. . :":;_ I. ..} 5: o
CHADTNR %I A
AN S

T L K .

Lo T : 4

A METHOD FOR FINDING A MAGIC SQUARE OF AKY ODD OiER

We ghall first begin our nethod by discussing a
problem from a Gextb bcokq and then find the additional
conditions which added to the soclution of the problem

provide a method for finding = magic sguare of any odd order.

2.1 Consider a sguare divided up into n2 sgual oguares.
fumber the columns of small sguares “1; 2, ...., 2 Irom the
left to right. Similarly number the rows 1, 2, ....,n from
the bottom to top and let {c?r} denote the suall square

th

in the ¢ column and rth o,
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Let s bogcg? A be pesitive integers less then or
equal to n and euch that a, b, a, A are relatively prime
%o n; i.2 (a,n)=(b,n)=(wx,n)=(g,n)=4; whers {x,¥) denctes
the greatest common divigor of x and ¥,

Urite 1 in square {éoﬁbeso Then count s columng
to the right and b rows up from this square. If thie
tekes you outside of the large squarve count as if the
large squere were bent into a cylider. Thus you will
arrive at aﬂ+a9bﬂ+b} or {%D+amn?bﬂ+b} or {ﬁ0+a?bﬂ+b—n}
or {ao+a=n9bo+bmn.}g whichever is actually one of the small
sguares. Yrite 2 in this square. Count a to the right
and b up from 2 and insert 3 in that cell, Continue
until you have written in 1, 2, Qoo glle

Ye shall prove that m will have been written in
{xmgym} where x and y_ are vniquely determined by

X, = aﬂ+a(m~1) (mod n), 1= &n

‘m

Yy = b0+b(mm1) (mod n), 1 & Jgp &0y 1 4m <,

Proof, Considar the columns

o
Xp = 8,48 Or a +a-n = a +a {mod n) = a0+a(2_1) {mod n)
Xz = a_+2a or a +da-n = a, +2a{med n) = aﬂ+a(5—ﬂ) {mod n)
Xy = a,+3a or a_+3a-n = ac+3a(mod n) = an+a{4“1} {mod n)
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ind therefore, in general we can wirite

I
I

Xy E ao+a(m=1) {mod a}, 1 & X, € 33 e m & n.
oimilarly for the rows

Tp = b +b(m-1) (mod n); 1 ¢ Jp 203 Tam<n,

Now supposa that ve can also 'mite £ in the form

Xy = a +ek (med n), 1+ k £ n.

Therefore, ao+a(mm1}

It

a_+ak (mod n)
0 *

orT al{m-1) = ak (mod n),

And, since (a,n) = 1, we get
(m=1) = k (mod n).
That is X, ig uniquely determinsd by
X, £ ao+a(m=ﬂ) {mod n), 1 & £y & Do
- And. alse gimilarly for T

Yp = b0+b(m=1) (mod n}, 41 ¢y &n; 1&mntn,

2.2 ‘e shell shew that all these cells {xﬁ,ym& ece
different but that continuving the proczss one morec gEep
would put n+1 in {aogbo} which is already occupied by 1.
Proof. dupposs thet there exiets the number ¥ in the

cell {xmgym& as well as m. Yhis implies that

ao+a(km1)
and bo+b(km1)

a0+a(mwﬂ) (mod n)

h

bo+b(mmﬁ) (mod n),

which implies thav kX = m.



That is all these cells {amgymk arg diffarent.
But when the number is n+4 we have

Xpeq = acfa(n+1=ﬂ) {mod n}

=.e_+an (mod n) = &, (moé n},
Tpaq = ha+b(n+1~ﬂ) {(mod n)
= b +bn (mod n} = b, {(mod n},
which is slready occupied by 1.
3. E. D.

2.3 HNow having resched {écﬁbﬂﬁ againg count « Ho tho

Tight and £ up and write n+d in this cell. uvhich Hay or

may not slready be occupied. Then vevert %o the originat
process with step a, b to imsert n+2, N+3,: ses0y 20, Continuc
in this manner, using the cxtra s5ted x5, o Juet for nt,

2

2n+15000005 (n=1)n+1; and sbtopping when n° has been inserted.

