct i1, ia, . . ., in_m € {1,2,...,
n + 1} such that x;, ;- x;, = pipa- - pph for some h € Za“. By choosing all

distinct
Inematy bnema2y -« 500 €{1,2, ... ,n+ 1} = {iy,d9, .. inm}
and by multiplying,
TiyTiy ="+ X4y, = (iEz‘l% s xz‘nfm)(xin_mﬂxin_mﬁ o xzn) = p1p2 - - - pphl

for some | € Z$. Let a = ay + ay + -+ - + a,,. Then o € N. Hence

(3,24 -+ 25,)" = (p1p2 - - PPL)

— (p1p2 . ,pnhl)a1+a2+-~+an
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a1taettan o tagtetan

_ o1 ta2+-tan a1taz+-+toan

=P Y2 R 2 (hl) e

X102 « agtaz+-tan, a1tazt+- o altoag+Fan—1 aj+az+-Fan
=pi'py* -t (Y D3 Dy (hl)™ )

€ pi'ps? - P Ly

Thus @4, @4, -5, € /PSS ---penZs. Therefore, p{'ps?---p2rZd is a Gn-
absorbing ideal of the semiring Z .

Next, it remains to show that p{*ps?---p2»Zd is not an n-absorbing ideal of
the semiring Zg if there is a; > 1 for some i € {1,2,...,n}. Without loss of

generality, we suppose that «,, > 1. Since

Py Py T o = DS P € P i T
but pi'ps? - -ppn =t pps - pan Ly, pYPS - Pty P  DYPS - panZg and
pyips? - -pf‘jlpfﬁl coeponTlp o pPips? - p2rZE for all i € {1,2,...,n — 1}, we
can conclude that p{*py? - - - p®»ZJ is not an n-absorbing ideal of the semiring Z .

]

Example 5.1.7. Consider the semiring Z .

(1) 1296Z3 = 2* - 3*Z7 is a G2-absorbing ideal but is not a 2-absorbing ideal
of the semiring Zg .

(2) 490Z¢ = 2-5- T*Z7 is a G3-absorbing ideal but is not a 3-absorbing ideal
of the semiring Z .

(3) 3500Z¢ = 2-2-5%-7Z§ is a G4-absorbing ideal but is not a 4-absorbing
ideal of the semiring Z .

From Proposition 5.1.6, it is clear that if p; = ps = --- = p,,, then we obtain

vtaztetanz b is a primary ideal of the semiring Z;.

that p"py? - pirZy = py
It makes us wonder that if there are p;,p; € {p1,p2,...,pn} such that p; # p;,
then p'p5? - - - p2»Z¢ is still a primary ideal of the semiring Z{ or not. The next
proposition is an answer to this. For the convenience, we write p{'p5?-- - pi»

in the form qf1q§2 e qf " where q1,qa,...,q are all distinct prime numbers and

Bi,Ba, ..., B3 € N; in addition, it is clear that [ < n. Then p{'p5? - pZs =



87

qf ! qg SR ql'g 'Z¢$ is a Gl-absorbing ideal of the semiring Zg ; nonetheless, by the fact

that [ < n, so it is a Gn-absorbing ideal.

Proposition 5.1.8. Let n, oy, ao, ..., a, be positive integers and py,pa, ..., pn all
distinct prime numbers . Then p*ps? - - p2Zd is a Gn-absorbing ideal but not a

primary ideal of the semiring Zg if n > 2.

Proof. By Proposition 5.1.6, p{'p5? - - - p2»Z¢ is a Gn-absorbing ideal of the semir-
ing Z¢. Thus it remains to show that p{'p$? - p@Zd is not a primary ideal of

the semiring Zg if n > 2. Assume that n > 2. Since

An—1

(p1'ps? - ) (Ppr) = piips® - - Pt € pTPS? - P Ly

but pyps* - pp"y € pipsT P Zg and (p)® & pips® - pirZg foralla € N

because n > 2 and pq, ps,...,p, are all distinct prime numbers. Then we obtain

a2

pyPS st & Py pinZg and pin € \/py'ps? - poZg . Therefore, we
can conclude that p{'p5? - - - p2Zd is not a primary ideal of the semiring Z; where

n > 2. O

Example 5.1.9. Consider the semiring Z .

(1) 4847Z¢ = 22 - 11?Z{ is a G2-absorbing ideal but is not a primary ideal of
the semiring Z .

(2) 150Z§ =2 -3 - 52 is a G3-absorbing ideal but is not a primary ideal of the

semiring Zg .

Next, we define ¢-generalized-n-absorbing ideals of semirings which is a main

character of this chapter.

Definition 5.1.10. A proper ideal I of a semiring R is said to be ¢-generalized-
n-absorbing, or simply ¢-Gn-absorbing, if whenever x1,x,,..., 2,1 € R and

2129 Tpy1 € T — @(I), then &, 1 € VT for some i € {1,2,...,n+ 1}.

Let R be a semiring with ¢. From Chapter IV, we obtain that ¢-primary ideals

and ¢-n-absorbing ideals do not imply each other. In the following result, we would
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like to show that every ¢-primary ideal and ¢-n-absorbing ideal are ¢-Gn-absorbing

ideals for all n € N.

Proposition 5.1.11. Let R be a semiring with ¢ and n a positive integer. Then
(1) every ¢-primary ideal of R is a ¢-Gn-absorbing ideal of R, and
(2) every ¢-n-absorbing ideal of R is a ¢-Gn-absorbing ideal of R.

Proof. (1) Assume that I is a ¢-primary ideal of R. Let zy,29,..., 2,41 € R
be such that z1x9-- 2,41 € I — ¢(I). Since I is a ¢-primary ideal of R and
Ty (x93 Tpyq) € 1T — ¢(I), we obtain 21 € I or Zoxs- - Tnyy € VI. If 21 € I,
then 212,41 € I C VI for alli e {2,3,...,n+1}. lf oy xpyq € V1, then we
are done. Hence we can conclude that Z; ,41 € V1 for some i € {1,2,...,n+1}.
Therefore, I is a ¢-Gn-absorbing ideal of R.

(2) Assume that [ is a ¢-n-absorbing ideal of R. Let xy,z9,..., 2,41 € R
be such that xyxe- 2,41 € I — ¢(I). Since [ is a ¢-n-absorbing ideal of R, we
obtain Z;,4+1 € [ for some i € {1,2,....,n + 1}. Then &;,41 € VI for some
i € {1,2,...,n + 1} because I C V. Therefore, I is a ¢-Gn-absorbing ideal
of R. O

However, the converse of each statement of the above proposition is not true

in general as shown in the next example.

Example 5.1.12. Consider the semiring Z; with ¢,. Recall that ¢, is the function
defined by ¢o(I) = I? for all I € #(Z]). Consider the ideal 363Z7 of Z. Since
363 = 3- 112, it follows that 363Z is a G2-absorbing ideal of Z{, so it is a ¢-G2-
absorbing ideal of Z .

