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CHAPTER 1
INTRODUCTION

Let (X, )nen be a sequence of random variables and S, = Z X;. One common
i=1
objective of different versions of strong law of large numbers (SLLN) is to find suffi-

n — Qp

cient conditions on the sequence of random variables (X,,),en that make
converges to 0 almost surely (a.s.) where (a,)neny and (b,)nen are sequenceg of
real numbers such that b, > 0 for all n € N. It is called the Kolmogorov SLLN
when a,, = ES,, and b, = n for each n € N and it is called the Marcinkiewicz-
Zygmund(M-Z) SLLN if a, = ES, and b, = n» forn € Nand 0 < p < 2.
Therefore the Kolmogorov SLLN is a special case of the Marcinkiewicz-Zygmund
SLLN when p = 1.

For the classical SLLN, the random variables X,,’s are assumed to be indepen-

dent and identically distributed (i.i.d.) random variables with finite first moment

which is stated as follows.

Theorem 1.1. ([8]) Let (X, )nen be a sequence of i.i.d. random variables. If
E|X,| < oo, then

Sn - TlEXl
n

— 0 a.s.

The classical SLLN has been extended into two different directions, relaxing
the dependency assumption and removing the assumption of identical distribu-
tion. For example, Etemadi[7] proposed an alternative version of the SLLN by
relaxing the dependency assumption of the sequence of random variables (X,,)nen
from independence to pairwise independence. Sancetta[l4] replaced pairwise in-
dependence assumption studied in Etemadi[7] by pairwise positively quadrant de-

pendence (pairwise PQD) assumption without assuming the identical distribution.



In Chapter 3, we study the relations of dependence structures and provide
some examples which show their relations.

In Chapter 4, we consider the SLLN with the assumption of the identical dis-
tribution. For example, Kruglov[10] gave the SLLN for pairwise i.i.d. with infinite

means and then Sung[17] proposed the SLLN for pairwise i.i.d. random variables

with general moment conditions (Z P(|X,,| > b,) < oo | where (b,)nen is a se-

n=1
quence of positive constants. Later, Korchevsky[9] obtained the Marcinkiewicz-

Zygmund SLLN for pairwise i.i.d. random variables. In 1992, Matula[13] relaxed
the dependency assumption studied in Etemadi[7] by pairwise negatively quad-
rant dependence (pairwise NQD) assumption. Then the SLLN for pairwise NQD
and identically distributed random variables with infinite means which relaxed the
moment condition of Matula[13] and the dependency assumption of Kruglov|[10]
is proposed by Chaidee and Neammanee[2]. Later in 2014, Shen et al.[16] gave
the SLLN for pairwise NQD and identically distributed random variables with
general moment conditions by relaxing the moment condition of Chaidee and
Neammanee|2] and the dependency assumption of Sung[17]. Moreover, Chen et
al.[5] presented the SLLN for extended negatively dependent (END) random vari-
ables with assuming finite first moment.

In this study, we propose the Marcinkiewicz-Zygmund SLLN for END random
variables which is a generalization of the Marcinkiewicz-Zygmund SLLN for pair-
wise i.i.d. random variables of Korchevsky[9]. Moreover, our result generalizes
the Kolmogorov SLLN for END random variables in Chen et al.[5]. Our result is

stated as follows.

Theorem 1.2. Let (X,)nen be a sequence of END and identically distributed

random variables. For 0 < p < 2, if E|X;P < oo,

S, — nE(X
S nBE) g s

ne
In chapter 5, we obtain the Marcinkiewicz-Zygmund SLLN for pairwise NQD

random variables which is generalized from the SLLN of Chandra and Goswamil[4]



and it also relaxes the identical distribution and pairwise independence assumption

in the result of Korchevsky|[9]. Our result is stated as follows.

Theorem 1.3. Let (X,)nen be a sequence of pairwise NQD random variables. For

0<p<2,if

1 n
(i) sup— Y E|X;| < oo,

neN np i—1

= 1 11 1
(i7) Z — B X, |I(|X,| > n) < oo for some o € <O,min (— - — —)) :

n=1 N? 2’ p 2
S, — ES,
then ——— — 0 a.s.
np

Tables 1.1 and 1.2 shown below explain series of studies in the context of
SLLN and our new contributions for identically distributed random variables and

non-identically distributed random variables, respectively.



pairwise independent pairwise NQD END
Sung(2013) Shen et al.(2014)

> P(IXu| > by) <00 | > P(IX,|>by) < o0

n=1 n=1
4 b, b,
= where — 1 oo where — 1 o0
7 n n
3 Kruglov(2008) Chaidee and Neammanee
)
éﬂ E|X)| = o0 (2009)
g E|X| =

Etemadi(1981) Matula(1992) Chen et al.(2010)
_ Korchevsky(2014) Our work Our work
; E| X1 < o0 E|X1|P < 00 E|X1|P < oo
; for 0 < p <2 for 0 < p <2 for 0 < p <2
(Chapter 4) (Chapter 4)

Table 1.1: SLLN for identically distributed random variables

pairwise independent

pairwise NQD

Kolmogorov SLLN M-Z SLLN
Chandra and Goswami(2003) Our work
1 o 1
sup — E|X;| < oo, sup — E|X;| < oo,
nENn; | | nean; | |
=1 = 1
> —EIXI(1Xa] > n%) <00 | Y S E|IX,|I(|X,| >n®) < oo
n T
n=1 n=1 N7

for some o € (0,

9

for some o € (0, min <

11 1
2’p 2

for0<p<2
(Chapter 5)

Table 1.2: SLLN for non-identically distributed random variables




CHAPTER I1
PRELIMINARIES

In this chapter, we review some basic knowledge in probability and collect some
definitions and theorems which will be used in this work. These can be found in

Chung[6] and Grimmett and Stirzaker[8] .

