CHAFTER I1

LITERATURE REVIEW AND THEORETICAL CONSIDERATIONS

The meaning of plasticity

—

Plasticity is a science describing the behaviour of solid bodies
(metal or alloys) in which they deform permanently under the action of
external forces, whereas elasticity is the behaviour of solid bodies in
which upon removal of the load they returm to their original shape.
Actually, the elastic body is an idealization since all bodies exhibit
more or less plastic behaviour evem under smallest loads. For the so
called elastic body, however, this permanent deformation caused by small
loads is so small and can be neglected for practical purpose. Plasticity
theory thus concerns itself with situations in which the loads are
sufficiently large so that measurable amounts of permanent deformation

occur.

Classes of plasticitx

The theories of plasticity fall into two categories; PHYSICAL
THEORIES (Structure of metal) and MATHEMATICAL THEORIES,

The physical theories seek to explain why metals flow plastically
and what happens to the atoms, crystals and grains of material by loocking

at materials from a microscopic view point.



The mathematical theories, on the other hand, attempt to formalize
and put into useful form the results of macroscopic experiments, without
probing very deeply into their physical basis.

The Tormer theories interest the metal physicist or solid-state
phyeicist, while the latter are the main subject for the structural and
machinghdesignar. However, in order to understand the limitations so
imposed on the theories, the engineer must have some knowledge of the
siructure of a metal. Alternatively, the metallurgist must have some
knowledge of the mathematical theory if he is to understand the require=

ment of the engineer.

The Conventional Stress Strain Curves in Simple Tension

The nominal stress is defined as the load divided by the original
cross sectional area of the bar, and the conventional or engineering
sirain as the extension per unit original length. The stress-strain
shape varies between the curves represemted by Fig. 2a and 2e¢, according
vo material, composition mechanical and heat treatments, and methods of
t;ating (the size and shape of the specimen) and recording of load and
extension. i

Flg. 2.17a shows the stress-strain curve of a material having a
coarse grain, Examples of this type of material are cast iron and concrete.

Fig. 2.2b represents a typical curve of a hot rolled structurel

steel, containing approximately 0.2 per cent carbon. The material is

elastic up to point A, kmown as the upper yield point; and further
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(a) Stress-strain curve (b) Typical stress-strain (c) Stress-strain curve
of brittle material i.e. curve of hot rolled " of metal or alloy which
cast iron, concrete etc. structural steel contain- does not exhibit pro-
ing approximately 0.2 % nounced yield stress.
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Fig. 2.1.= Typical stress-strain curves.

siraining is accompanied by a sudden drop in stress marked B on the
diagram and known as the lower yield stress. The values of the upper
and the lower yield stress vary depending on the rates of application
ofhmamdﬂeﬂmﬂmaswnaathaﬂﬂuyﬁlmﬂm.me
B to C the initial plastic zones spread under a constant stress. After
C the load increases with strain up to D where knecking begins. The
portion CD is called strain hardening or work hardening owing to the
fact that the material is able to withstand a greater load despite the
uniform reduction in cross gectinnal area. From D to fracture, the
stress 1s no longer uniform; it indicates the state of instability due
to the formation of a kneck at E which gives rise to a triaxial tensile
stress system.

For most metal and alloys, the ;hanga from purely elastic to
elastic-plastic deformation is gradual, otherwise the stress-strain
diagram have the same form, Fig.2.7c. In such cases the proof stress,
the stress which will cause a permanent strain equal to a specified
value is established instead of yield stress. This proof stress finds

no application in the mathematical theories.
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Idealization of Stress Strain Curves; Theirs Empirical Formulas

and Dymamic NModels

N

z*-""'(.