Since 33 - 11 = 363 € 363Z; — (363Zg )* = 363Z¢ — 131769Z; but 33 ¢ 3637Z;
and 11% ¢ 363Z for all o € N, i.e., 33 ¢ 363Z¢ and 11 ¢ /363Z, it follows that
363Z¢ is not a ¢y-primary ideal of Z .

Because 3 - 11 - 11 = 363 € 363Z; — (363Z7)? = 363Z¢ — 131769Z; but
3-11 =33 ¢ 363Z¢, 11-11 = 121 ¢ 363Z, it follows that 363Z{ is not a ¢a-2-
absorbing ideal of Z .
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Therefore, we can conclude that 363Z¢ is a ¢o-G2-absorbing ideal but is not a

¢o-primary ideal and is not a ¢y-2-absorbing ideal of Z .

From Proposition 5.1.11 and Example 5.1.12, we acquire that ¢-Gn-absorbing

ideals are a generalization of both ¢-primary ideals and ¢-n-absorbing ideals.

Theorem 5.1.13. Let R be a semiring with ¢, I a proper ideal of R such that
d(VI) = \/4(I) and n,n’ positive integers with n' > n. Then VI is a ¢-
Gn-absorbing ideal if and only if whenever x1xo-- -z € VI — ¢(\VI) for any
1,2, ..., Ty € R, then x;x; - -x; € VI for some distinct iy, is, ... 0, €

(1,2,....0'}.

n

Proof. First, let v/I be a ¢-Gn-absorbing ideal of R and 1, zo, . .., Z,y € R with
n' > n be such that z,25-- 2,y € VI — ¢(V/I). Since ¢(v1) = /o(I), we
gain x1To -+ Ty € VI — \/m . Because VT is a ¢-Gn-absorbing ideal and
1Ty T (T Trgz - Tw) € VI — ¢(VI), we obtain zyz5---x, € VI or
Tin(Tpi1Tngo - Tp) € m for some i € {1,2,...,n}. Thus we divide this
proof into two cases.
Case 1: If zy29--- 2, € \/ﬁ = \/7, then we are done.
Case 2: Assume that ; ,Tp11Tp42- - Tp € ﬁ = /1. Because x1xg - Ty ¢
(1), we obtain &; ,Tpi1(Tpio - Tp) € VI — \/W =VI-— gb(\/f) Since V1

is a ¢-Gn-absorbing ideal, Z;,%,+1 € \/ﬁ or j:{ivj}ynﬂ(xnw C X)) € \/ﬁ for
some j € {1,2,...,n+ 1} — {i}. We divide this case into two subcases.

Subcase 2.1: If ; ,z,,41 € m = /I, then we are done.

Subcase 2.2: Assume that &g j}ni1(Tnio - - Twr) € m By repeating the
same process as above, we must have x; x;, - - x;, € m = /I for some distinct
iy, yin € {1,2,... 0/}

Conversely, the proof is clear by choosing n’ = n + 1. m

Proposition 5.1.14. Let R be a semiring with ¢, I a proper ideal of R such that
d(VI) = \/o(I) and n a positive integer. If /I is a ¢-Gn-absorbing ideal, then
VT is a ¢-Gn/-absorbing ideal for all n' > n.
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Proof. Assume that v/T is a ¢-Gn-absorbing ideal. Let n’ € N be such that n’ > n.
Let z1,29,..., 2,21 € R be such that x1ze-- 2,11 € VI — gb(\/f) By Theo-
rem 5.1.13, we obtain that z;,z;, - - x;, € \/ﬁ for some distinct iq,1i9,...,1, €
{1,2,...,n'}. By choosing all distinct

in+17in+27 PN ,’in/ S {]_, 2, ce 77’LI} - {i17i27 PN ,Zn}
and by multiplying, we have
TiyTijy =Ty, = (xilxiQ to xin)(xin+1$in+2 T xinl) SV \/7

Therefore, v/T is a ¢-Gn'-absorbing ideal for all n' > n. ]

Proposition 5.1.15. Let R be a semiring with ¢ and I a proper ideal of R such
that (V1) = \/o(I). If I is a p-Gn-absorbing ideal, then /T is a ¢-Gn-absorbing

ideal.

Proof. Assume that I is a ¢-Gn-absorbing ideal of R such that ¢(v/T) = \/o(I).
If1e+I , then 1 € I, which is a contradiction. Thus 1 ¢ VI , and hence VT is a
proper ideal. Let zy,29,..., 2,11 € R be such that x5 2,11 € VT — gb(\/f)
Since ¢(V1) = \/¢(I), we have 129 - - 241 € VI—+/¢(I). Then x§xy - 2%, =
(129 Tpy1)® € I — @(I) for some o € N. Since I is a ¢-Gn-absorbing ideal,
(Tint1)® € I for some ¢ € {1,2,...,n+ 1}, ie., &;,11 € VI = m for some
i€{1,2,...,n+ 1}. Therefore, v/I is a ¢-Gn-absorbing ideal. ]

In the following example, we provide relationships between ¢-Gn-absorbing
ideals and Gn-absorbing ideals (weakly Gn-absorbing ideals, almost Gn-absorbing
ideals, m-almost Gn-absorbing ideals, w-Gn-absorbing ideals) in the same manner

as Chapter III and Chapter IV.
Example 5.1.16. Let R be a semiring. Then
(1) Iis a ¢pgu-Gn-absorbing ideal if and only if I is a Gn-absorbing ideal,
(2) I is a ¢o-Gn-absorbing ideal if and only if I is a weakly Gn-absorbing ideal,

(3) I is a ¢1-Gn-absorbing ideal if and only if I is a proper ideal,
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(4) I is a ¢o-Gn-absorbing ideal if and only if [ is an almost Gn-absorbing ideal,

(5) I is a ¢,,-Gn-absorbing ideal if and only if I is an m-almost Gn-absorbing

ideal, and
(6) I is a ¢,-Gn-absorbing ideal if and only if I is an w-Gn-absorbing ideal.

Proposition 5.1.17. Let R be a semiring, n a positive integer, I a proper ideal
of R and 1 < @y where @1 and o are functions from & (R) into I (R)U{@}. If
I 1s a p1-Gn-absorbing ideal, then I is a @o-Gn-absorbing ideal.

Proof. The proof is similar to one of Proposition 3.1.6. O]

Corollary 5.1.18. Let I be a proper ideal of a semiring and n, m € N with m > 2.

Consider the following statements:
(1) I is a Gn-absorbing ideal.
(2) I is a weakly Gn-absorbing ideal.
(3) I is an w-Gn-absorbing ideal.
(4) I is an (m + 1)-almost Gn-absorbing ideal.
(5) I is an m-almost Gn-absorbing ideal.
(6) I is an almost Gn-absorbing ideal.
Then (1) = (2) = (3) = (4) = (5) = (6).
The next result is parallel to the result derived from Proposition 3.1.8.