2.1 Basic Knowledge in Probability

In this section, we review some basic knowledge in probability such as event,

probability measure and random variable.

Definition 2.1. Let  be a set and F be a o-algebra. Let P : F — [0,1] be a
measure such that P(2) = 1. Then (2, F, P) is called a probability space and P
is called a probability measure. The set () is the sure event and the elements of F

are called events.

Definition 2.2. A random variable is a function X : Q — R with the property
that for every Borel set B in R,

{weQ| X(w)eB}eF.
Note that the event { w € Q | X(w) € B } is always abbreviated by (X € B).

Definition 2.3. Let E be an event on 2. A function Iz :  — R defined by

1 ifwekF,
Ip(w) =
0 fwe¢Fk

is a random variable, called an indicator random variable.



Theorem 2.4. Let X be a random variable on a probability space (2, F, P) and f
be a Borel measurable function. Then f(X) is a random variable on a probability

space (2, F, P).

Corollary 2.5. Let X be a random wvariable on a probability space (S, F,P).
Then Xt and X~ are random variables on a probability space (2, F, P) where
X* =max(X,0) and X~ = max(—X,0).

Proposition 2.6. Let X and Y be random wvariables on a probability space
(Q,F,P). Then aX + bY and XY are random variables on (0, F,P) for any
a,beR.

Theorem 2.7. Let (X,,)nen be a sequence of random variables on (2, F, P). Then

liminf X,,, limsup X,, and lim X,, are random variables.
n—>00 N—00 n—>00

2.2 Expectation, Variance and Covariance

In this section, we review definitions of expectation, variance and covariance

and their properties.

Definition 2.8. Let X be a random variable on a probability space (€2, F, P)
and a measurable function g : R — R. The expectation or mean of the random

variable g(X) is defined as
B(9(X)) = [ g(x)aP
Note that E(Ig) = P(E).

Definition 2.9. If k is a positive integer, the k" moment of X is defined as
E(X*). The k' central moment is E[(X — E(X))*].
The 2™ central moment is called the variance of X is denoted by Var(X).

The covariance of X and Y is Cov(X,Y) = E[(X — E(X))(Y — E(Y))].
Remark 2.10. (i) Var(X) = E[(X — E(X))?| = E(X?) — (E(X))%,

(i) Cou(X,Y) = E(XY)— E(X)E(Y).



Theorem 2.11. Let X and Y be random wvariables and a,b € R. Then the

followings are true.
(i) If E(X),E(Y) < oo, then E(aX + bY) = aE(X) + bE(Y) for any a,b € R.
(i) If X <Y, then E(X) < E(Y).

(iir) |E(X)| < E|X].

Theorem 2.12 (Chebyshev’s Inequality). Let X be a random variable. Then for

any t > 0,

Var(X)
2

PX - E(X)|>1) <
Theorem 2.13 (Holder’s inequality). Let X and Y be random wvariables. If

1 1
p,q>1and —+ - =1, then
p q

E|IXY| < (E|X|)7 (E[Y|%)7.

Remark 2.14. In counting measure, for all (z1, 22, ..., %), (Y1,Y2,- -, Yn) € R”
1 1
n n P n q
Z |lziys| < (Z |$i’p) (Z ’yz‘|q> -
i=1 i=1 i=1

2.3 Type of Convergence

In this section, we review type of convergence and its useful properties which

will be used in this work.

Definition 2.15. Let (X,,),en be a sequence of random variables on a probability

space (2, F, P).

(i) We say that X, converges to X almost surely, written X,, — X a.s., if

{we Q] X, (w) = X(w) as n — oo} is an event whose probability is 1, i.e.,

P(lim X, = X) =1,

n—oo



(ii) Wesay that X,, converges to X in probability, written X,, — X in probability,

if for every € > 0,

lim P(|X, — X| > ¢) =0,

n—o0

(iii) We say that X,, converges to X in distribution, written X,, — X in distribution,
if

lim P(X, <z)=P(X <x)

n—oo

for all points € R at which the function Fy(z) = P(X < z) is continuous.

Theorem 2.16. Suppose that X,, — X a.s. and Y, — Y a.s.
Then for any a,b € R,

aX, +bY, — aX +bY a.s. and X,.Y,, — XY a.s.

Theorem 2.17. Suppose that X, — X a.s. and f is a continuous function.

Then
f(X,) — f(X) a.s.

Remark 2.18. Theorem 2.16 and Theorem 2.17 are also true for the convergence

in probability and the convergence in distribution.

2.4 Law of Large Numbers

In this section, we review the concept of law of large numbers.

Definition 2.19. Let (X,,),en be a sequence of random variables on a probability

space (2, F, P) and S, = ZXi' We say that (X, ),en satisfies the strong law of
i=1
large numbers (SLLN) if
Sn — Qp

br

— 0 a.s. asn — oo,

where (a,)neny and (b, )nen are sequences of real numbers such that b, > 0 for all
n € N and we say that (X,,)nen satisfies the weak law of large numbers (WLLN) if

S, — ay,
by,

— 0 in probability as n — oo.



Remark 2.20. We say that a sequence of random variables (X, ),en satisfies the
Kolmogorov SLLN if for every n € N,a, = E(S,) and b, = n and we say that
(Xn)nen satisfies the Marcinkiewicz-Zygmund SLLN if for every n € N, a,, = E(S,,)
and b, = ns for 0 < p < 2. Thus the Kolmogorov SLLN is a special case of the

Marcinkiewicz-Zygmund SLLN when p = 1.



CHAPTER III
DEPENDENCE STRUCTURE

In this chapter, we study the relations of dependence structures which are

studied in SLLN and give some examples.