.._'_/

llany attempts are made to idealize the stress-strain ralationa1-
2
Some examples of them as well as corresponding dynamic models are
1
given as follows

(1) Perfectly elastic body. For small value of strain as

usually seen in elastic design, the siress-strain relation is represented
by a straight line having a slope of tam B (Fig. 2.2a). This effect is
analogous to a spring system where the deflexion of the spring is
proportional to the applied force. The stress-strain relation can be
expressed mathematically as ;

¢ = RBg

(2) Rigid perfectly plastic body. In applications where the

plastic strains are very large as compared with the elastic strains, the
siress-sirain relation is represented as shown in Pig. 2.2b. The block
shown in Fig. 2.2b. produces the same relation as it is subjected to

dry friction and can only move if the force exceeds a certain amount.
The stress-strain relation can be expressed ag

¢ = d

1
W.R. Osgood "Stress Strain Formula", Journal of the Aeroneutical

Science, Vol. 13 (January,1946), pp. 45-48.

Ew. Johnson and P.B. Meller, Plhstici+y for Mechanical Enginecrs

(London; D. Van Nostrand Co., Inc., 1962), pp. 15-22.
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These two elementary principles lead to other formulization.

(3) Rigid, linearly strain hardening body. The stress-strain

curve of this system (Fig. 2.2¢.) may be applied to cold-worked
materials and gives an especially good fit for "half-hard" aluminium.
¢ = O+ Ee

S
(4) Elastic, perfectly plastic body. This system gives a good

fit for mild steel where strain hardening is not taken into consideration,

ﬂ:e=‘n d = Ee

E?EQ o = dﬂ

(5) Elastic, linear work hardening body. This system (Fig. 2.2e.)

is a common method of approximation the true stress-strain curve by
using two or more linear expressions between stress and strain.
DEes= €, g = Eg
L
& 7E€p ¢ = dG+E(E-E¢}

(6) Elastic, plastic and linear strain hardening body. The

stress-strain curve of this system is illustrated in Fig, 2.2f., If
neglecting the strain hardening line, the stress-strain curve has the

game shape as shown in Fig. 2.2d.

“ofede, ¢ = E€
€, = €2 rég ¢ = d,
L]
€ »Iép ¢ = Oy +E (€=1r€,)

(7 Ludwikls expression (Fig. 2.2g.)

o = Ty + He® 0=n=1
Where H and n are constants,
The above expression is applicable when the elastic strains in

an analysis may be safely neglected. When n = 1, the expression is the
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case shown in Pig. 2.2¢. Again when O, = 0, the curves are as given

in Fig. 2.2h.

(8) Power expressiocn (Fig. 2.2h.)

This expression should not
be used for small strains.

g = qF” - or,

’ ¥
0 = ke,

P

Where, € = mnatural or logarithmic strain
¥,mK = constants

(9) Other expression,

Voce' 8 expression : d = A+ (B=A)1=-e)
n

Swift' s expression : a = C(A +€)

Prager' s expressin : g - Ytanh{%?}

Where, e = base of natural logarithmic
E = elastic modulus

A, B, C, ¥, n = constants
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Theory of EBElastic=Plastic Bsnding

/
General asaumgtions.

The assumptions made in the followning theory are ;

(1) Compression and tension are the same.

(2) Plane transverse sections remain plane and mormal to the
longitudinal axis after bending,

(3) The effect of shear is negleoted.

(4) The crosse section of the beam is symmetrical about an axis
through its centroid parallel to the plane of bending.

(5) Every layer of the material is free to expand end contact
longitudinally and laterally under siress as if separated from the

cther layar?

General theory of elastic-plastic bending.

Consider the idealized curve of stress-strain as shown in
Fig. 2.3a. as general, since the stress-strain shapes in Fig. 2.3b.

and 2,3¢, are its particular cases.

3 a
G.H. KazeCullough "An Experiment and Analytical Investigation

of Creep in Bending", Trans ASME, Vol. 55 (1933), APM 55-9, pp. 55-60.
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Fig. 2.3+ - Representation of stress-strain curves.