Proposition 5.1.19. Let R be a semiring, n a positive integer and I a proper
ideal of R. Then I is an w-Gn-absorbing ideal if and only if I is an m-almost

Gn-absorbing ideal for all m > 2.

Proof. The proof for the first direction is clear by Corollary 5.1.18.

Conversely, the proof is similar to the proof of Proposition 3.1.8. O
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The following theorem is analogous to the Theorem 4.1.24.

Theorem 5.1.20. Let R be a semiring with ¢, n a positive integer and I a proper
k-ideal of R such that ¢(I) is a k-ideal. If I is a ¢-Gn-absorbing ideal with I"*1 &
(1), then I is a Gn-absorbing ideal.

Proof. Suppose that I is a ¢-Gn-absorbing ideal with 1" & ¢(I). Let 1, zo, . . .,
ZTpe1 € R be such that zyxo---zpy € 1. If myzy---xp1 € I — ¢(I), then
Tint1 € VT for some i € {1,2,...,n 4 1}. Assume that z129--- 2,41 € ¢(I).
Case 1: Assume that @;,.1] Z ¢(I) for some i € {1,2,...,n+ 1}. Then there
exists p; € I such that &; ,y1p1 € I —¢(I). Thus Z; py1(xi+p1) € I —¢(I) because
¢(I) is a k-ideal. Since [ is ¢-Gn-absorbing, ; 41 € VT or Ty (Ti+p1) € VI
for some j € {1,2,...,n 4+ 1} — {i}. If @41 € VI, then we are done. Sup-
pose that 2y ny1(z +p1) € V1 for some j € {1,2,...,n+ 1} — {i}. That is
(243 jyma1 (2 +p1))* € I for some o € N. Since I is a k-ideal and p; € I, we obtain
(Zjmp1)* € 1, ie., jn1 € VI

Case 2: Assume that &; ,.1/ C ¢(I) for all i € {1,2,...,n+ 1}

Subcase 2.1: Suppose that & j3,+11% € ¢(I) for some j € {1,2,...,n+1} —
{i}. Then there are py,py € I such that &y jy ny1p1p2 € ¢(I). Because ¢(I) is a
k-ideal, we gain 2 jy ni1 (@i +p1)(x; +p2) € I — (). Since I is a ¢-Gn-absorbing
ideal, Z(; j} nt1 (@i +p1) € VI or T 5yt (2 +D2) € VI or 2y 51y 1 (T +p1) (22 +
p2) € VI for some | € {1,2,...,n+ 1} — {i,j}, ie., (Fjynii(mi+p1))* € 1 or
(Zgijymt1(zj+p2))? € T or (Zgijapns1(zi+p1)(x2+p2))? € I for some a, 8,y € N.
Hence (£;,41)® € I or (2,41)% € I or (21,,11)" € I because I is a k-ideal. Thus
we obtain Z; 41 € VT or Tjnt1 € VT or Typt1 € V.

Subcase 2.2: Suppose that &g 311> C ¢(I) forall j € {1,2,...,n+1}—{i}.

Subcase 2.2.1: Assume 2y ;3,117 € ¢(I) for some I € {1,2,...,n+ 1}
—{4,7}. Then there exist pi,ps,ps € I such that &y ;i 101p2p3 € ¢(1). Thus
g1 (T + 1) (25 +p2) (2 +p3) € T — ¢(I) because ¢(I) is a k-ideal. Since I is
a ¢-Gn-absorbing ideal, we obtain & (i 3 n1(Ti+p1) (24p2) € VI ot B4, jynpr (Ti+

p1)(@ +p3) € VI or Ty iy e (75 + p2) (2 + p3) € VI or T nyme1 (Ts + p1) (25 +
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pa)(x + p3) € VT for some h € {1,2,...,n+1} = {i, 4, 1}. Then (&g n41(zs +
p1)(x;+p2))* € T or (&g 50.m1(2i +p1) (@ +ps)’ € T or (L jaymr (@ + p2) (2 +
p3))? € I or (Zgijunyns1(®i + p1)(z; + p2)(z + p3))® € I for some «, B,7,6 € N.
Since I is a k-ideal, we obtain (Z;,41)* € I or (£,41)" € I or (&1,41)” € I or
(Znny1)® € I. That is 2,41 € VT or Tjn41 € VT or Typg1 € VT or Thnt1 € V.

Subcase 2.2.2: Assume &g ;3 a011° C (1) forall i € {1,2,...,n+ 1} —
{i,7}-

Continue this process, it remains to show the following case.

e A C (1) for all {iy, 49, . .- ipp1—m )y € {1,2,...,n+ 1}

where 1 < m < n. Since I,41 € ¢(I), there exist pi,pa,...,pns1 € I such that

Assume z;, x;,

p1p2 -+ Pni1 & O(I). Then (x4 p1)(xa+p2) -+ (Xpi1+Puy1) € I —¢(I). Since I is
¢-Gn-absorbing, (z1+p1)(Ta+p2) - (Ti1+pic1) (Tig1+Pig1) -+ (Tpp1+Pos1) € VI
for some i € {1,2,...,n+ 1}. Then ((x1 + p1)(z2 + p2) - - (=1 + pim1)(Tip1 +
Dit1) * (Tpy1 + Pug1))® € 1. Hence (Z;n41)* € I because I is a k-ideal. Thus
Tins1 € VI

Therefore, from any cases, we can conclude that I is a Gn-absorbing ideal. []

Corollary 5.1.21. Let R be a semiring, n a positive integer and I a proper k-ideal
of R. If I is a ¢-Gn-absorbing ideal for some ¢ with ¢ < ¢pio such that ¢(I) is a

k-ideal, then I is an m-almost Gn-absorbing ideal for all m > n + 1.
Proof. The proof is similar to the proof of Corollary 4.1.25. m

Corollary 5.1.22. Let R be a semiring. If I is a weakly Gn-absorbing k-ideal but
is not Gn-absorbing, then "™ = {0}.

Proof. Assume that I is a weakly Gn-absorbing k-ideal but is not a Gn-absorbing
ideal. Since [ is a weakly Gn-absorbing ideal, I is ¢o-Gn-absorbing. By Theo-
rem 5.1.20, we have I"*! C ¢o(I) = {0}. Hence I"*! = {0}. O

For the ideal {0} of the semiring Qg and a positive integer n, we know that
{0} = {0} and {0} is an n-absorbing ideal of Qf by Example 4.1.2 (1). Since

every n-absorbing ideal is a Gn-absorbing ideal, it follows that the converse of
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Corollary 5.1.22 is not true.

The next result is similar to the result derived from Theorem 4.1.27.

Theorem 5.1.23. Let R be a semuring with ¢, n a positive integer and I a proper

ideal such that ¢(I) C I. Then the following statements are equivalent.
(1) I is a ¢-Gn-absorbing ideal.