Definition 3.1. The collection of random variables X, X, ..., X, is called inde-

pendent if for all z; e R,e=1,2,....,n

An infinite sequence (X,,),en is call independent if for each positive integer n, the

random variables X, X5, ..., X,, are independent.

A relaxation of independence was introduced which is called pairwise indepen-

dence. The definition of pairwise independence is given as follows.

Definition 3.2. A sequence (X,,)nen of random variables is called pairwise inde-

pendent if for ¢ # j, any real numbers z;, x;

In 1966, Lehmann[11] introduced the concept of negatively quadrant depen-
dence (NQD). The definition of NQD is stated as follows.

Definition 3.3. The collection of random variables X7, Xs, ..., X, is called neg-
atively quadrant dependent (NQD) if for all x; e Rji=1,2,...,n

P (ﬂ (X; <y ) H
i=1 i=1
An infinite sequence (X,,)nen is call NQD if for each positive integer n, the random

variables X1, Xo,..., X, are NQD.
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The dependency assumption used in some articles is pairwise independence
which could be not applicable in some applications. Therefore relaxations of the
condition were considered. For example, Lehmann|[11] introduced a concept of
pairwise negatively quadrant dependence (pairwise NQD) and pairwise positively
quadrant dependence (pairwise PQD) which are more flexible than pairwise inde-

pendence. The definition of pairwise NQD and pairwise PQD are given as follows.

Definition 3.4. A sequence (X,,)nen of random variables is called pairwise nega-

tively quadrant dependent (pairwise NQD) if for ¢ # j, any real numbers z;, z;
P(X; <z, X; <zj) < P(X; <x;)P(X; < ;)

equivalently
P(X; > 2, X; > x;) < P(X; > 2;) P(X; > ;)

and it is called pairwise positively quadrant dependent (pairwise PQD) if for i # j,

any real numbers x;, z;

equivalently

The following is an example of a sequence of random variables which are not

pairwise independence but pairwise NQD.

Example 3.5. A box contains p balls of p different colors (p > 3). Choose two
balls randomly (without replacement).

Let )?Z-,i =1,2,...,p (p > 3) be a random variable indicating the presence of a
ball of the i color such that

~ 1 if the i*"color is picked,
Xi -

0 otherwise.
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For i € N, let X; be a random variable defined by

X; ifl1<i<p,
X; =

0 otherwise.

For each i, =1,2,...,pand 7 # j,

H&ZL&:U:H£IY<G):PMFUH&:D'

Therefore (X;);en is not a sequence of pairwise independent random variables.

For1<i,7<p, 0<a<1land0<b<1, wehave

p
and for i # j
P(Xi>a,X;>b)=P(X;=1,X,=1) 2
i > a4, X = =1L, A;=1)=
! ’ p(p—1)
Then
P(X; >a,X; > ) 2 < <2>2 P(X; > a)P(X; > b)
i >a, X; =—-=<(=) = i>a i > b).
’ pp—1) 7 \p ’

Therefore (X;);en is a sequence of pairwise NQD random variables.

The properties of a sequence of pairwise NQD random variables are presented

in the following proposition.

Proposition 3.6. ([11]) Let (X,,) be a sequence of pairwise NQD random vari-
ables. Then the following results hold.

(1) Cov(X;, X;) <0 foralli# j;

(i7) (fn(Xy)) is a pairwise NQD sequence for any sequence of monotonically

increasing functions (fn)nen;

(777) (9n(Xy)) is a pairwise NQD sequence for any sequence of monotonically

decreasing functions (gn)nen-
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Remark 3.7. From Proposition 3.6(i7), if (X, )nen is a sequence of pairwise NQD,

then (X;1)nen and (X)) )nen are pairwise NQD sequences.

The properties of a sequence of pairwise PQD random variables are presented

in the following proposition.

Proposition 3.8. ([11]) Let (X,,) be a sequence of pairwise PQD random vari-
ables. Then the following results hold.

(1) Cov(X;, X;) >0 for alli # j;

(ii) (fn(Xy)) is a pairwise PQD sequence for any sequence of monotonically

increasing functions (fn)nen;

(7ii) (gn(X,)) is a pairwise PQD sequence for any sequence of monotonically

decreasing functions (gn)nen-

Remark 3.9. From Proposition 3.8(i7), if (X, ),en is a sequence of pairwise PQD,

then (X" )nen and (X )nen are pairwise PQD sequences.

Proposition 3.10. (/11]) Let X and Y are random variables. Then X and Y
are pairwise NQD if and only if X and =Y are pairwise PQD.

The converse of Proposition 3.6(:) and Proposition 3.8(i) are not always true
such as this following example.

—1 with probability 0.5,
Example 3.11. Let X =

1 with probability 0.5.

—1 with probability 0.5,
fX=—-1letY=0andif X =1,let Y =

1 with probability 0.5.
Then EX = —1(0.5) + 1(0.5) = 0, EY = 0(0.5) + (—1)(0.25) + 1(0.25) =0

and EXY = (1)(—1)(0.25) + (1)(1)(0.25) = 0.
Therefore Cov(X,Y) = EXY — (EX)(EY) = 0.
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Note that

P(X<-1,Y<0)=P(X=-1,Y =0)
=05
> (0.5)(0.25) + (0.5)(0.5)
— P(X = —1)P(Y = —1) 4+ P(X = —1)P(Y = 0)

= P(X < —1)P(Y <0) (3.1)
and

P(X<-1Y<-1)=0
< (0.5)(0.25)
= P(X =—1)P(Y = —1)

— P(X < ~1)P(Y < —1). (3.2)

From (3.1) and (3.2), X and Y are neither pairwise NQD nor pairwise PQD

random variables.

Further extensions of dependence structures in the context of SLLN have also
been considered. For example, Liu[12] introduced the concept of extended neg-
atively dependence (END), which is a generalization of NQD. The definition is

stated as follows.

