CHAPTER 11

THEORY AND FORMULATION

Bending Theory of Thin , Isotropic Elastic Plates

The bending equations of thin elastic plates are based on
the assumption that " plane sections remain plane " during bending and

the deflection is small compsring with the thickness of the plate (7].
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Figure 1 shaws an elemsnt of k2 thir nlate ~f thicknese " h Y

together with ¥FE eior emmrrmbionblab widt be used, The maberial

§9

A REY Qﬂ]ﬁAiHHUJU.

; 7{_ - o/
U TR IR AmANEIAY



hnz +the modulus of elasticity " E " and poisson's ratio " v ". The

deflection " W " of the middle surfece of the plste suhjected to

transverse force of intensity " q " is related to slope " N Tty

corner forces " R " arised from the jump of twisting moments st each
corner , bending moments and shear force per unit length . The

relationships 8mong these quaentities cen be written in cartesian

co-ordinates as follows (71 ¢
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In which D= Eh’/(lz(l-va)} derctes the plate rigidity.

Also , on the boundary , the twisting moment can be combined with

the shear force to produce 8 resultant boundary shear force or

" Kirchhoff's shear " per unit length " V " as given by (7] ¢

v, =-D [ 3'W o+ (2-v) 3V ] ' (8)
[-;;; axay® |

v, =-D "a’w + (2-9) W ] (9)
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By considering the equilibrium of forces in Z-direction
(vertical .direction ) and moments sbout X and Y axes , the ftollawing

gbverning biharmonic equation for plates is obtained . (71

Vo'W BNy = g/D (10

In which () = 3°¢.) + 3°(.) is defines as " laplacian operator
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FIG.,2 Normal Co-Ordinste




In normal co-ordinates (FIG.2) these relationships become (73
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In which the subscript (1) is referred to the first side of

the corner and (2) is the other side.

In considering a skew plates , it may be more convenient to
refer these relationships to a8 skew or oblique co-ordinate system (cee

appendix A for more detail) as follows @
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FIG.3 Skew or Obligue Co-Ordinate System

N, = .1 {3VW sin(@g«) + aW sin(e) } (17
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in which
2
G = cos (a)sin () - sin(2)sin(ag) + sin (¢)cos (g)
2
C, = sin(2Wsin(¢) - 2sin” («)cos (@)
C3 = sinz(d)sinn(¢) + sin(2«)sin(2g) + cosa(d)cosz(¢)
2
C, = - € sin(2W)sin(g + 2cos™(d)cas(g) ¥
C= = sinf(g-o) - (1-Vcos(g-u)sin(2«¢-2d)
/s
C_ = sin(a) - 2cos(@sin(g-«) + (1-p){ cqs(d)sin(zd—2¢)

2

- cos(g-u)sin{gd-2¢} ¥

C7 = sinf{dg-«) - 2cosigein(u) + (1-M){ cosl{)sin(g-2¢)

- cosf{@-«)sin(2«) 7

2

Ca = sin{«) + (1—v)cos(d)sin(2d)

a
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Integral Boundary Equation for Direct Methods

The direct methods of boundary element analysis are those that
make ﬁse of the generalised green's theorem. In the case of the
bending of elastic plates , this theorem is the same as the Betti-
Mexwell reciprocal theorem (6] which states that for any two
equilibrium states , (A) and (B) , of an elastic body " The work that
would be ’gone by the forces (A) if given the displacement§ (B) 'is
equal "to the work that would be done by the forces (B) if given the

displadémeﬁis (A). " or " The displacement at co-or&inate (i) due to a

unit force at co-ordinate (j) is equal to the displacement at (j) due

to 8 unit force acting at (i),

This means that for any elastic plate (6]
I qWdn + I (VW =-MNIMr= f q W da + I (VW - MN il (22)
a A B r A B A B Qa B A r B A B A

In which q , V , M, N, ¥ represent distributed or
concentrated 1load , Kirchoff's shegr forces , bending moment , slope
and deflection respectively. If the boundary (I') has corners then it

‘At Bt

s necessary to add the terms EE R W and :E RNWAi R = 142100 4k

to the left and right-hand sides of the equation as follows (6] :

k
Lqundﬂ + ch‘\wn - M N_}dr + ERMWN
§ =y
K
g IanwAdn ¥ j‘rwawA - M N ¥+ SR W (23)

s
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Where (R) denotes the effective corner force and summation is

made over sll corners (k).