(2) (I:z129--2,) C U;‘Zl(\/f cZin) U (@() : e -+ xy) for any xizo -z, €

R—1I.

Proof. To show (1) = (2), assume [ is ¢-Gn-absorbing. Let x1,29,...,2, € R be
such that 21292, € R—VI. Let y € (I :x29---x,). Then xy29- -2,y € I.
If xyxo-- -2y € I — @(I), then z;,y € VT for some {1,2,...,n} because I is a
#-Gn-absorbing ideal and z12 - - - 2, &€ V/I. Hence y € (\/7 : Tin). Otherwise, we
assume that x5 -+ -2,y € ¢(I). Thus y € (¢(I) : z122 - - - x,,). Therefore,

(I:xzg---x,) C U?zl(\/f CZin) U (O(L) t mpza - - xy).

To show (2) = (1), suppose that (2) holds. Let z1,xs,...,2,41 € R be such
that zyz - xp1 € [ — (). H myzg - -y, € \/7, then we are done. Suppose that

T2y -z, & VI By (2),
(I:xzg--x,) C U?:l(\/f CZin) U (O(L) t mpza - - xy).

Then z,,41 € (I : 129 xp)— (¢() : 129 - - - T,,) because x1x9 - - - Tpyq € T—@(I).
Hence x,,,1 € (\/7 D &) for some i € {1,2,...,n}. Then we acquire &; ,z,41 €

V1. Therefore, I is a ¢-Gn-absorbing ideal. O]

This section is completed by providing the result of ¢-Gn-absorbing ideals of

strongly Euclidean semirings.

Theorem 5.1.24. Let R be a strongly Fuclidean semiring, n a positive integer and
a € R such that ((a)* : a) = (a). Then (a) is a ¢-Gn-absorbing ideal for some ¢
with ¢ < @9 if and only if (a) is a Gn-absorbing ideal.
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Proof. 1f {a) is a Gn-absorbing ideal, then (a) is ¢-Gn-absorbing for any ¢. So we
assume that (a) is a ¢-Gn-absorbing ideal for some ¢ with ¢ < ¢5. Then (a) is ¢o-
Gn-absorbing. We show that (a) is a Gn-absorbing ideal. Let x1,xa,..., 2,41 € R
be such that zyz9 -z, € (a). If 2129+ 2,11 € (a) — <a>2, then Z;,41 € \/@
for some ¢ € {1,2,...,n + 1} because (a) is ¢o-Gn-absorbing. So we can assume
that 2,29 - - T4 € (a)®. Since R is strongly Euclidean, (a) and (a?) are k-ideals.
Now, (21 + a)xg -+ Tpy1 = T1T - Tpy1 + QT2T3 -+ Tpyq € (a).
Case 1: Assume that (z14a)zy - - 2,41 € (a)—(a)®. Since (a) is ¢o-Gn-absorbing,
Tolg -+ Tpi1 € \/@ or (1 + a)Zint1 € \/@ for some ¢ € {2,3,...n+ 1}. If
T3+ Tpy1 € \/@, then we are done. Assume that (1 + a)Zi 41 = T1ZTin41 +
aZint1 € \/@ . Since \/@ is a subtractive extension of (a), we obtain z1Z; 41 €
(a).
Case 2: Assume that (21 +a)zy - 2,11 € (a)” = (a®). Since (a?) is a k-ideal and
T1To+** Tpy1, T1To ++* Tpyp1 +AToT3 -+ Tppy € (a?), we obtain axsxs -« T,y € (a?).
Thus 2973 Zpy1 € ((a)” : a) = (a).
Therefore (a) is a Gn-absorbing k-ideal. O

5.2 @-Gn-Absorbing Ideals in Decomposable Semirings

In this section, Gn-absorbing ideals, weakly Gn-absorbing ideals and ¢-Gn-
absorbing ideals of decomposable semirings are taken care of. Almost all of the
results in this section are parallel to the results in Section 4.2.

The following proposition is parallel to Proposition 3.2.1 and Proposition 4.2.1.

Proposition 5.2.1. Let R = Ry X Ry X -+ X R,,, where m,n € N withm >n+1
be a decomposable semiring and [ = Iy X Iy x --- X I, a nonzero proper ideal of R.

If I is a weakly Gn-absorbing ideal, then I; = R; for some i € {1,2,... ,m}.
Proof. The proof is similar to Proposition 3.2.1 and Proposition 4.2.1. O]

In general, Gn-absorbing ideals implies weakly Gn-absorbing ideals but not

vice versa. Nevertheless, in a decomposable semiring with at least n 4+ 1 compo-



96

nents, weakly Gn-absorbing ideals and Gn-absorbing ideals are coincide if they are

nonzero proper k-ideals.

Proposition 5.2.2. Let R = Ry X Ry X -+ X R,,, where m,n € N withm >n+1
be a decomposable semiring and I = I, X Iy X --- X I, a nonzero proper k-ideal
of R. Then I is a weakly Gn-absorbing ideal if and only if I is a Gn-absorbing
1deal of R.

Proof. Assume that I is a weakly Gn-absorbing ideal of R. By Proposition 5.2.1,
we obtain [; = R; for some i € {1,2,...,m}. Thus I"*! £ {0}. Therefore, I is a
Gn-absorbing ideal by Corollary 5.1.22. The converse follows from Corollary 5.1.18.

O

We obtain from Proposition 5.2.1 that being a nonzero ideal of I and the
condition that m > n + 1 give that there is at least one of I; must not be proper
and it leads us to conclude that weakly Gn-absorbing ideals and Gn-absorbing
ideals are coincide in Proposition 5.2.2. In the next theorem, we assume that
I, = R; for some i € {1,2,...,m}. Hence the condition that I is a nonzero ideal

and m > n + 1 need not be assumed.

Theorem 5.2.3. Let R = Ry X Ry X --- X R, be a decomposable semiring, n a
positive integer and [ = Iy X Iy x -+ X I, a proper k-ideal of R which at least one

I, = R; where i € {1,2,...,m}. Consider the following statements:

(1) 1 is a weakly Gn-absorbing ideal of R.

(2) I is a Gn-absorbing ideal of R.

(3) If I; # R; where j € {1,2,...,m}, then I; is a Gn-absorbing ideal of R;.
Then (1) and (2) are equivalent and (2) implies (3).

Proof. Obviously, (2) = (1).
To show (1) = (2), assume that I is a weakly Gn-absorbing ideal of R. Note
that I"™! £ {0} since I; = R, for some i € {1,2,...,m}. Thus I is a Gn-absorbing
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ideal of R by Corollary 5.1.22.

To show (2) = (3), assume that [ is a Gn-absorbing ideal of R and [; # R, for
some j € {1,2,...,m}. Let z1,2,...,2,41 € R; be such that z129--- 2,41 € ;.
Then
(0,...,0,21,0,...,0)(0,...,0,22,0,...,0) - (0,...,0,20:1,0,...,0)

=(0,...,0,z129 - - Tpy1,0,...,0) € I.