Definition 3.12. The collection of random variables X7, X5, ..., X, is called lower
extended negatively dependent (LEND) if there is some M > 0 such that, for all
r,e€R1=1,2,...,n

i=1 i=1
It is called upper extended negatively dependent (UEND) if there is some M > 0
such that, for all x; e R,i =1,2,...,n

P (ﬁ(Xi > W) = Mﬁp<Xi > 23).

i=1
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It is called extended negatively dependent (END) if it is both LEND and UEND. An
infinite sequence (X, )nen is call LEND, UEND or END if for each positive integer
n, the random variables X, X, ..., X,, are LEND, UEND or END, respectively.

When M = 1, the END sequence induced to NQD sequence. The following is
an example of a sequence of random variables which are not pairwise NQD but

END.

Example 3.13 (Pdlya’s Urn Process). An urn contains a red balls and b green
balls. A ball is randomly drawn from the urn and replaced back to the urn along
with additional(fixed) ¢ balls of the same color as the drawn ball.

Let X, denote the color of the ball selected at time 7 such that

1 if the i*" picked ball is red,
Xz' -

0 if the i** picked ball is green.

Let n € N. First, we will show that X;, X5,..., X,, are exchangeable, that is
P(Xl = x17X2 = T2y 7Xn = 33”) = P(Xl = mw(1)7X2 = Tr(2)y--- 7Xn = xﬂ'(n))

for every permutation 7(-) on {1,2,...,n} and x1,zs,...,z, € R.

Note that the joint probability depends only on number of events of observing red
balls.

For each n € N, let x1,29,...,2, € {0,1} and k = x; + 29 + -+ + x, where

1<k<n-—1,

P(X1:I1,X2:$2,...,Xn:l'n)
_ ala+c)---(a+(k—=1)c)b(b+c)---(b+ (n—k—1)c)
(a+b)a+b+c)la+b+2c)---(a+b+ (n—1)c)

= P(Xl = xﬂ‘(l)7X2 = Tr(2)y--- 7Xn = xﬂ(n))

That is the variables X7, X5, ..., X,, are exchangeable.

Then for each i =1,2,...,n,

d P(X;=0)=P(X, =0) = ——.
a+ban (X; =0) (X1 =0) a+b
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and for 7 # 7,

a a—+c
P(Xi:1,Xj:1):P(X1:1,X2:1): (a~|—b) (a~|—b+c)'

Therefore for each i # j,

=P(X;=1,X;=1)— P(X; =1)P(X; = 1)

() ) - ()

_a bc

T a+b (at+b)(atbto)
B abe
(a+b)2a+b+c)

> 0.

By Proposition 3.6(i), (X, )nen is not a sequence of pairwise NQD random vari-

ables.

For arbitrary fixed n € N, we will show that X, Xs, ..., X,, are LEND and UEND

random variables. From (3.3), we have that for each i = 1,2,... n,
(
0 it 2; € (—00,0),
b
P(X; <wx) = if 2; €0,1),
a-+b
1 if x; € [1,00).

\
Then we consider P(X; < x1, Xo < m9,..., X, < x,).
Case 1 There exists i € {1,2,...,n} such that z; € (— )
Then P(X; <z, Xy <z9,..., X, <x,)=0= ﬁP(Xi < ).
Case 2 For alli € {1,2,...,n},z; € [1,00). A
Then P(X; <1, Xo <a9,..., X, <x,)=1= ﬁP(Xi < z).
Case 3 There exists a nonempty subset A of {1,2,... ,ni:éuch that for all 7 € A,
z; €10,1) and for all i ¢ A, z; € [1,00).

Since the variables X; and X, are exchangeable, we can assume
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without loss of generality that z1,xs,..., 2 € [0,1) and

Tht1s Thy2s - - - Ty € [1,00). Then

P(X1 S[IZ‘l,...,Xkak,XkJrl §$k+1,...,Xn§xn)
=P(X1=0,..., X, =0,X¢:1 < 1,..., X, <1)
=P(X1=0,...,X;,=0)

B b b+c b+ (k—1)c

" \a+b) \a+btec a+b+ (k—1)c

e b+ (i—1)e
:Ha—l—b—i—(i—l)c

=1

where M,, = =1 and we use the fact that

b+ kc S b

a+b+kc a+bd
From the above 3 cases and the fact that M, > 1, X;, Xs,..., X,, are LEND

for all k£ € N in the first inequality.

random variables.
Similarly, we can show that Xi, X5,..., X,, are UEND random variables by

choosing

n

a+ (i—1)c
Ha+b+(i—1)c

=1

M'I’L_ n
a
(a+b)

Hence X1, X, ..., X, are END random variables where




n n

a+ (i—1)c b+ (i —1)c
Ha+b+(i—1)c Ha+b+(i—1)c

i=1 =1

) Gh)

M, = max

18

The properties of a sequence of END random variables are presented in the

following proposition.

Proposition 3.14. ([12]) Let (X,,) be a sequence of END random variables.

the following results hold.

(i) For each n € N, there exists a constant M > 0 such that

Then

(i7) (fn(Xy)) is an END sequence for any sequence of monotonically increasing

functions (fp)nen;

(77i) (9n(Xy)) is an END sequence for any sequence of monotonically decreasing

functions (gn)nen-

Remark 3.15. From Proposition 3.14(i7), if (X,)nen is a sequence of END, then

(X, )nen and (X, )nen are END sequences.

n



CHAPTER IV
STRONG LAW OF LARGE NUMBERS FOR
IDENTICALLY DISTRIBUTED RANDOM VARIABLES

Let (X, )nen be a sequence of random variables. We define S, = Z X;,

i=1
SE=>) X' and Sy => X, .
i=1 i=1
In 2014, Korchevsky[9] obtained the Marcinkiewicz-Zygmund SLLN for pair-

wise i.i.d. random variables. His result is presented as follows.

