CHAPTER II

SEMIMODULES OVER SEMIRINGS

This chapter covers basic results about semimodules. It is noteworthy
that most of the results are analogous to standard results concerning modules
over rings. Because of this, and the fact that much of this material is discussed in
[1], very few proofs will be presented in detail. I will divide this chapter into five
sections. Section 2.1 introduces semimodules and morphisms. Sections 2.2 and
2.3 discuss congruence relations and group semimodules, respectively, which are
concepts not found in the theory of modules over rings. The two last sections
return to familiar topics, namely direct products and direct sums, and free

semimodules.

2.1. Generalities

This section introduces the basic definitions concerning semimodules
over semirings, including those pertaining to morphisms, and proves a few el-
ementary results. The most important propositions are probably the last two;
they will be very useful in Chapter III. All definitions and results in this section
either may be found in Chapter 13 of [1], or are analogs of results about modules
over rings (see, for example, Chapter 1 of [2]), except for Definition 2.1.8, the

last part of Lemma 2.1.11, and Proposition 2.1.13.



Definition 2.1.1. Let S be a semiring (not necessarily commutative). A left
S-semimodule is a commutative monoid (A, +), with additive identity 04,
for which there is a function S x A — A, denoted by (s,a) — sa and called
scalar multiplication, which satisfies the following conditions for all elements
s and s' of S and all elements a and a’ of A:
() (ss')a = s(s'a);

(i) s(a+d') = sa+sd;

(ii1) (s+s")a=sa+ s'a;

(iv) lsa = a; and

(v) s04 =04 =0sa.

‘Right semimodules over S are defined in an analogous manner. In
what follows, I will generally work with left semimodules, with the corresponding
results for right semimodules being assumed without explicit mention. Occa-
sionally, I will use “semimodule” instead of “S-semimodule” if I don’t want to

specify the semiring.

A simple but important example of an S-semimodule is S itself, where

the scalar multiplication coincides with the normal multiplication in S.

Definition 2.1.2. Let S be a semiring and A an S-semimodule. Then a
nonempty subset B of A is a subsemimodule of A iff B is closed under addition
and scalar multiplication. (Thus B is an S-semimodule with the same addition

and scalar multiplication as A; note also that this implies 04 € B.)

Subsemimodules of right semimodules are defined analogously.



Lemma 2.1.3. Let (Bi);e; be a family of subsemimodules of an S-

semimodule A. Then ﬂie ; Bi is a subsemimodule of A.

Proof. Obvious. #
The previous lemma suggests the following definition.

Definition 2.1.4. Let B be a subset of an S-semimodule A. Then the sub-
semimodule generated by B, denoted by [B], is the intersection of all sub-
semimodules C' of A such that B C C (i.e., [B] = (;¢; Ci, where {C; | i € I}

is the set of all subsemimodules of A containing B).

Remarks.
(i) [B] is a subsemimodule of A because of Lemma 2.1.3.
(i1) In fact, [B] is the smallest subsemimodule of A containing B.

(iii) If [B] = A, then we say that B generates A.
The following proposition describes what [B] looks like.

Proposition 2.1.5. Let B be a nonempty subset of an S-semimodule A.

Then

[B] = {Z S,‘b,’

=1

n>1 ands; €S, b€ B forall: e 7’1}

Proof. Clear. Z

The rest of this section will be about morphisms.
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Definition 2.1.6. Let S be a semiring and A and B S-semimodules. Then.
a function f from A to B is an S-homomorphism iff the following conditions
are satisfied:

(i) f(a+a') = f(a) + f(a') for all a and o' in A; and

(i1) f(sa) = sf(a) for all s in S and all a in A.

Homomorphisms of right semimodules are defined similarly. Also, ob-
serve that if f:A — B is an S-homomorphism, then f(04) = f(0s04) =

05f(04) = 0p.

Proposition 2.1.7. Let f: A — B be an S-homomorphism. Then Imf is a

subsemimodule of B.

Proof. Clear. 2

Definition 2.1.8. An S-homomorphism f: A — B, where A and B are S-
semimodules, is called an epimorphism iff Iimf= B; f is called a monomor-
phism iff f is injective; and f is called an isomorphism iff f is both injective
and surjective. (Note that my definitions of these terms are different from those

in [1] —see page 154.)

If f:A — B is an S-isomorphism, observe that f~! is also an S-

isomorphism.

Lemma 2.1.9. Let B be a subsemimodule of an S-semimodule A. Then the

inclusion map 1, 4: B — A is an S-monomorphism.

Proof. Obvious. o
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The set of all S-homomorphisms mapping A into B will be denoted by
Homs (A, B), or simply Hom(A, B). If B = A, then the elements of Homg(A, A)

will be called S-endomorphisms. I will denote Homs(A, A) by End(A).