For emall couples, the entire fibres of the beam is elastic. The
stress and strain distributiom is shown in Pig. 2.4a.

y< v, ¢ g croee (1)

Yo

When the couple is increasad some of the outmost fibres strain in

elastically while the central portion is still elastic. Pig., 2.4b, shows

the stresses in the overstrained fibres equal to a constant value of

-Yg'-"i y = rﬁ’o a = U& eesse  (2)
¥ r ¥ Y
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(a) Stress and strain (b) Stress and strain (¢) Stress and strain
distribution in the distribution in the

distribution in the

working state. elastic-plastic state. elastic-plastic-strain

hardening stata,
Fig. 2.4. = Distribution of stress and strain across the beam sgection
which is subjected by a couple Il.
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With further increase in couple, the stress and strain

dim:ribufian is shown in Fig. 2.4¢.

h
WD{F._:' - d = 6;{1 -pr+ﬁz} sanba {3)
2 ¥o
?l
where Jﬁ = -
E
The resistin mmﬂauﬂhﬁjﬁ

I r___ b —
R [ Th, [======| lstrain hardened
M ‘f: - M Z}E‘D." RN plastic
C ——neufral — . f—-——) h ¥ v - T elastic core
axis !If’ l N
(a) Stress distribution. - (b) Rectangular cross section.

Fig. 2.%c. = Distribution of stress across the rectangular beam,
(modified)

To evaluate the resisting momen$ M, it is assumed that the beam

is subjected by a couple U which causes compression above the meutral

4;,F. Baker, ll.R. Horne and J. Heyman, The Steel Skeleton,

Vol., 2 (Cambridge : Cambridge University Press, 1956 ), p. 18.

5
A. Nadai, Theory of Flow and Fracture, Vol. 1 (New York :

UleGraw=-Hill Book Co., Inc., 1950), pp. 364-=365.

6
P.B. Seely and J.0. Smith, Advanced Strength of Material

(2nd. ed.; New York : John Wiley and Soms, Inc., 1955), pp. 527=543.

0003395
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axis and tension below the neutral axis and that the ¢ross section is

rectangular.
From statics Sﬁdﬁ = hSi%y =0 ceeee (4)
A R
h'l.
deﬂa - bjbyﬂy - N veeee (5)
A th,

The above two equations state that the sum of the internal
forces over the entire cross section reduce to a couple equal to the
bending moment M.

Since the stress strain in itension is the same as in compression,
therefore, the neutral axis lies coincidentally with the centroidal

axis. And thus the elastic-plastic resisting moment can be taken as ;

1 Yo Iy Ve
.é- M = dgbyd;r + jdub:fd}' + 6'pb3’d3 seses (6)
o E. r}"n

Substituting equations (1), (2) and (3) into equation (6) :

E2

N =

23 N

!Ber-pr) -1 -pe’y 4 2

|

2
Wnere M (= -%?E ) denotes the bending moment at first yield

o,

2
and °¢(=T§ ) the ratio between the depth of the elastic core and the

full depth of the beam,

Tor the particular case of an elastic, perfectly plastic body

(Fig. 2.3b) the resisting moment is :

114

M= 23 =) eeen (8)

Vhen o = 0, known as the FLASTIC HINGE, the whole cross section
of the beam is plastic and the carrying moment is 50 per cent greater

than the maoximum elastic moment.
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Now, consider the material which the stress strain relation is
approximated by two straight lines (Fig. 2.3c.). The resisting moment

is ; \

Mo EEJ

2
il = T[{1 'ﬁ}(j - ) + CI'.'_ sasaw (9}

Equations (7) and (9) reveal that there is no definite plastic
hinge at all and that the moment increases indefinitely with the

increase in the external fibre strain until fracture ocours,

General elastic-plastic slope~deflexion equation

9]
3
/\ Fig. 2.5 shows the deforma-
/'J \ tion of a beam subjected by an end
M /' R \ M couple if ceusing a decrease in length
P I '\
f/;ifi:z::‘_r__ﬂkffﬂkn of those fibres above the neutral
F "”A1; axis and an increase in those below.
Q S

Figs 2.5 = Deformation of bean For any fibre FG distant ¥ from the

subjected to an end

couple neutral axis, it can be shown from

the geometry of ﬁafnrmation? that it has been strained by an amount :

€ = ¥ ceees (10)

R
Where R is the radius of eurvature of the neutral surface,

?5. Timoshenko, Strength of Material, Part 1 (3rd ed. :
New York : D. Van Nostrand Co., Ine., 1956), p. 93.
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This expression is unaffected by the condition of the material,
and it is therefore in order to assume that when the end couples are
of sufficient magnitude to cause part of the section to becoms plastie,
FG ma; represent a layer of either ELASTIC ox PLASTIC material. And,
as in the simple theory of elastic bending the deflexion of an elastic=

plastic beam can be obtained with sufficient accuracy by the ralationa:

= y RN (11)

= — R RN (12}

Integrating, y = — dx + O, evess (13)
o EI

Repeating the process, the expression for the deflexion is

obtained :

Fﬂ‘ = E;il[]‘(dx}ﬂx + C1I + EE eseee (14)

8
Ibidln, Pe 139,

9
Ibid., p. 95.
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When FG is the plastic material

¥ € €o %
N . P J To Eyn

Let y, be a function of x, the longitudinal distance from a

given origin, namely

Vo = $&)
" n‘ﬂ
80 that :‘{p = E¢{x) Ty {15}
L ] g dac
=]
¥ - —— — e essss (16)
P EJgx) 2
]Fp = TEEJJ% dx+{:3'.t+ﬂ4 teane {1?]

The integrating constants ; Cqs cz. 63 and c4 are evaluated

. from the known boundary conditions.

10
Baker, Horne and Heyman, op.cit., p. 20.
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Ana:l:,reris of the Elastic-Plastic Slope-Deflexion Equation of

a Simply Supported Beam

Subjected to a Concentrated Load at Mid Span

Fig. 2.6 - Simply supported beam subjected

A 1| A to a concentrated load at mid-span.
L

T
(a)
strained "] |
———p % plastic
| Mq clastic
| 1 —— L
(b} Bending moment diagram .
7T
=2 - pot——— p ——
1 ¥ . ,
Elestic | Plastic | Elast ‘ . :
~one — T Zofic — j[: z?}nel,c, (d] Stress {e] Strain (f) Rectanguiar cross
distribution . distribution. section .

(c) Elastic plastic  distribution .

Fig. 2.6a shows a rectangular simply supported beam QABCD

carrying a concentrated load P at mid-span B. The load P is sufficiently

large to cause the formation of a plastic zone in the length AC, while

OA and CD remain elastic. At this stage the central deflexion of the

beam is analysed.

The bending moment at an;r distance x from the origin 0 is

Px
ﬂ'x = -é- (KRR ] (13}
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For equilibrium, the applied hénding moment (18) must be equal

to the intermal-resisting moment (7).

M

Therefore, Px _ 2 3 2
" e -5?[3{1 -pr) - of(1 -ﬁr)-l--&é]
Mo (301 Br) = 0X1 <pr) 4 2B
or, x : (31 -Bp) - (1 =pr) + ﬂj sivcs 119)

The differemntial relation between x andoc is then :

o £ ] coees (20)

dx o [ 3

—_— & = e (] -pl )+ -
= ol CURRLER
This expression is very convenient in solving the slope-deflexion

of beam in the plastic zone.

2
Analysis in elastic zone : D=< x £ 'T.DE
[1] Px
F; == 5ET ssane (21)
' sz
= = b + c L NN {22}
Yo 451 = )

PxI + c1x + GE R RN (23}
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Analysis in plastic work hardening zone : 1< o < o
0

n Mg
:rp - E—Iw TR LE] {2#}
' o pax
FP TR T c3 or'
21.1‘3 r;;
e E_tI-P. (1 ""-b )‘:"" ;ﬁz]"‘ c3 ssana (25}
e o [ ep L B B
3 =2 - 6«:3 Ar }mm} +Cyx + C,
I RN {26}
By using boundary conditions :
X =0 39 = 0
x =k L, or
2 F’ A1)
o6 - 6y } P
EHO . . senae (27)
x--l—)-. or yp-:i"e.end
= 1 yp = Fﬂ

The deflexion at any section along AB is :

3 2
T 4 B
:rz
w98 T eV wil
: EIP {{1 BEA% 3“&.}:{
a2
4 =2 6,1 . 2
wf= {5+ B (r +2} Bf5r3+2)} esees (28)
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Thus, the central deflexion can be %taken by letting x = % L

and O = O, in the above equation (28), and rearranging g

773
ik

i
EIP?