Theorem 4.1. (/9]) Let (X,,)nen be a sequence of pairwise i.i.d. random variables.
For 0 <p <2, if B|X1]P < 0o, then

ne

— 0 a.s.

In this chapter, we propose a relaxation of dependency assumption in Korchevsky|[9]
and derive the Marcinkiewicz-Zygmund SLLN for END and identically distributed
random variables. To obtain this result, we follow the techniques in Chen et al.[5].

We first restate a definition of infinitely often and a lemma of Chen[5] which

are used in the proof of our result (Theorem 4.4).

Definition 4.2. Let (A, )nen be a sequence of events. Then

{A, i.0.} =limsup 4,, = ﬁ D A

n—o0 n=1k=n

is the event that an infinite number of the events A,, occur. The 7.0. stands for

“infinitely often”.

Lemma 4.3. (/5]) Let (X,,)nen be a sequence of END and identically distributed

random variables with mean 0 and a dominating constant M > 0. For arbitrarily
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fizred 0 < v < 1, define for each i =1,2,... and x € (0, 00)
X; = —val(X; < —vx) + Xl (—vx < X; < vz) + vzl (X; > va).

Then for everyy > 0,0 < §d <1 and0 < 0 < 1, there is some xy = xo(v,7,0,0) >0

such that for alln € N and x > max{yn, zo},

1-6
v

~ 1
P(|S,| > x) <2M ((—5/ ly|" P F(dy) + veP(|X,] > vx)) ,
V) ly|<vz

where gn = Z)ZZ and F denoted the distribution of X;.
i=1
Our result is stated as follows.
Theorem 4.4. Let (X,)nen be a sequence of END and identically distributed
random variables. For 0 < p < 2, if E|X;P < oo,

nr

— 0 a.s.

Proof. For 0 < p < 1, it was completed in Sawyer[15]. It remains to prove the

case when 1 < p < 2. For this case, it suffices to prove that both

St — S— —nu_
”—%—)Oa.s. and#%()a.s.

ne ne

hold where p, = EX; and p_ = EX|.

For arbitrary fixed v > 0 and n € N, we define for each 1 <p < 2,7=1,2,...,n,

X =— vn%I(Xi+ — < —vnr) + (X — p)I(—vnr < X —py < un?)

2,n

+ vn%[(X;r — g > vn%)

and S = Z )?fn
i=1
Then we follow the proof of Theorem 1.1 in Chen[5] as follows.

Let € > 0 and « > 1 be arbitrarily fixed.
1—-46

(Y

By Lemma 4.3, with suitable chosen 0 < v < 1 and 0 < # < 1 such that =1,

there is a positive integer ng = ng(v, €, 6, 0) such that for all n > ny,

S+ 1 ~ 1 1
Pl|—%|>€) <2M - / yI" T (dy) 4 venr P <|Xfr — | > venp) ,
ne (ven® ) Jiy|<ven®

(4.1)
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where F* denotes the distribution of X" — py and M is a dominating constant

such that M > 0. Then

log(a—1)

max{|log, no|,— | “foaa— log o 1}
S B S|

n=1

St ")
i T > 6)
Lam|»

) §+
SR > (=
log(oc I)J}

n=max{|log, no|+1,1—|

La"J

lam]|» »

log(ar — 1)
log I}

SRR PR (-
log(oc I)J}

n=max{|log, no]+1,1—|

< max{|log, no|, — | ———

From (4.1), for n > max{|log, no| + 1,1 — [ 8=l |}

log «
P( o7 >e>

[an]
1

<2M [— / I E (dy) + vl PP (1 = ] > veLa”Ji)] .
(velan]?)d Jly|<velan P

Then

S+

> o

n=max{|log,, no|+1,1- &=L |}

o)

1 ~ - 1
<oy ——— | oy UTE ) 4 200 3D 0 2P (X — jas] > velo”)
y|<vela™| P

n=1
o0 1 N
<MD —— / LY FT (dy) | + 2Mves,
w1 (vea 7)0 Jiy|<velan]?
2M = 1 -
= e 5 / L y"PF T (dy) 4+ 2MueS,
1 n
('UEO( P ) n=1 (Oép> ly|<veaP
2M
= —— 21 + 2Mwveds, (4.3)
(vea® )?
o 1 0o 1
where Sy =3 [ R, B = 3 0" P (17 el > el )
n=1 (()45) |y‘<”€0lp —

and we use the fact that "™ < |a"] < o™ for a > 1.

D=
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By (4.2) and (4.3),

P12 o ) < masflion, mo)— 250Dy 4 2 o e,
Za 1 o
Lan og o (vea )°
(4.4)
Note that
o) 1 =
X = Z n 5/ n |y|1+6F+(dy>
n=1 (O&E) lylsvea®
o 0 1 a
-/ > | W)
> n:maX{LlOga Li‘)pp}
o0 ad 1 i
S/ Z W ly|" O F Tt (dy)
—00 n=max{1,|log, (Lilppj}
o 1 g
/oo afmax{l llog,, (\;J!)pj} (1 B O{*%) ’y| ( y)
ve)? R
< | )_g / ly|F* (dy)
Il—a»J-o0
= K E|X{ — py
. (4.5)
5
where K; = (ve) 7 > 0and
l—a»

1
[\

I
(]
=~
S

s =
i)
—
>

|

=
+
v

S

™

S
e
N—

o:o1 N 1 [(a—1)a™"1] 1
SZ L(a—l)JomlJ Z P<|X+—,U+|>ve<|_a" 1J+z)5>
= o) (o=
=2 - Do P(IXF = P > (ve)? ([o" 1] +1))
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[(@—1)a"~1]

S ey X POXE s e (Lo )

n=1 i=1

< 1Y P (X — pal? > (ve)Pn)

n=1
= Ky,E M !
ve
K
= (’UE)pE|X1+ - /'L+|p
< 00, (4.6)

for some a constant Ky > 0.