Then for 4 & m £ ng we shall prove that m dis in [xﬁﬁym%

w1 £
ao+a(mm1)¢=¥[~£r= (mod n), 1+ X £ n

where X

¥y = b0+b(m~1)%-ﬁ[951] (mod n), 1 &y = i
and. {Eﬁi} is the quotient omitting say remainder when
n is divided into m-1.

Proof. For the columng we have

¥, = aﬂ+a{me1) (mod n}, 1% m %n,
x, = g ra(m-1)e= (mod n), m+i1 4 m~ 2n
Xy = a va{m-1)+2« (mod n), 2n+1 £ m &£3n
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Therefore in general we c¢an uwTite

X, = aﬂ+a(mu1)+i[%1j (mod m}, 1 ¢m=n",
Similarly for the rows we can writve
Yo = +b(m 1)+—ﬁ[= ] (mod 1), 1 £m 4 ngg

where [Eiil 15 the quotient omitting any remainder when
N is divided into m 1.

G fue D,

2o e shall now prove that if (ag-b«,a} = 41 then easch

cell convains one and only one integer m, 1 £ m < nE.

Progf. ©BSuppose that the pumbers k and m are inserted in

the same cell { Ec Then we bhave

ao+a(m~1)+ {—11] = a +a{ g WJJ-H[Eﬁi] (mod n)
Or am+ﬂ3[ . ] = {Eﬂi} (Mod L) sswowes(1)
and bo+b(m=-’l)+ il [m"% ] b +b(k-’l)+ o {5}-'1-1} {mod n)
or ° bm+ﬁ['-r—uf- J bL+,3[-=“--- (mod n}esvo...(2),

Multiplyiang (1) by B we obtain:

aﬂm+dﬁ[£§1] T E %gk+dﬁ[k 1 (mod n)iesussa3),
Multiplying (2) by « we obtain:
bemsdp (221 = bekas{E0] (mod mYe......(4).
Subtracting (4) from (3) we then bave
agm=bam = apk-bek (med n)
or (ga=be)m z (as=ba)lk {mod. n)

This implies that m = k (mod n) if {(ap--b«,n) = 1.

-



Multiplying (1) by b we obtain:

abm + bed {E'ﬁg;l] = abk + ba [;%1] {mod n) ...(5}

Multiplying (2) by a we obtain:

abk <+ af%[ggi] (med n} ...{(6)

aM1+aﬁ[%§J

Subtracting (5) from (6) we then have
(aps - ve)[E1] (ap~ va)[E21]  (moa n)

ol
If now (&p - b4,n) = 41, this congruence shows that

m

m end k lie between the same two multiples of n, For

since the walues of {E%l] amg [5§1J rangs -hetween 0 and

k-1

0 ] {mod n} is also an

n--1 the congruence [Eﬁi] = [
equality. DPut if m and k lie between Ghe same two multiples
of 0, m = k (mod n) is also an equality giving m = k.

That is if (ap . bd,n} = 1 then sach cell contains

net more than one integer m, 1 £ m = nEa

Furthermore, since there are altogsther n2

cells,
end since all the numbers from 1 to n® have been inserted,
each in a different cell, every cell contains at least

one number.

Q? E'J Dh
2.5 From now on we shall assume (ap - by,n) = 1,

Write m=1 = gn + 5, 0 £ 5 2 n=1,
Consider the number m which we inssrt in the cth

column m = qn + 5 + -
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Since 1 & n & neti we have 0 € q £ n-1,

How for this cth column e have

n+g
¢ =a, + a{qn+s) + [5-3—-] (mod n)
an+am1+as+d[@%] (mod n)
*a +as +dq (mod n).,

From which we have
8% = ¢ = 8, ~agq (mod n)

That is the entries in the cth column are just the

W =gn + 3 +1 for vhich 0 £ g & n-1, 0 ¢ 5 = n="1; and
a8 z ¢ - a_ -dg (mod n).
Similarly for the rth row we have:
bg = r - by u/aq (mod n).
2.6 Ye shall prove that im each column and in each rovw

there is one and only one s for each g and that each s

is distinet from all the others.

Proof. Consider the relation as z ¢ - a  ~agq (mod n).

The values of ﬁ5 8,349 © aTe given or ceu be fixed,

If the value of q is also given, the right bend side of

this relation is therefore like an erbitrary constant.