Thus (0,...,0,#n11,0,...,0) € VI = I} X Iy X -+ X Iy = VI x\/Tyx---x /T,
for some ¢ € {1,2,...n+1} because I is a Gn-absorbing ideal. Hence Z; 41 € \/I_]
Therefore, I; is a Gn-absorbing ideal of R;. O]

In Theorem 5.2.3, we show that if I is a Gn-absorbing ideal (weakly Gn-
absorbing ideal) of R, then any proper ideal I; of R; is a Gn-absorbing ideal
of R; where j € {1,2,...,m}. Next example confirms that the converse is not

true.

Example 5.2.4. Consider the semiring R = Z§ X Z§ x Z§ and its ideal I =
30Z¢ x T0Z¢ x Z&. We know that 30Z§ and 70Z; are G3-absorbing ideal of the
semiring Zg. We would like to show that I is not a weakly G3-absorbing ideal of

the semiring Zg . Since

0#(2,1,1)(3,2,1)(5,5,1)(1,7,1) = (30,70,1) € I

but
((2,1,1)(3,2,1)(5,5,1))* = (30,10,1)* ¢ I because 10* ¢ 70Z,
((2,1,1)(3,2,1)(1,7,1))? = (6,14,1)° ¢ I because 6° ¢ 30Z,
((2,1,1)(5,5,1)(1,7,1))” = (10,35,1)" ¢ I because 107 ¢ 30Z; and
((3,2,1)(5,5,1)(1,7,,1))° = (6,70,1)° ¢ I because 6° ¢ 30Z

for all o, 3,y € N. Then (2,1,1)(3,2,1)(5,5,1) ¢ VI, (2,1,1)(3,2,1)(1,7,1) & /1,
(2,1,1)(5,5,1)(1,7,1) ¢ /T and (3,2,1)(5,5,1)(1,7,,1) ¢ V/I. Therefore, we can
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conclude that I is not a weakly G3-absorbing ideal of R, and so [ is not a G3-
absorbing ideal of R.

In Theorem 5.2.3, at least one I; = R; for i € {1,2,...,m} is assumed which
is not the sufficient condition to make (3) imply (1) or (2). In the next theorem,

we assume a stronger condition in order to make (1), (2) and (3) be equivalent.

Theorem 5.2.5. Let R = Ry X Ry X --- X R, be a decomposable semiring, n a
positive integer and I = Iy X Iy X -+ X I,, a proper k-ideal of R with exactly one

I; # R; where i € {1,2,...,m}. Then the following statements are equivalent.
(1) I is a weakly Gn-absorbing ideal of R.
(2) I is a Gn-absorbing ideal of R.
(3) 1I; is a Gn-absorbing ideal of R;.

Proof. Theorem 5.2.3 yields (1) < (2) and (2) = (3).
To show (3) = (2), assume [; is a Gn-absorbing ideal of R;. Let (211, ..., Z1m),

(IL’Ql, . ,Igm), ceey (.I(n+1)1, . ,.Z'(n+1)m) € R be such that

($11$21 T (D)1 ey T2 X (nt1)is - s LimT2m - 'l’(n+1)m) €l

Infact, I = Ry x--- X R;_1 X I; Xx Riz1 X -+ X R,,. Since [; is a Gn-absorbing

ideal of R;, we obtain Zj; (41 € VT; for some j € {1,2,...,n + 1}. Hence

($117 cee ,Ilm) T ($(j—1)17 e 7x(j—1)m)($(j+1)17 s 7I(j+1)m) T (I(n+1)1, e 7'T(n+1)m>
ER X XRi_ 1 XV xRigy X+ xR, = V. Therefore, I is a Gn-absorbing
ideal of R. n

Corollary 5.2.6. Let R = Ry X Ry X --- X R,;, be a decomposable semiring with ¢,
n a positive integer and I = I; X Iy X -+ x I, a proper k-ideal of R which ezxactly
one I; # R; where i € {1,2,...,m}. If I; is a Gn-absorbing ideal of R;, then I is
a -Gn-absorbing ideal of R.

Corollary 5.2.6 shows that if I; is a Gn-absorbing ideal of R;, then I; x Iy x

-+ %X I, is a ¢-Gn-absorbing ideal of R X --- x R,,, but not vice versa.



99

Example 5.2.7. Consider the semiring R = Z§ x Zg and the ideal I = 30ZJ X Z .
Since 2-3-5 = 30 € 30Zg but (2-3)* = 6% ¢ 30Z¢ and (2-5)° = 10° ¢ 30Z{ and
(3-5)7 =157 ¢ 30ZF for all o, B,y € N, ie., 2-3 ¢ \/30Z], 2-5 ¢ \/30Z; and
3-5¢ \/m , it follows that the ideal 30Z{ is not a G2-absorbing ideal of the
semiring Zg. We define ¢ : #(R) — #(R)U{@} by ¢(30Z¢ x Z$) = 15Z5 x Z§
and ¢(J) = J otherwise. Then I — ¢(I) = (30ZJ x Z§) — ¢(30Z$ x Z§) =
(30Z¢ x Z&) — (15Z$ x Z$) = @. Thus the ideal [ is a ¢-G2-absorbing ideal of R.

Let R = R; x---x R, be a decomposable semiring with ¢ and I = Iy x---x [,
a proper ideal of R with exactly one I; # R; where i € {1,2,...,m}. We know
that, if I; is a Gn-absorbing ideal of R;, then I is a ¢-Gn-absorbing ideal of R.
However, if I; is a weakly Gn-absorbing ideal of R;, then I need not be a weakly
Gn-absorbing ideal of R but it must be a ¢-Gn-absorbing ideal of R of for all
b < @ if I; is a k-ideal.

Theorem 5.2.8. Let R = Ry X Ry X --- X R,,, be a decomposable semiring, n a
positive integer and I = Iy X Iy X -+ x I, a proper k-ideal of R with exactly one
I; # R; where i € {1,2,...,m}. If I; is a weakly Gn-absorbing ideal of R;, then I
1s a -Gn-absorbing ideal of R for all ¢, < ¢.