From (4.4) — (4.6), we can show that

> e) < 0. (4.7)

Hence

SE;nJ = o] py
Lam|?
o+

Slan)

> € i.o.)

P <
o an o+
<P ( | > € i.o.) + P <SLO‘nJ Ll s #+ SWLJI i.o.)
Lo ] Lan]? Lo ]

) §+ oo [a”] _
: Lo ] : + +
< lim P (U (— > )) + Jim P U (6 e # X))

n=m

m—0o0

o0 S+n o0 L
< limsup Z P (ﬂ > e) + lim sup Z la™ | P (Xi — fhy > ULa”ﬁ)
=0

where in the last step the convergence of the first series is from (4.7) and the

convergence of the second series can be verified in the same way as (4.3).

Then

lim Sf;nj — o™y

n—o0 LanJ %

=0 a.s. (4.8)

For every positive integer n, there is a unique positive integer £, such that



24

lafn=l] <n < [ab]. Thus for 1 <p <2, Lakn_lﬁ <nb < Lak”ﬁ. Therefore

St —nu,y < Sf’_aknj = [aF sy

TL% - Lakn_lJ%
_ lakn | —szvknj — la* | sy N (La* | = |akn=1]) gy
lakn=1 |5 | Lok |7 ] |akn=1]>
kn % N — | akn 7 i 1 kn,
< LCY J . Lakn | Ll J + +LaknJ1 > LO( _J 1 "
Lakzn—lJ; i LaknJ; | Lakn lJ
and
Sp — Nt > szykn—lj — [a* s
ne | akn |7
_ Lkt |5 [ Sy = Lab ™ s ] . (lok=1) = ok ]) py
LaknJ% I Lakn—w% | Laknﬁ
k13 [ST 0 — [akn ] B -
:\‘Oé Jl Lak J I‘ - J + +LaknJ1 p<L04k J_l)u+
Lok bt o]

It follows from (4.8) that

[a*]' "7 (1 — a)

.Sy : St —n 1
o < hmlnf"—l'qu < hmsup"—lmr < Laknjl P(a—1)py

o n—00 np n—00 np
St—n
Since « is arbitrary, we have that lim "—1/” =0 a.s.
, .S, =
By the same technique, we can show that lim —————— =0 a.s.

n—oo D

Then the proof is completed. O



CHAPTER V
STRONG LAW OF LARGE NUMBERS FOR
ARBITRARY PAIRWISE NQD RANDOM VARIABLES

There are some extensions of SLLN considering a sequence of random vari-
ables (X,)nen which is not necessary to assume identically distributed random
variables. For example, Chandra and Goswami[4] proposed the SLLN for pairwise
independent random variables without assuming identical distribution. In this

chapter, we consider the SLLN for non-identically distributed random variables.

Let (X, )nen be a sequence of random variables. We define S, = Z X;,

=1
SE=>) X' and Sy => X,
=1

i=1 =
First, we recall a Kronecker Lemma which is used in this chapter.

Lemma 5.1 (Kronecker Lemma). (/6]) Let (x,,)nen be a sequence of real numbers
such that an converges. Then we have for all 0 < by < by < bg < ... and

n=1

b, — oo that

1
7}1_{205;()1171 = 0.

5.1 Marcinkiewicz-Zygmund SLLN for Pairwise NQD Ran-

dom Variables

In the begin of this section, we obtain the Marcinkiewicz-Zygmund SLLN for
non-negative random variables with EX,;X; < EX;EX; for all i # j by using the
technique of Chandra and Goswami[4]. Our result relaxes the identical distribu-

tion and pairwise independence assumption studied in Korchevsky[9] and it also
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generalizes the Kolmogorov SLLN of Chandra and Goswami[4]| by considering the
SLLN when b, = n» for any 0 < p < 2.

For proving our main theorem, we first recall a theorem and introduce an

inequality which are used in the proof of our result.

Theorem 5.2. (/3]) Let (b,)nen be a sequence of positive constants with b, T co.

Let (X,,)nen be a sequence of non-negative random variables with finite Var(X,,).

Assume that

1 n
(i) SUp = E EX; < oo,
i=1

neN Un

(ii) there is a double - sequence (pij) of non-negative real numbers such that

Var(S,) < ZZpl],

=1 j=1
< Py
(ii1) ZZ (max(bs,5,))? < 00.
=1 j=1 b
S, — ES.

Then b—n — 0 a.s.

n

Lemma 5.3. Let (a,)nen be a sequence of positive real numbers. For each j € N

and p >0,
> Qg 2 1 T
Z — < — Sup — ay
k=j k» Ve meN mr 1
Proof. For each n € N, let A,, = Z ap and S = sup ar.
—1 meN mp —1

By Abel’s summation formula([1]), for any positive sequence (b)ren such that



b, > by for all k € N
Z agby = by An + Z A (b, — by1)
k=j k=j

S n%anS + Z’f%S(bk — bk—i—l)
k=j

= n2byi1S + [J7 (b = bju1) + (G + 1) (bjsr — bjya) + -+
+(n = 1)7 (by1 — by) + 17 (by — bp11)] S
= 770 + (G + 1) = jo)bj + (G +2)7 — (G +1)7)bjya

H oo (np — (n—1)9)b,] S.