Hence the relation reduces to the form of congruenceas of

degree 1 as: as = K (mod n), where K is an arbitrary constant.
Now since a is relatively prime to n, s has exactly

one valueeg

“Ibid .29,

r—_



oimilarly for zach given value of S We Ccan asnow that
qQ has exmctly one value.

That is thers iz one and only one s for each a.

Now suppose there exist two different numbers m, say
M, 50, in any row or any column whoge corresponding vwalues
of 8 are the same. This implies that the values of a
corresponding to o, and My also are the szme, for there ia
one and only one value of 8§ for each valig of -q in any row
or column,

Therefore, we can write

o, gn+5+71

qu+s+1

T2
Thig implies L, = oy which contradicts our assuviplion

that m, and m, are different.

Therefore each s must bs distinct from all the otheral

in each rov and in each columm. Lo
Q. ¥W. 1.

2.7 e shall show that the sum of the numbers m in the

- n{n®+1

th =1

¢ c¢olunn = £ gn+ ¥ g4n = =
qg aQ - &

to the sum of the numbers m in a row.

“ end That this is equel.

Froof. Since in each column q and s vary from O to n=1,
and there ie one and only one 5 for each g, and each s

is distinet from all the others, i% follows that the. sum

th

of the numbers m in the ¢ column is



=t

-t
Y gn+ I B4m
Ara Fcd

[D+n+2n+;nu+(n-1)n} - [O+1+E+¢UG+(nu1)]+n

-j. E:_(qn+s+1)

n{1+2+. 0. +(n=1}] + Lﬁ+2+,..+(n—1)+nj
n{n-1)n a%lﬂ).,

N 2
Similarly for the sum of the numbers m in 2 row we

2
Eet p%ﬂlg

(e B. D,
How since E&E;til is independent of ¢ and r, the
sums in each row and in each column are the gamg, and the
square arrsy of integers has ths macic square property in

hoth columns and rows.

2.8 A% this point we shall call the square array of integers
wWhose sums in each row and in each column &re egual =
QUASI-MAGIC SQUARE. We have seen that the initial Bquare
{aogbo} is subject to no conditione., "he only essential
conditions for making the square array of integers 2 quasi-
magic square are that a, b, « p s Ajc0a are relatively

prime to n, where a, bgd.gﬁ ; I are positive integzers as

id 2.1
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.G /e shall now show that the conditions in 2.8 ¢an not
be fulfilied if n 1is even.,
Froof. If n is even, a, b,« ; p must be odd, fer
(a;n}) = (byn) = (2,n) = (a,n) = 1,
Then ap must alse be odd
bx must also be cdd

and therefore g5--b« must be even,
Hence the condition {gs-ba,n} = 1 does not held.

5o that the condifions in 2.8 can not be fulfilled

if n is even.

We can note that for odd nm the values a = b = o0 = 1,
A = 2 always give a ~quasi-itagic square.
( This gompletes. the.eolution of the problem referred

toe at the beginning of this chapterd.

2,10 Ve ehall now find the conditions that make both
djagonals of the square have the same sum ae =ach row and
each column, which is equal to Ei%ﬁill_

Congider the relations in 2,5 which give

aEEG=ao“‘mq (de n)u'nwnioilviiliiﬂ(q)

be

Hi

I“"‘bo""lﬂq {!Tlod. _n)oonooacso ------- (2).1
Since in the ascending diagonal (bottom left to top

right}, ¢ is equal to T in each cell. By subtracting (2) -
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from (1) wa get
{a-b)s = bﬂ=ac=(d-u}3)q (mod n) ccas..(3).
And in the descending diagonal (top left to bottorn
right), the sum of ¢ and r is equal to n+1 in each cell,
Therefore by adding (1) and (2) we get
(a+b)s

1]

1~aﬂ~b5~(q*+;1)q (mod n} »e0..(4),

The sum of the n numbers m = nq+s+1 in both diagoneals

2

will be equal to l(-’lgiﬂ)- if § ¢ and ¥ s are equal to
EL%:il as in 2.7,

:There are two possiblc ways in which ¥ q and ¥ s
can be equal to Eigijln Either g and s run through the
integers from O to n-1 as in 2.7, or q and s remain constant,
The later case is possible if q and 5 are equal %o Ll

We may consider the values of q and s in the central
cell, which is the common cell of both diagonals, for these
two possible ways of choosing values for. g and s, 1in both
diagonals. There are four possible cases for the values

of g and s in ths central cell. NO0oLE

These four possible cases are as follows:

2.1 Casg T. Both values of q and s are constant equal

y
to 551 in the centrel cell. This is poscible for either
one of the following:

(i}. In one diagonal we hold the value of g constant

gqual %o E%i while the value of s runs through the integers

L ABAATOA0
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from O to n-1, and in the other diagonal we hold the value
of 5 constant equel %o 251 whila the value of q runs
through the integers from O to n-1,

(ii). We hold the value of g constant whilz the
valus of s runs through the integers from 0 to n-=1 in one
disgonel; and g and s both run through the integers from
Q0 to n-1 in the other diagonal.

(iii). Ye hold the value of s constant while the
value of q rung through the integars from C to n=1 in one
diagonal; and g and s both Tun through the integers from
0 to n-1 in the other diasonal.

{iv}. Both walues of gq and s run through the integers
from O te n=1 in beth diagonels.

Poepibilities {ii), (iii) and (iv) will be considered
in ths other caees. In (i) we can find the comditions for
the starting cell by substituting the value Eﬁi for ¢
and 5 in (3) end (4). VYe get

EaDmEbo

Ll

ah.‘.q"—ﬂ (m‘:‘d n)onnnoa¢(5>

Ll

2a_+2b, = atbidig42 (mod NYevaceas(B)e
hdding (5) and (6) we get

2&0 = a'l'ti"'q (I]'.I.Olﬂ n)nagaug(ﬂi)b

Subtracting (5) from (&) we have

EbO

S0 we have (4) and (B) as ths essential conditions

it

b+4+1 (mod 1) c.eeel(B).

for making both diasonals magic. These ere the conditiona

for the s)arting cell in camse I.
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In constructing a magic square of any odd order, ve
therefore choose a; b, « ; 3 such that (a,n) = (byn) = fe,n)
= (p,n) = (ag=bd,n)} = 1 and start at {aﬂ,bﬂig where
2a = a+d+] (mod n) and 2b, = b+ (mod n), puthing 4 there.
Then folleowing the procedure given in 2.7, w¢ get &z =apic square.
sxample 1. In constructing a ?th order magic square
we may choose a = 1, b = 1, o« = 2, 2 = 5, these savlsiy tThe
conditions (a,n) = (b,n) = @,n) = (a0} = (gp-t=,n) = T,

Ye Ghen determine the starting cell as follows:

2a, = M2+ = 4 (mod 7)
or a, = 2
axd Ebﬂ = 1+5+1 = 0 (mod 7)
or b, = 7

Therefore by starting with 1 in the cell {2=?I ang,

fellowing the process in 2.7 we have the magic sguars below,

391 14149 (30| 43| 101 28
7| 18 | 29 | &7 9 | 27 | 38

47 | 35 1 46 B | 26 | 37 6

A4 1 45 1| 25 36 5 16
Ho| 13 24 | 42 4 | 15 23

12 1 23 | 41 51 21 | 32 | 43
22 | 40 2] 20 31| 4% | 11

Figore 2.2 A magic squave of order 7.
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.12 Case II. The value of g is constant equal to Eﬁi
and the value of s may be any one of the integers from O
to n-1 in the central c¢ell. This is possible if we assign
the values of q and 5 as in (ii},. (3iii) and (iv) of casg I.
We will conmsider (i1ii) and {iv) in later cases. Here we
shall discuss (ii).

Consider the relations (3} and (#), With g constant
in one diagonal the value of gq will run through the integsrs
0 to n=1 along the other diagonal if (« i}E) are ralatively
prime te n, For if (o i;i) are relatively prime to n, there

3

will be exactly one value” of q for one value of 5. And

since s has n different values, therefore q also has n

different values. So the conditions that (« iﬁi) be Telatively
prime to 1 are necessary in this case.

Yow consider the central cell. By substituting the

value of q = E%i in (%) and (4) we met
2{a-bls = EbD=EaG+(d ~f8) {mod n) escacll)
2{a+b)s = 2m2a9~2b0+(ﬁJ+fg) (med n) ....{I1).

Adding (I) and (II) we have

EaD = +~2as (M0d N)ecoaons(C).