Proof. Without loss of generality, we assume that ¢ = 1. We would like to show
that I = I1 x Ry X -+ X R, is a ¢-Gn-absorbing ideal of R for all ¢, < ¢. Since
I is a k-ideal, it follows that I; is a k-ideal by Proposition 2.1.28. First, sup-
pose that I; is a Gn-absorbing ideal. By Theorem 5.2.5, I is a Gn-absorbing
ideal. Hence [ is a ¢,-Gn-absorbing ideal. So assume that [; is not a Gn-
absorbing ideal. Then I = {0} from Corollary 5.1.22. Consider the ele-
ment (z1,...,0,) € ¢u(I) = N, 1" C [" = (I} X Ry X --+ x R,)"™ C
I X Ry x -+ X Ry, = {0} x Ry X - - - X R,,. We show that [ is a ¢,-Gn-absorbing
ideal. Let (@11, .., Z1m), (21, .- T2m)s - - -5 (Tn41)15 - - - s Tnt1)m) € R be such that
(T11%21 Tt D)1y - - > TimPom T ym) € 1 — ¢u(). Then 11201 - - T(ny11 €
I, — {0}. Since I is a weakly Gn-absorbing ideal, we obtain &1 (1)1 € V1 for

some ] € {1, 2, ce,n+ ]_} Hence ((i‘jl’(n+1)17j\jj2’(n+1)27 Ce 7i'jm,(n+1)m) € \/I_l X
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Ry x---xX Ry, = V1. Thus I is a ¢-Gn-absorbing ideal. Therefore, in any cases, I
is a ¢,-Gn-absorbing ideal, and so [ is a ¢-Gn-absorbing ideal for all ¢, < ¢. [

The following result is parallel to Theorem 4.2.9.

Theorem 5.2.9. Let R = Ry X Ry X --- X R,, be a decomposable semiring, n a
positive integer with n > 2 and I = I X Iy X -+ x I, where I; # {0} for all
i€ {1,2,...,m} is a weakly Gn-absorbing k-ideal. Then I is a Gn-absorbing ideal
of R or I; is a G(n — 1)-absorbing ideal of R; for all i € {1,2,... ,m}.

Proof. 1f I is an Gn-absorbing ideal of R, then we are done. Suppose that [ is not
a Gn-absorbing ideal of R. Then "™ = {0} by Corollary 5.1.22. Hence I; # R;
forall j € {1,2,...,m}. Let j € {1,2,...,m}. We would like to show that I; is an
(n—1)-absorbing ideal of R;. Let x1,o,...,x, € R; be such that zyz5-- -z, € I;.
Let i € {1,2,...,m} be such that i # j, without lost of generality, we assume that
j <. Since I; # {0}, there exists 0 # y; € I;. Then
(0,...,0) #(0,...,0,x129 - - - x,,0,...,0,94;,0,...,0) € I.

Thus

0,...,0) #(0,...,0,21,0,...,0,1,0,...,0)(0,...,0,22,0,...,0,1,0,...,0) -~

(0,...,0,2,,0,...,0,1,0,...,0)(0,...,0,1,0,...,0,4:,0,...,0) € I.

Since I is a weakly Gn-absorbing ideal, 1 € /I; or &, € \/E for some [ €
{1,2,...,n}. Since I; # R;, we obtain 1 ¢ /T;, and hence &, € /I;. Therefore,
I; is a G(n — 1)-absorbing ideal of R;. O

In Chapter IV, we obtain that if I = I; x Iy x --- x I,,, is a proper ideal of a
decomposable semiring R = R; X Ry X -+ X R, with exactly two prime proper
ideals I; and I; of R; and R;, respectively, then I is a 2-absorbing ideal of R. In
the following result, we change the condition that I; and I; are prime ideals to I;
and [; are primary ideals of R; and R;, respectively, then we obtain the similar

result.

Proposition 5.2.10. Let R = Ry X Ry X --- X R, be a decomposable semiring
and I = 1) X Iy X -+ X I, a proper ideal of R which exactly two I; # R; and
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I; # Rj where i,j € {1,2,...,m}. If I and I; are primary ideals of R; and R;,
respectively, then I is a G2-absorbing ideal of R so that I is a ¢p-G2-absorbing ideal.
As a result, this I is a Gn-absorbing ideal of R so that I is a ¢-Gn-absorbing ideal

where n € N with n > 2.

Proof. Assume that I; and I; are primary ideals of R; and R;, respectively. To show
that I is a G2-absorbing ideal of R, let (11, .., Z1m), (T21, .-+, Tom), (31, -, T3m)
€ R be such that (z11291%31, . . ., T1mTamTsm) € . Then at least one of 2, belongs
to I; for some n € {1,2,3} and for some o € N and at least one of :Uf] belongs to [;
for some [ € {1,2,3} and for some 8 € N. Thus (z,;2)* € I; and (z,,;2;,)* € I;.
Hence ((Zn1 - -+ Tom) (@11, o, 21m))*? € I, e, (Tns - oo s T )(T11s - - Tim) € VI
Therefore, I is a G2-absorbing ideal of R so that [ is a ¢-G2-absorbing ideal of R.
Moreover, we can conclude that I is a Gn-absorbing ideal of R for n > 2 and then

I is a ¢-G'n-absorbing ideal of R for all n > 2. O]
The next theorem is parallel to Theorem 4.2.10.

Theorem 5.2.11. Let R = Ry X Ry X -+ X R, be a decomposable semiring and
I =1 x Iy x - x I, an ideal of R. If I; is a Gn;-absorbing ideal of R; where
n; € Zg for all i € {1,2,...,m}, then I is a Gn-absorbing ideal of R where
n=mny+ng+- -+ Ny, so that I is a p-Gn-absorbing ideal of R.

Proof. Assume that I; is a Gn;-absorbing ideal of R; where n; € Z(J{ for all 7 €
{1,2,...,m}. Let n =ny +ng+-- -+ n,,.We show that I is a Gn-absorbing ideal.

Let (IEH, T12, - - - ,.Tlm), (SL’Ql, T22, ... ,Q?Qm), ceey (.I‘(n+1)1, x(n+1)2, e 7x(n+1)m> € R be
such that
($11, Z12y. .. a$1m)($21, T22,. .. 7$2m) T (w(n+1)1, T(n+1)2y- - - 7m(n+1)m)

= (1’111‘21 C T(n41)1, L12222 7 T(n41)2y - - - Limd2m * 'I(n+1)m) el

For each ¢, since I; is a Gng-absorbing ideal, x1;79; - - - T(n41); € I; and n; < n + 1,
we obtain x;,;2, - - - 2, ; € V/I; for some distinct ji,ja, ..., jn, € {1,2,...,n 41}
by Theorem 5.1.2. Suppose that U {j1,j2,- -, Jn,} = {41,755 ---57n}- Thus
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{j1s 7% g} € {1,2,...,n+ 1} and h < n since ny +ng + -+ + n, = n.
Since {ji,j2;-- s Jn} S {1:d5s -0 dn} and wjagic w0 € VI for all i €
{1,2,...,m}, we obtain
TjriZjyi - Tjrq € VT;.
By choosing all distinct 3,1, jhi0s- -5 0n € {1,2,...,n+ 1} = {41, J5s - -5 Jn b
TjiTjgi Ty = (Tga@ige - Typa) (@ 0y i 2ni) € V.

Then we obtain

(g1 Tip2s - s T ) (Tig1, Tig2, - Tigm) ++ (Tg 1, T2, - - -5 Tjm)

= (TiTj1, - Tjgt, TigeTiga Tjgas oo TjtmTgm - Tihm)

e VI 5 x /T = VT.

