CHAPTER 111

NUMERICAL PROCEDURE

Boundary Discretization
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The inﬁegral equations (28) and (30) can be discretized into a

series of elements . The boundary of plate is devided into a series of

segments " or " boundary .element " as shown in FiIG.6.. The points

whase unknown values mus

t. he determined are called " nodes (i)
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and are taken to be in the middle of each element (j) . The unknown

function ¢ WEX‘.le ' N[X‘.XzJ ' MCX‘.Xa] ' V[X‘.le ) are discretely
assumed to be constant values over the interval of element (PJ) + Thus
the integrals equation (27) , (28) and (30) can bé approximate by
summations. Hence , the values at nndés (Ea'ﬁa) in equation (28) and
(30) can be calculated . In the case of skew plate , there are four

corners ,therefore j = 1,2,...,n*4 , where n is the total number of

boundary elements .

The source points on the boundary node (i) can also be
replaced numerically by a set of 2n+4 equations (nt4 equations for
equation (28) and the others for equation (30) ) with 4n+8 unknowns as

follow :

deflection w‘ 3y 86 nodes 1 = 1,2,...,nH3
normal slaope N’ i a8t nodes i = 1,2.2...n
bending moment M, $ 8t nodes i = {,2,...4yn
kirchoff's shear V‘ s at nodes 1 = 1,2,...,N
corner force R i sb.nodes i = 1,24...,4

But 2n+4 of these unknowns can found from boundary cenditions.
Thus , the number of 2n+4 algebraic equations are sufficient .

Rewriting of equation (27) , (28) and (30) yields
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All of the virtual plate terms (6,&.....etc.) are determined hv
substitute equation (26) into equations (17) , (18) , (19} and (20
and the normal derivative of equations (17) , (18) ., (19> and (20) fas
shown in appendix(C) ) as a functions of r Inr) o PInieY. o Inles
1/r and 1/r: . The integral terms of equations (31) , (32) and 3P
‘Ir:ﬁfxt'xz‘g.ﬁW.JdP,fX‘~XZJ, Irlﬁcxl.xazi‘.ﬁ|Jdrjtxt.an S ke,
can be calculsted numerically by using Simple Gauss Quadrature rules
4 {113 for all elements , gxcept the elements where the source point and
the field pcint coincide which are called " singular element " .
Considering equation (31) , (32) and (33) for sinsular element that
one wish to integrate r In(r) , rln(r) , In(r) , 1/r and 1/r°
along lines which includes r = 0. No problems arise in tﬂe

integration of roiner) y rln{r)>y along the tine which inCINd=s r =0,
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However ,these terms 3§ In(r) , 1/r and 1/r® also cccur in the
' £ ¥ .t ' %

expressions for M, V , 3N/3n , 9M/2n and 3V/9n. In order to cope

with these intesral problems , the treatment of singularities by

equilibrium equation and snalysis method are introduced in CHAPTER IV.

Matrix Formulastion

Since the equation (32) will be expressed in nt4 equations
(total boundary elements " n " and 4 corners ) and also another n
equations from expression (33) ,therefore it will be more convenient.

to write these equations in matrix form respectively :

(34)

n
~
Owm
)

3 3 hd § ¥ #
[VJ[WJ-EM][N]+CNJ[MJ-(W][VJ+[R](WCJ-[WC](R]

/

(35)
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o-
(]

] ] L] 1] u 1]
[VICWI-TMIONI+ONICMI-CWICVI+IRICW_I-CW_ICR]

where

{(W3,CN3,[M3,[V] = nxi unknown matrices of deflection , normal slope,
bending moment andVKirchoff's shear force st
boundary of real p]abé'respective]y.

(WCJ,[RJ = 4x1 unknown matrices of deflection at corner and
carner force of real plate.

[ﬁ].[ﬁ].(&].(§3 = (n+4)xn known matrices of deflection,ncrmal slope,
bending moment and Kirchoff's shear force st
boundary of virtual plste respectively.

[ﬁcl.tﬁl = (n+4)x4 known matrices of deflection at corner and

corner force of real plate.

¥.ou._ H_ Y . .
[W3,CNJ,[MI,CV] = nxn known metrices of derivative terms of
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deflection , normal slope , bending moment and
Kirchoff's shear force at boundery of virtual plate
respectively.
w ] : 5 7
L c].[R] = 4x4 known matrices of derivative terms of deflection
a8t corner end corner force of real plate.
¥
£Q3l = (n+4)x1 known matrices of the domasin intesral term
of equation (32)
1]

£al = mnxl known metrices of the domsin integral term of

equation (33)

Notes : the element of matrices

# 3
v =V ]
13 13
} when i # j
¥ ¥
13 ) M‘IJ J
and
# e g
Vlj = VU + ¥/27 ]
} when 1t = j
3] s j
i3 % M‘IJ % X/z‘ﬂ

The expressions (34) and (35) respresent the sets of boundary-
integral equations relating the boundary factors on boundary to the

values of deflection ,normal slope , bending moment and Kirchoff's



condition of the plate as follows :

1) Simply-Supported Edges
equation (34) and (35)

# ¥ N
[M][N]+[WJ[V]+(WCJCR]

| 1} 1
[MJ[N]+[&J[V]+[#CJ[RJ

2) Clamped Edges 1t [W3 ,
equation (34) and (35)

* ¥ ¥
[NJ[M]-[WJ[V]-(WCJ[RJ

H 1] | 1]
[NJEMJ—[WJ[V]-[WCJERJ

3) Free Edges ¢+ [M} , (V3]
equation (34) and (35)
¥ ¥ 3
[V][W]-[M][N3+[R3[WCJ

4} H 4}
[V][W]-[MJ[NJ+[R]CWCJ
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(36)

(37

(38)

(39}

(40)

(41>

A similar technique can be used for mixed boundary conditions

8s shown 1in the example 11l and IV . Therefore , for

any boundary

condition only 2n+4 algebraic equations are required to cope with the

2nt4 unknowns . Hence, one can re-replace these set of equations

the form of
LAMBY = [C]
where
EAd 9
£Bl = unknown matrix [ (2n+4)xi 3

m

0

[
!

known matrix [ (2n+4)x1 ] of domein intesral

in

coefficient matrix [{(2n+4)x(2n+4)] of linear equations
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For example , in the case of all edges are clamped ., oOne can

write equation (42) 8s 1}

[ - Dows 1i -leh 3 1 [™] [ £d3 1
| pe |
| o - -l Lers J | o8y |

The unknowns in equation (42) can be calculated using " Gauss

Elimination Method " .

Domain Selution

By the " Gauss Elimination Method " , 8ll of the boundary
function are known . Therefore , one can easily determine the values
of deflections st any point inside the domain by equation (31).

Finally , the desired stress resultants inside the domain can
be obteined by asppropriate éifferenbiabing of the deflection WLF,1] in

equabion (31},
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