Subtracting (I} from (II) we get
Ebﬂ = ‘1+ﬁ="2b$ (mﬁﬂ. n)uiana:n(n_}u
We now have (C) and (D)} as the conditions for the starting cell,
Now since the value of 5 can take n different values,

e have n starting cells. Therefore if we chocse‘gﬁﬁgin such

bt e . i i

Dickson, L.Z. Modern Elementary Theory of iumbers.

(Eh;cago;. The Univereity of Chicasp Fressq 1950}, p-15.



8 way that ﬁli;& ere also relatively prime %o n,; we can
find n different magic squares according to the n differsnt
starting cells from conditions (C) and (D).

Notice that every set of values for a, b 3/3 that
satisfies case Il alsc satisfies case 1. The difference
between case II and case I is that thers ie only one starting
cell for case I but there are n starting cells for cagel.
bo, thers is one magic square for each set of values for
a, b,« ;5 of case IT that satisfies case I. This occurs
when the starting cell of case I is the same as that of

case I, which ig when:

14l =288 = a+ 4 +1 (mod 1)
145 -2bs = b+ 3 +1 (mod n)
or when 25 = =7 {mod mn).

Example 2. If we choose a="1, h=1, #=6, 4=5 in
constructing a magic square of order Y. WWe can ses that
not only (agn)=(b?n)=(#gn)=(p9n)=(qﬁubﬁgn)=ﬂ but also
("ifﬁgn)=1o Therefore these choices satisfy the conditions
of cage II. 8o we can determine the starting cells from
(C) and (D) and get 7 starting cells which ar=z {?53} .
{*L’:':.S.F_"}ﬁI {5.}1},, {il-,;?}g {:;';96}3 {235}9 {Igip}ﬁaccording ag the
the values of 8 are 0, 1, 2, 3, &, 5, 6.rcspectively.

Hence we can find 7 different magic squares by starting
with these 7 various starting cells and a=1, b=1, #:65;3=5
the same way aa in the previous example.

Note that when 23 = -1 (mod 7} or & = 3, the magic

squere which starts at {45?} alsc satisfies cmse I,
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2.13 Cage IIT. The value of s is constent squal to E;i

and the walue of ¢ may be any one of the integers from O
to n=1 in the central cell. This is possible if we assign
the values of g and 5 as in (ii), (iii) and (iv) of case T.
e will not consider (iv) now but in the next case.
Posaibility {(iii) is similar to (ii) in case II.
He find that this case occurs if the selected values of
a and b such tbhat alb are also relatively prime %o n.
By substituting the fixed value of s, which ie equal o "5,
in {3) and (4) we get the following conditions for the starting

CEllSn

n

an "|+B.==2¢ﬂq (lei n)nqvuuv:>l>(-=:)

Ebﬁ

I

1+b-23q {mod D)owscaane(FJ,

Becaupe the value of g has n different values from
0 to n-1, we get n different starting cells from (i) and (F).
Therefore when we choose a, b in such a way that a’ b are
alse relatively prime to n, we can find n different magic
squares according teo the n starting cells cobtained from
the relations (E) and (F).

This is similar <o case II in that every set of
values for a, b, « s b which satisfies case III also satisfies
case I, This occurs when 2q = -1 {mod n}.

Lxample 3. We may construct a ?th grder magic sguare
by choosing a=2, b=1,4 =1,8 =1. Thess satisfy the conditions
{a,n) = (b,n) = @ ,n) = (ﬁin) = (ap-bd,n) = 1 and also
(a:bqn) = 4, So that we can obtain 7 starting cells from

(E) and (¥), which are {59*1}? f,71, {3 6}, {g 5} jl‘ 4}
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{2,3}, {6.2} according ae the values of g are 0, 1, 2,
2, 4, 5, & respectively.

Thersfore we can find 7 different smagic squares
from this set of values for a, b, & and /3 and ths magic
square that satisfies case I 1is the ome that has {EgB} as
the starting cell.

Hote that as we choose the set of values for a, b, « 2 3
in case III such that a, b?’*?f39 a5-bd and afb are relatively
prime %o n there will be some sets of valuea for a, bggigjg
sucb that 4 I 4 are relatively prime to n too. Thess sets
of values for a; b,« , 4 will also satisfy case II. OSimilarly,
as we choose the set of values for a, b,« »p 10 case IT
such that a, bya s p, %ﬁmbagufifiare relatively prime to n
there will be some sets of veluves for a; b,« , 43 such that
a*b are relatively prime to n too. ‘These sets of values
for a, b, , n of case II will also satisfy case IIT.