Therefore, I is a Gn-absorbing ideal of R, and hence [ is a ¢-Gn-absorbing ideal
of R. O

Example 5.2.12. Consider the semiring R = Z§ x Zg x Z§ x Z .

(1) Then 23Zg x 223*Z x 223*53Z$ x Z§ is a G6-absorbing ideal of R because
2274 is a Gl-absorbing ideal, 223'Z{ is a G2-absorbing ideal, 2235%Z is a G3-
absorbing ideal and ZZ is a GO-absorbing ideal of the semiring Z .

(2) Then 22Z§ x 23Z§ x 272§ x 257§ is a G4-absorbing ideal of R because
2274, 2874, 2*7Z¢ and 2°Z§ are Gl-absorbing ideal of the semiring Z .

In the last result of this section, we consider ¢-Gn-absorbing ideals of decom-

posable semirings.

Theorem 5.2.13. Let R = Ry X Ry X --+- X R, be a decomposable semiring, n a
positive integer and ¢ = @1 X pg X -+ - X @y, where each @; : I (R;) — S (R;) U{D}

1s a function. Then the following statements hold.

(1) I x Iy x --- X L, is a ¢p-Gn-absorbing ideal of R where I; C @;(1;) for
all j € {1,2,...,m} and at least one I; is a proper ideal of R; for some
i €{1,2,...,m}.
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(2) Ry X Ry X --+ X Ri_1 X I; X Riy1 X -+ X Ry, is a ¢-Gn-absorbing ideal of R
where I; is a p;-Gn-absorbing ideal of R; which must be a Gn-absorbing ideal

if v;(R;) # R; for some j € {1,2,...,m} — {i}.
Proof. (1) The result follows from the fact that I; x Iy x -+ x L, — ¢(I; x Iy X

ex Iy) = @.

(2) Without loss of generality, we assume that [; is a proper ideal of Ry. If I; is
a Gn-absorbing ideal of Ry, then I1 X Ry X --- X R, is a Gn-absorbing ideal of R by
Theorem 5.2.5. Hence I} X Ry X -+ - X R,;, is a ¢-Gn-absorbing ideal of R. Suppose
that I; is a ¢1-Gn-absorbing ideal of Ry and ¢;(R;) = R; forall j € {1,2,...,m}.
Let (211, Z12, - - -, T1m), (T21, 225 - - -, Tam)s - - -5 (T(ng1)1s Tt 1)2s - - > Tnt1)m) € K1 X

Ry x -+ x R, be such that

(11,125 - - T1m) (T21, 22, - - -, Tam) * (Tt 1)1 Tt )25 - - > Lt 1)m)
= (51311$21 T (1)1, L21X22 0 X (n41)25 - - -y LimL2m " * 5U(n+1)m)
€L XRyX- X Ry —d(l1 X Ry X -+ X Ry,)
=11 X Ry X -+ X Ry, — (p1(11) X p2(Ra) X+ X ©om(Rp))
=1 X Ry X -+ X Ry, — (p1(11) X Re X -+ - X Ryp,)
=1 —p1(l1)) X Ry X -+ X Ry,.

Since I is a ¢;-Gn-absorbing ideal of R, we obtain ' (n41)1 € V1, for some i €

{17 2,...,n + 1}- Thus (51711, T12y - - - ,ﬂflm) T ($(i71)17 T(i-1)25- - - >$(i—1)m)($(z’+1)1,

T(i+1)2 - - - ;x(z’+1)m) T (x(n+1)17 L(n+1)2) - - - ax(n—i-l)m) € VI Xx Ry X --+ X R, =
VI X Ry X -+- X R,,. Therefore, I} X Ry X --- X R,, is a ¢-Gn-absorbing ideal

5.3 @-Gn-Absorbing Ideals in Quotient Semirings and in

Semirings of Fractions

In this final section, we investigate ¢-Gn-absorbing ideals of quotient semirings

and ¢-Gn-absorbing ideals of semirings of fractions.
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Theorem 5.3.1. Let R be a semiring with ¢ satisfying the property (%), n a
positive integer, I a Q-ideal of R and P a subtractive extension of I. Then P is a

¢-Gn-absorbing ideal of R if and only if P/I is a ¢;-Gn-absorbing ideal of R/I.

Proof. First, assume that P is a ¢-Gn-absorbing ideal of R. Since P is a subtractive
extension of I, we obtain P/I is a k-ideal. Let ¢ + I, o+ I,...,qny1 +1 € R/I
be such that (¢1 +I)(ga + 1) (gny1 + 1) € P/I — ¢(P/I). Then qiga- - - gni1 €
P — ¢(P) by Theorem 2.2.19. Since P is a ¢-Gn-absorbing ideal, §; ,+1 € VP for
somei € {1,2,...,n+1}. Then (¢1+1) - - (G101 + 1) (Gir1n1+1L) - - (Gua +1) €
VP/I = \/P_/I by Proposition 2.2.18. Therefore, P/I is a ¢;-Gn-absorbing k-ideal
of R/I.

Conversely, suppose that P/I is a ¢;-Gn-absorbing ideal of R/I. We show
that P is a ¢-Gn-absorbing ideal of R. Let xy,z9,...,2,41 € R be such that
1T+ Ty € P—@(P). Then there exist q1, ¢, . . ., i1 € @ such that x; € ¢;+1
foralli e {1,2,...,n+ 1}. Thus there are y; € I such that z; = ¢; +y; for all i €
{1,2,...,n+1}. Then we obtain (¢14+y1)(ga+y2) - - - (Gnr1+Yns+1) € P—¢(P). Since
P and ¢(P) are subtractive extensions of I, we acquire q1qs - - - gnr1 € P—¢(P). By
Theorem 2.2.19, we obtain (¢1 + I)(¢2 + 1)+ (gns1 + 1) € P/I — ¢;(P/I). Since
P/I is a ¢r-Gn-absorbing ideal, (¢1 + 1)+ (¢i—1 + I)(gis1 + 1) -+ (quy1 + I) €
\/ﬁ = /P/I for some i € {1,2,...,n+1} by Proposition 2.2.18. Then §; 1 €
V/P. Hence Tint1 = (@1 +v1) - (Gi—1 + Yie1) (@1 + Yit1) - - (Gny1 + Yng1) € VP.
Therefore, P is a ¢-Gn-absorbing ideal of R. O

Example 5.3.2. Consider the semiring ZJ. Let P = 20Z¢ and I = 60Z7. Then
P is a G2-absorbing k-ideal of ZJ containing I and [ is a Q-ideal of Z§ where Q =
{0,1,2,3,...,59}. Then P is a subtractive extension of I. Define ¢ : #(Z;) —
I (Z§) {2} by ¢(J) =5Z for all J € F(Z{) where J is a subtractive extension
of I and ¢(J) = {0} otherwise. Since 5Z; is a subtractive extension of I = 60Z,
¢(L) is a subtractive extension of I for al L € .#(R) where L is a subtractive
extension of /. Moreover, we define ¢; : S (R/I) — S (R/I)U{@} by ¢1(J/I) =

(5Z§) /I for each ideal J of R where J is a subtractive extension of I. Hence Zg



105

is the semiring with ¢ satisfying the property (x). Since P s a G2-absorbing ideal,
P is a ¢-G2-absorbing ideal. Therefore, P/I = 20Z§ /60Z{ is a ¢r-G2-absorbing
ideal of the quotient semiring Zg /60Z .