1
Choose b, = — for all k£ € N. Then

n 1 (.+1)l s 1 ( 1>;

a P — 9P ne —(n — P
Z_];S _l+%+..._|_ ’ S
iy kP Jr (4 1)» nr

B 1 1 1
1 J+1Dr—g» nr —(n—1)»
i N e S 1|9
J? jr(i+1)r (n—1)rns
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]

Theorem 5.4. Let (X,,)nen be a sequence of non-negative random variables sat-

isfying EX;X; < EX,;EXj foralli# j. For 0 <p <2, if

1
(i) sup—leXi < 00,
neN np i—1

- 1 11 1
(i) Y —EX,I(X, >n%) < oo for some a € (O,min (5,]3 - 5))
n=1 N?

S, — ES,,
Zn 2P0 L0 as.

Then

nr
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Proof. The argument proceeds essentially along the same steps as in the proof of

Theorem 2.1(b) in Chandra and Goswami|[4].
For each i € N, define ¥; = X,I(X; <i») and T, = ¥  ¥;. Then

i=1

S,—ES, T,—ET, ET,—ES, 1 <& 1
—n = o 1 + > XX > ir).  (5.1)
nr nr ne (-

To prove the main result, we will show that each of three terms on the right side
of (5.1) converges to zero almost surely.

The convergence of the second term follows immediately from the assumption (i7)
and the Kronecker Lemma(Lemma 5.1), that is

n

1 1 1
—(ET, = ES,) = —— g EX;I(X;>i») — 0 asn — oo. (5.2)
ne nr ;4

To prove the convergence of the third term, we notice that

ip(xn £Y,) = iP(Xn > nr)

<> nTEXn](Xn > nv)
n=1 P

[e.e]

This implies that (X,,)neny and (Y, )nen are tail equivalent.

1
Hence Z X, I(X,, > nr) converges almost surely.

n=1
1 .1 1
By Kronecker Lemma(Lemma 5.1), — Z i» X;I1(X; > i») — 0 a.s. This implies
ne =1
1 < 1
— Y XJI(X;>ir) — 0 as. (5.3)

ne =1

The last step in proving this theorem is to show that

1
— (T, = ET,,) — 0 a.s.

ne
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To this end, we will show that (Y},),en satisfies the three conditions of Theorem

5.2 stated below :

n

1
a) sup — EY; < o0,
( ) neN n% ZZ:;

(b) Var(T, Z Z Pijs

XY
i=1 j=1 (max(ir, jr))

where pi; = [Cou(Y,, ;)]

First, we see that (a) and (b) are clearly proved as the followings.

n n n

1 1 1 1
sup — EY;, =sup — EXI(X; <ir) <sup— EX, <
neN np ; neN n% ; ( ) neN n% ;
and
Var(T, ZZCOU 5 Y;) < ZZ[COU(Y},YJ»)]J“.
i=1 j=1 i=1 j=1

Then it remains to prove (c).

Note that
oo 00 i 00 B oo 1—1 i
DD o=y w2y Yy (5.4)
i—1 j—1 (max(ir,j»)) i=1 7 i=2 j=1 U7

To prove that the first term on the right of (5.4) converges, we notice that

o0
i=1 ¢

\m|b

bS]

i=1 7
o o0 1
EXI(X; < i)+ Y 5 EXZI(i* < X; < ir)

2
i=1 P i=1 P

o0

— 1 1 ,
- < g - ) .o <t
Z s DX < )—l—zl_;EXZI(z < X; <ir)

ig(;_ +Z CEXGI(X; > i)

i=1 0 i=1 ”

< . (5.5)

IN

IN




30

For the second term on the right of (5.4), since X,,’s are non-negative with

EX;X; < EX;EX; for all i # j, we can show that

= [Cov(Y;, Y))]"

= [E(Y}Y;) - EY;EY}]"

< [E(X:X;) — EY;EY;]"

< [EX;EX; — EY;EY;]"

= EX,EX; — EY;EY;

= (EX; — EY;)EX; + EY,(EX; — EY;)

— EX;EX,I(X; > i7) + EV;EX;I(X; > j»)

< EX;EX,I(X; > iv)+ EX;EX;I(X; > j»).

Thus,
oo 1—1 oo 1—1 oo 1—1
DD = ZZ CEX,EX,I(X; > ir) +ZzlEXEXI(X > j7).
i=2 j=1 i=2 j=1 Zp i—2 j—1 1P

(5.6)

Finally it remains to show the convergence of the two terms on the right of (5.6)
which will be proved as follows.

The first series follows

oco 1—1 00 7
1 1 1
> —EX;EX:I(X; > i7) < (-E EX)—EXI(X > iv)

2 1 1
i=2 j=1 P i=1 \!? j=1 ir
1 «— =1
< |sup—+ ) FEX, —EX;I(X; > i)
neN np =1 i—1 1P

< 00. (by the assumptions (¢) and (7))
(5.7)
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For the second series, we apply Lemma 5.3 as follows.

i LEX.EX,I(X; > j3) ZEXIX>;pZ LEx,

2
i=2 j=1 P i=j+1 “’

<ZEX[X > j7) 21 sup — L - ) EX;

Jp neN np i—1

n

2(sup — ZEX Z EXIX > §%)

neN np i—1
< 00. (by the assumptions (i) and (7))
(5.8)
By (5.6) — (5.8), we have
oo 1—1
Y'Y < (5.9)
i=2 j=1 “’
Combining (5.4), (5.5) and (5.9), Z Z pzf +—— < 00.
i=1 j=1 (max(iz, j7))>?
By Theorem 5.2,
1
— (T, = ET,,) — 0 a.s. (5.10)
nr
- K
It follows from (5.1) — (5.3) and (5.10) that Sn—lSn — 0 a.s. O
ne

From Theorem 5.4, we can replace the condition of random variables from
non-negative random variables with FX;X; < FX;EX; to pairwise NQD random

variables. Then we obtain the following corollary.