These sets of values belong to case IV which we shall congider next.

2,14 Case IV. The values of q and s in the central cell
o¢cur in pairs such that there is one and only one value

of 5 for each.value of q and such that each 5 is distinct
from all the others. This is possible only if the values

of q and 8 both run through the integers from O to n~1 in
both diagonals as (iv) of case I. Here we know nothing in
advance about the values of g and s in the central cell. 80
in this case we cannot proceed in the same way as in thei . -
three previoue cases. However, we can go back to consider

the relations (3) and (4) from 2.40:
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{a-b)s

i

b ~a -{(%* -8)¢ {(med n)
{a+b)s

i

qmaﬂmhﬂ”(g + o (mod n),
As in the proof of cases IT and TII, possibility (iv)
will cccur if and only if atb andd ip are relatively prime
to n. B¢ the conditions axb a.nﬂ.,riﬁ be relatively prime to n
are neccessary in this case. If it is so, we can see thal the
values of a, and bD are subject to no conditions. Hence the
only additional conditionsg foxr case YV other than (&,n)=(b,n)
=(dun)=(psn}=(aﬁmbdgn)=1 ars that feib,n) = W tp;n) = 1 too,
Notice that the initizl cell {aoﬁbo} is subject tc no
conditions when we choose a; b;« ;f in such a way that (o;n)-
{bgn)=(dgn)=(p5n)=(aﬁwbdgn)=(afbgn)=(a ngn)=ﬂ as in case IV,
So we cen find n2 different magic soueres Ifrom one such set
of values for a, b, , p by starting at any of the nE celly.
Note that every set of values for a, b?d.$p of casg IV
also satiefies cases IT and ITI and of course of cass I too,
Therefore of the n2 magic sguares in case IV n: satisfy case IT
and n satisfy case III, and there is cne magic souers vhich
in addition to satisfies cases IT end ITI also satisfies casec I.
Example 4. If we chooge a=2, b=1, #=lt, @ =5 for
conatructing a magic square of order 7. e can see that this
set of values for a; b,# ; 3 satisfies all the conditione of
case I¥. Bo we may start at any cell and the square will
always be magic. The magic squeres which start at {a?éig{#9g}°
{Egﬂ}g{bgg}g{595}9{3$5}g{ﬁg#% also belongs to case II, and those
start at {55:"1%9 7 3, {%5} s {E"g?} s 563 {_6?#!'} s {2, € also belongs
to case 1II, One of which sfartsat{@}?} bzlongs to every cassz.
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2.15 We can summarize all of the four cases as follows:

Case I. If we choose a set of values for a, b,« , 2
in such a way that (a;n) = {(b,n) = (4,n} = (gn) = (agbe«,n) = 1,
we can find one magic square by starting at {augbn}g where

Eac A+t (mod n)

Ebo

Case II. If a set of values for a, h,« , p &lso satisfies

i

h+ﬁ+ﬂ (mod n).

the conditions («*g,n) = 1 in addition to those of case I,
we can find n magic squares by starting at {aogbnﬁa whers

an

Ehu

1+d=2as (mod n) .-~ "

1+p-2kg (mod n), s varying from O to n-1.
One of these magic squares belongs to case L.

Cagse III. TIf we choose a set of values for &, b, « » [
in such a way that (aib,n) = 1 in addition to the conditions

of case I, we can find n magic sguares by starting at {aogbo}

in

where 2a J+a-24q (mod n)

Ebﬂ

Hr

1+b~2gq (mod n), q varying from 0 to n-1,
One of these magic squares belongs to case I,

Cage IV. 1If a‘'set oi values for &, b, ; A also satigfies
the conditions (a’byn) = (« Zpn) = 1 in addition to those of

- 2
case I, we can find n

maglc squares by starting at any cell,
Of these squares n helongs to case II, n belonpgs to case IIT,
and There is one which belongs to cases I, IT.and III.

Note that the conditions in caeses II, III, IV cen never
be fulfilled if the odd n is 3 or when thz odd n conteins e

factor 3. For if a2 and h are relatively prime to 3, asb

and a=b cannot simultanecoualy be relatively prime to 3,
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