Corollary 5.3.3. Let R be a semiring with ¢ satisfying the property (%), n a
positive integer and I a Q-ideal of R. Then I is a ¢-Gn-absorbing ideal of R if
and only if the zero ideal of R/I is a ¢;-Gn-absorbing ideal.

Finally, we show that if I is a ¢-Gn-absorbing ideal of R under some conditions,

then I Rg is a ¢g-Gn-absorbing ideal of Rg.

Theorem 5.3.4. Let R be a semiring with ¢, S the set of all multiplicatively
cancellable elements of R and I an ideal of R with INS = & and ¢(I)Rs C
¢s(IRs). If I is a ¢-Gn-absorbing ideal of R, then IRg is a ¢s-Gn-absorbing
tdeal of Rg.

Proof. Assume that [ is a ¢-Gn-absorbing ideal of R. Then I Rg is a proper ideal

of Rg because I NS = &. Let —1,—2..., il € Rg be such that Zu2 oAl o

S1 So Sn+1 5189+ Sn+1
IRs — ¢s(IRg). By Theorem 2.3.8, we have x1x9 -+ 2,110 = 21X9 -+ Tp(Tpy1v) €

I —¢(I) for some v € S. Since I is ¢p-Gn-absorbing, x1 - - - x, € VI or &; ,Tp410 €

VT for some i € {1,2,...,n}. Thus L B e VIRg = VIRs or xAi,nanU c
S1°Sn 8inSn+10V
VIRg = v/TRg. Hence —%j’nﬂ € VIRg for some j € {1,2,...,n+ 1}. Therefore,

Sjn+1
IRgs is a ¢pg-Gn-absorbing ideal of Rg. O



CHAPTER VI
CONCLUSIONS

In this dissertation, we introduce many new algebraic objects in semirings and ones
of those important are ¢-primary ideals, ¢-n-absorbing ideals and ¢-generalized-n-
absorbing ideals of semirings. The given concept of ¢-primary ideals of semirings
that sustains the concepts of primary ideals and weakly primary ideals of semirings
that are defined by others. Moreover, the notion of ¢-n-absorbing ideals sustains
the notion of prime ideals, weakly prime ideals, almost prime ideals, 2-absorbing
ideals and n-absorbing ideals of rings which are defined before. In this research,
we find that ¢-primary ideals and ¢-n-absorbing ideals do not imply each other;
nevertheless, all of them imply ¢-generalized-n-absorbing ideals. In our work,
¢-primary ideals, ¢-n-absorbing ideals and ¢-generalized-n-absorbing ideals are
investigated in four categories that are semirings, decomposable semirings, quotient
semirings and semirings of fractions.

In semirings, we can conclude that being k-ideals of I and ¢(/) and the con-
dition that I? C ¢(I) (1" C ¢(I)) are sufficient conditions for ¢-primary ide-
als (¢-n-absorbing ideals, ¢-generalized-n-absorbing ideals) to be primary ideals
(n-absorbing ideals, generalized n-absorbing ideals). Moreover, we observe that n-
absorbing ideals are n’-absorbing ideals for all positive integers n’ > n. This leads
us to consider in the case of ¢-n-absorbing ideals and it follows that ¢-n-absorbing
ideals are ¢-n'-absorbing ideals for all positive integer n’ > n. In addition, we
provide some forms of n-absorbing ideals and generalized n-absorbing ideals of the
particular semiring Zg. The attractiveness is that if whatever principal ideal I of
the semiring Zg is considered, then we can find n,m € N such that the ideal I is
both an n-absorbing ideal and a generalized m-absorbing ideal of Z; .

In decomposable semirings, relationships between ¢-primary ideals (¢-n-absorbing
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ideals, ¢-generalized-n-absorbing ideals) of a direct product of semirings and weakly
primary ideals (weakly n-absorbing ideals, weakly generalized n-absorbing ideals)
of some components of such direct product are inspected. In addition, we obtain
more beautiful results when we find that if [; is an n;-absorbing ideal (a generalized
n;-absorbing ideal) of a semiring R; where n; € ZJ for all i € {1,2,...,m}, then
I =1 x1Iyx---x I, is an n-absorbing ideal (a generalized n-absorbing ideal) of
a decomposable semiring R = Ry X Ry X -+ X R,, where n =n; +ng+ -+ +n,,
so that I is a ¢-n-absorbing ideal (¢-generalized n-absorbing ideal).

In quotient semirings and semirings of fractions, we associate relations between
¢-primary ideals (¢-n-absorbing ideals, ¢-generalized-n-absorbing ideals) of semir-
ings and ¢-primary ideals (¢-n-absorbing ideals, ¢-generalized-n-absorbing ideals)
of quotient semirings and semirings of fractions.

Finally, we present some ideas for extending our results. Since modules are a
generalization of rings, many concepts of rings are naturally extended to modules,
e.g., prime ideals (weakly prime ideals) and 2-absorbing ideals (weakly 2-absorbing
ideals) of rings are extended to prime submodules (weakly prime submodules) and
2-absorbing submodules (weakly 2-absorbing submodules). In addition, now, ¢-
prime ideals of rings are also extended to the ¢-prime submodules. Similarly, a
semiring R is also an R-semimodule. Moreover, semimodules are another gener-
alization of modules and several concepts of semimodules are extended from the
concepts of modules. Therefore, we expect that all concepts in this dissertation

can be extended to semimodules.

Open Problems

As a consequence of Theorem 3.2.9 and Theorem 4.2.14, we gain a characteriza-
tion of ¢-primary ideals and ¢-prime ideals of decomposable semirings with two
components. However, we do not have a characterization of them in decompos-
able semirings with more than two conponents. In addition, from Theorem 4.2.12
and Theorem 5.2.13, we do not obtain a characterization of ¢-n-absorbing ideals

and ¢-generalized-n-absorbing ideals of decomposable semirings. Hence there are
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4 open problems for this research.

(1) What is a characterization of ¢-primary ideals of decomposable semirings

with more than two components 7.

(2) What is a characterization of ¢-prime ideals of decomposable semirings with

more than two components 7.

(3) What is a characterization of ¢-n-absorbing ideals of decomposable semi-

rings 7.

(4) What is a characterization of ¢-generalized-n-absorbing ideals of decompos-

able semirings 7.
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