Corollary 5.5. Let (X,)nen be a sequence of pairwise NQD random variables.
For0<p<?2,if

(i) sup — ZE|X| < 00,

neN np i—1

(i) Z_E|X [I(|Xn| > n®) < oo for some o € (O mln(l 1—1))7

n=1 N? 2p 2

then Sn_—lESn — 0 a.s.

np
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Proof. By Remark 3.7, (X, ),en and (X, )nen are sequences of pairwise NQD.
By Proposition 3.6(1), EX;"X;” < EXEX} and EX; X7 < EX;EX;. By
conditions () and (i) and the fact that F|X;| = EX;" + EX;, we can see that

1 < = 1
sup — ZEXZjE < o0 and Z —EXFI(XF >n") <o
neN np i=1 n=1 NP

Therefore the sequences (X;),en and (X, ),en satisfy the conditions of Theorem

5.4. Hence the almost surely convergence holds for S and S, and therefore for

Sp. The theorem is then proved. O

Remark 5.6. If we replace the assumption (ii) of Theorem 5.4 by the weaker

assumption
1 11 1

(17") ZEXIX > %) — 0 asn — oo for some a € | 0, min -—=11,
"p i=1 2 p 2

then the asymtotic result reduces to convergence in probability, i.e. ——— —0

np
in probability which is called Marcinkiewicz-Zygmund WLLN. The proof follows
Chandra and Goswami[4] directly.

5.2 Generalization of Order

In this section, we consider the rate of convergence for the SLLN when (X, ),en
is a sequence of pairwise NQD random variables.
We first introduce these following lemmas which are used in the proof of our

main result of this section.

Lemma 5.7. Let (a,)nen be a sequence of real numbers such that for any r > 0,

, (a1 +as+ - +a,)?
inf  a; > —n" and Z (@ 2 5 ) < 0o for some § € (0,00). Then
1€{1,2,....,n} = n

n
a; 4r+5—3

e 4
=1

Proof. To prove this lemma, we can follow the proof of Lemma 11 in Sancetta[14].

o0 .« . 2
Since E (a1 + az +5 ) < oo and the Kronecker Lemma(Lemma 5.1), we
n
n=1
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1 n
have that — 5 (ay +ap+---+a)> —>0 as n — oo. By Holder’s inequal-
n
=1

1 n n 2
ity(Remark 2.14), for each z; € R, 7 Z x; < (Z $f) . Then
n
i=1 i=1

1 « 11 &
JE— a+a ++aZ:_ R a_|_a ++al
na-gl i:1( 1 2 ) TL% (ﬁ ;:1( 1 2 ))

S

1
1 n 2
< — a1 +ag+ - +a;)
= g(Z(l 2 ))

i=1

1 n
= (EZ(CM—FCLQ—F"'—FCLZ‘V)
=1

M=

— 0 asn — oo. (5.11)
Define t,, = Z a; and w,, = Zti‘
i=1 i=1
For k € N,
n+k n+k
Z (ti —tn) = Z (Gng1+ -+ a;)
i=n+1 i=n+1
>(—(n+k)")+(=2n+k)")+ (=3n+Ek))+ -+ (=k(n+ k)"
—(n+k)k(k+1)
- 2
> —k2(n + k)"
and
n n—1
Z (tn —t;) = Z (@41 + -+ an)
i=n—k41 i=n—k+1
>(—(n+k)")+(2n+Ek)")+ -+ (=(k=1D(n+k)")
—(n+k)"k(k—1)
n 2
> —k*(n+k)".
Therefore
n+k n+k

Wosk — Wy = Y ti— Kty +kty =Y (t;—t,) +kt, > —k*(n+ k)" + kt,,

i=n-+1 i=n-+1
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and
Wy — W= B ti—kty+kty= Y (ti—t,) +kty <K (n+ k) + kt,.
i=n—k+1 i=n—k+1
Then
— —(n — —(n
nk —n nk n
Define

o, = max |w;| and k, ==k =14 |\/0,]

1<i<2n

where |0, ] is the integer part of o,.
From (5.11), we have that for ¢ = 1,...,2n, w; = Z(al +Fag) = o(n%).
o+1 6+1 h=t

Then o, =o(n"z ), k, = o(n 1 ) and % = 0O(1).
Thus

M < 20, N kn(n + k)"
n ~ nk, n

n
a; 4r46-3
HenceE —=o(n 1 ). O
— n
—

Lemma 5.8. Let (X,,)nen be a sequence of random variables. Assume that
i Var(X, + -+ X,,)
n=1 n5

Then for any r > 0,

< oo for some § € (0,00) and i-n1£<Xi — EX;) > —ooc.
1€

S, — ES,

n

4r+6—3
4

o(n ) a.s.

Proof. We prove by following Lemma 9 in Sancetta[14] and use the result from

Lemma 5.7. O

Theorem 5.9. Let (X,)nen be a sequence of pairwise NQD random variables. If
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sup B|X;| < oo
ieN
and

Var(X Xn
ar 1+ o )<oof0rsome(5€(0,oo).

n=1

Then for any r > 0,

S, — ES,

n

Proof. Note that X; = X — X and |X;| = X" + X

Also, we see that

Var|S,| = Var(SF) + Var(S;) + 2Cov(S},S;,) (5.12)
Var(S,) = Var(SH) + Var(S,) —2Cov(S7,S.). (5.13)

By (5.12), (5.13) and the fact that Var|S,| < Var(S,,), we have

Var|S,| — Var(S,) = 4Cov(S;, S ) <O0.

n n

This implies that Cov(S;7,S) <0 and Var(S;) + Var(S,) < Var(S,).

n? n

Therefore

Var(XiE+ -+ XF)
> < o0.

n=1
Following the proof of Theorem 2 in Sancetta[l14] and applying Lemma 5.8, we get

n n

S, — ES 1

On T 7on X —EBEXH S (X7 - EX
- - (2( ; ) ZZ;< : Z>>

4r+4§73

=o(n ) a.s. O
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