(=Y
n
L2
]
LI B

L2

[{5 + ﬁzfr6+%) - ,3(5r3+%lj

v 3.8 {{1 prireg - L

Emz

% {(1 -pr)2ad 4 3;::(1 -pr’}lnnr” ieua 20

fa
T
For the particular casea of FPig. 2.3b and 2.3¢c, the central
deflexion is compufed by substituting p = 0 and r = 1 in equation (29)
respectively.
If the stress-strain curve of Fig. 2.3b is consldered, the central

deflexion is :

23
il 3

And, the central deflexion of the stress-strain curve in Fig. 2.3¢c is :

pr
I
4 2y Bpy s ¥ fitunyee i LR Y
§ =32 [6-2s 43838 {0 -pic, o)
2.3 p? 4 )
- {(1 - p}%"‘ ET‘S'#EP“ -‘b}lnﬁini' saams (31')
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Rectangular Portal Frame11'12’13

In a frame work with rigid joints, points of local maximum
bending moment will occur at the Joints and under any applied load.
In this theory, the material must have a marked yield stress; and
when a plastic hinge has developed at a cross section, the moment of

resistance at that point remains constant until the whole structure

I

=z

E
h
ia) A
D‘
Ha :

collapse due to formation of required number of plastic hinges.
-Q—HE

B .0
C
M
A L E (b) )
. "u"ﬁf.— —TVE

Fig. 2.7. = Portal frame subjected to central vertical load.

Conalder a portal of height h and span I as shown in Fig. 2.7a.
Under a central vertical load V, plastic hinges may form at BCD (for

a frame with pinned bases) or at ABCDE (for a frame with fixed bases).

11Baker, Horne and Heyman, op.cit., pp. 61-85,

123.G.N9&1 and P.S. Symonds "The Calculation of Collapse Loads

Tor Framed Structures", J. Instn. Civ. BEngrs, Vol.35 (1950), pp. 21-40.

133. Litton "Laboratory Experiments on Plastic Theory" The

Engineer , (April 30, 1965), pp. 754-T60.
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Analysis of collapse loads of portal frame with pinned-bases

(a) Neglecting the effect of olastic deformation: For the

qechanism shown in Pig. 2.7b, the distribution of bending moment at
collapse can be set out conveniently on a horizonial base line ABCIE

(Fig. 2.8) where BCD represents the beam and AB and DE the stanchions.
{

= —

m// r /n
g MU %—CL——%—L—D -

Fig. 2.8. = Bending moment diagram at collapse
of portal frame with pinned bases.

1
|
vt

Hh

N S

BfD is the moment diagram for the vertical loads with the
ordinate Cf representing %?.

To complete the construction for the given mechanism the reactant
line due to the springing HA is superimposed upon those already drawn.
The line mm will always be parallel to the base, whilst Fu = In = Hhh
to the propriate scale. The shaded area in Fig. 2.8 represents the

resulting bending moment diagram,

£ - sivse {8y
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Mz = E - Ih EEEE] {33}

Vhere M§ and Hg are the full plastic moments of the stanchions
and beam r?spact;?aly. It should be noted that the solution is valid
anly_for 2? Eh; if this inequality is not fulfilled, the relative
proporiions of the free bending moment diagram (BfD) will alter,

bringing point £ below the reactant line mn,

(v) Considering elastic deformation ;

o

from (32) : H = 2 eeees (34)
h

and from (33) u§ i 1-?: - H(n -4.) sives (383

where 5& is the elastic deformation at C

sub. H in (35) and get

2ead . T, 22
4 L "

where k is 1{3&

tharefore Vv = =
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Take the case of a frame of uniform section, i.e. Hg = Mg

2'!
Y = ——:ilﬂ LR RN {36}

r

¥
h

+ 1

Analysis of collapse loads of portal frame with fixed bases

: |
P17
Mth
c P l
BN E
h oem— b —=

Fig. 2.9. = Collapse moment diagram.

W

b=
mw

il

With similer procedure as described in the preceding article,

the bending moment diagram at failure is shown in Fig. 2.9.

essse (37)

Wt
B

teenn {38)

W b
® |3
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