Xz,n

' ) Xg)

FIELD POINT t (TANGENT)

il

UNIFORM LOAD . (& ----
B n (NORMAL)
(¥
(%,7m) FIELD POINT
SOURCE POINT
IN DOMAIN
9D [ BOUNDARY
DOMA
(DOMAIN) i

FiG, 4 Co-Ordinate System and Relevant Notation

Now consider two distinct systems of compatible deflections and
equilibrium states of stresses as shown in FIG.4, one is s real plate,
the problem under consideration , which is the rectilinear plate
having arbhitrary supports along the boundary ('Y and ' loaded by
transverse force of intensity (q) , hence all the boundary conditions

of the real plate are known » The other is the virtual plate
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designated by asterisks , subjected to a unib singular load (dirac
delta function " & " ) acting at 8 point inside the domain (1) which
is called a source point (§,1) . From eq.(10),the governing equation

of the virtual plate is

¥
OUWEX WX 18,11 = ALX X 1¥,01/D (24)

In which &[X‘.Xz;F.HJ‘is defines as the displacement of the
virtual plate at field point (X‘.Xz) due to the unit singular load
(dirac delts function " & " ) scting st the source peint (&)
Recall that the di;ac delta function A[X‘,XzzE,n] has the following

properties

A(Xt.X2;E,QJ = 0 for (Xi.Xz) (%,
A[Xl.Xa;E.nJ = 1 for (X‘.Xa) = (&,
and
fﬂw<xl.xi>6<x'.x,;:.n)dn(x‘.xz) = W(F, M) (25)

From equaticn (23) , consider system "A" as 8 resl plate and
£
B as 8 virtual plate whose fundamental sclution W[X‘,Xst.ﬁ]

( 8s derived in appendix B ) is

. .
WEX ,X_3E,03 = {r’In(r/2)3/87D (26)

/

|

Where 1 = (X -8)7t2(X -E)(X_-Deos(@+(X -1 } is
the distance between source point (§,1) and field point (X ,X)) and

: . L3
Z is the longest diasonal of plate. The expressions of the slope (N} ,
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¥ | S
bending moment (M) and Kirchoff's shear forces (V)in the normal

direction of virtual plate can be obtained by appropriate

differentiation of equation (26).
Substitution of equation (24) and (25) in to (23) yields ¢
[ ] )
W(E"\) - Ir( -V[x‘,xziE.'\JW[xl.XZJ + M[Xt.x:‘;E'ﬂ]N[x‘.xz]

4 3
NCX X 38, NIMCX X, 3 4 HEX, X $8,RIVEX, 1K, 3 3ATCX X, ]

k k
¥ | 3
¢ SREXGX, N CX G KGRAT = DW KX IR DX 600
S =
L3 . '
o [Lavex, x e n0dn @n

Taking the limiting process (4] in which the point (&,0)
apprcaches from inside the domsin (f}) to en arbitrary boundary peoint

(E,1) , we can derive the following integral equation @

-y : o 3 g
¥ W(E, 1) = Iri —V[Xt,Xz;E,ﬂJW[Xt.XZJ % MCX‘,XZ;E,HJN[Xt.le

2
£ - ;3 - -
SNCX 23X, 05 TIMOK X, D + WOX, WX 18, TIVEX 1%, 3 3dTEX LK, ]

k k
¥ i s ¥ o
+ SRIKLEW 00K GERT - W XX IR KK E D

= 121
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& - =
+ Ian[X‘.X:;F.QJdﬂ (28)

Where " ¥ " is the interior angle of the boundary point (&,T)

as shown in FIG.5 .

N2

ny
FiG.s Interior Angle of The Boundary Point

When the boundary is smcoth , ¥ = T, equation (28) leads to

= 5 oo P o
1 W, = Irc -VOX X, 38, TIWEX X 3 + MOX X 3§, TINCX X )

2

¥ - * = =
-NCX,, X5, TIMEX ,X_ 3 + WOX ,X 3§, TIVIX ,X 3 3dTCX X )

k k
¥ o 3 = .
+ DR OX VK W XX 8D = W IK K IR IK X 1§, 13
=3 =
’ y 2 _
+ Ian[XL,XZ;E,QJdﬂ (29)
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If the normal derivative of equation (28) is considered , the

following integral equation is obtained

Lo Y o % @
¢ NCGE, ) = [rc -aVeX,, X 5§, INCK ,X, 3 + aMCX X, 3§, HINCK , X, ]

27 anCE, N3 anCE, ]

¥ - = & - =
~aNCX X 1§, TIMEX X3 & WX X 3%, TIVIX X, ] 3dFCX,,X, ]

anl&, N2 anC&, 1]

k k

£ ash\ ¥ =
+ DR IKOXT W OXE T - DH KX, R XK T

i=1 3anLE, N2 i =1 anCE, 1)
+ [ aolex, 58 (30)
;;EE.ﬁJ
where
NCR, ) = aW(E, D)
an(E, D

Equation (28) and (30) are the set of boundary integral
equabions for the linear bending problems of elastic plates. Since two
of the four boundsry varisbles W , N , M and V are prescribed by the
boundary conditions , we can debermipe the remaining unknowns as to be

shown in the next chapter.
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