Lemma 2.1.10. Let A and B be S-semimodules. Then Hom(A,B) is a

commutative monoid under the operation

(f1 + f2)(a) = fi(a) + f2(a) for all a € A.

Proof. Clear. 2

Lemma 2.1.11. If A, B, and C are S-semimodules and f € Hom(A, B),
g € Hom(B, C), then the mapping g o f is an S-homomorphism of A to C, i.e.,

" go f € Hom(A4,C). The following properties hold, with the obvious notations:

(g1 +g2)of=g10f+g20f,
go(fi+fo)=gofi+go fa,

ho(gof)=(hog)o ],

ladl T a1

Moreover, if f and g are S-monomorphisms (or S-epimorphisms or S-
isomorphisms), then so is g o f.

Finally, if A and B are commutative monoids and ¢: A — B is a homo-
morphism, then

(1) the action

D=0

kz=z4---4+z; keZt
TGP

k times
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makes A and B into Zg -semimodules; and

(ii) ¢ is a Z§-homomorphism.

Proof. Clear. &

Proposition 2.1.12. Let A be an abelian group and V a right S-

semimodule. Then HomZg (V,A) is an abelian group, and in addition is a left

S-semimodule using the scalar multiplication defined by (sA)(v) = A(vs) for all

A € Homgy (V,A), alls€ S,and allv e V.

Proof. Easy. #
Note. An analogous result holds in the case where V is a left S-semimodule.

Proposition 2.1.13. Let A, B and C be S-semimodules with B C C and
p:A — B an S-isomorphism. Then there exists an S-semimodule C* with

A C C* and an S-isomorphism ¢*: C* — C such that p*|4 = ¢.

3afin
UI Ul
U

Proof. WLOG, I can assume that CN A = @. Let C* = (C \ B)U A. Then

A C C*. Define p*:C* — C by

c ifce C\ B,
@*(c) =
p(c) if c€ A

Clearly ¢* is a bijection and ¢*|4 = ¢.
Now define +*:C* x C* — C* and -*:S X C* - C* by ¢c; +*c; =

(@*) Y p*(c1) + ¢*(c2)) and s -* ¢ = (¢*) " (sp*(c)) for all ¢1,¢c2,¢ € C* and
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all s € S. It is straightforward to check that these operations make C* into an

S-semimodule, and that ¢* is an S-homomorphism. #

2.2. Congruence relations on semimodules

As I mentioned before, this is a concept not found explicitly in the
theory of modules over rings, although it is very important in the theory of
semigroups and in universal algebra. Congruence relations allow us to define
quotient semimodules and kernels of homomorphisms in such a way that many
important results in module theory hold for semimodules as well. In particular,
the extremely useful Homomorphism Theorem and universal mapping property
of quotients are still true in the more general setting. As usual most of the
material in this section either may be found in Chapter 13 of [1] or is an analog
of a result in module theory. The exception is Definition 2.2.9, which will be

commented on later. -

Definition 2.2.1. Let A and B be S-semimodules and o: A — B an S-
110111611101"1_)111'5111. Define a binary relation =, on A by saying that for all a, b

€ A, a=,biff p(a) = ¢().

It is easily seen that =, is an equivalence relation on A. Moreover, it
satisfies the following: fo: every a,b € A, if a =, b, then a4+ ¢ =, b+ ¢ and

sa=,sbforallce Aandalls€ S.

Definition 2.2.2. An equivalence relation ~ on an S-semimodule A will be

called an S-congruence on A iff it satisfies the following properties:
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(i) for all a, b and c in A, a ~ b implies that a + ¢ ~ b + ¢; and

(i1) for all a, b in A and all s € S, a ~ b implies that sa ~ sb.

Lemma 2.2.3. If¢: A — B is an S-homomorphism of S-semimodules, then

=, Is an S-congruence on A.

Proof. Obvious from the above comments. #

Suppose that ~ is an S-congruence on an S-semimodule A. Then the
interesting question of whether we can define an S-semimodule B and an S-
homomorphism 3%: A — B such that =, is the same as ~ arises. The answer

will come after the following definition.

Definition 2.2.4. Let ~ be an S-congruence on an S-semimodule A. For
each element a of A, let [a]~ denote the equivalence class of ; with respect to this
relation. Set A/~ equal to {[a]~ l a € A}. In addition, define addition and
scalar multiplication on A/~ by setting [a]~+ [b]~ = [a+ D]~ and s[a]. = [sa]~

foralla, bin A and all s in S.

Proposition 2.2.5. Using the above addition and scalar multiplication, A/~

is an S-semimodule.

Proof. Standard. 4

Definition 2.2.6. An S-semimodule C is called a quotient semimodule of

A iff there exists an S-congruence ~ on A such that C = A/~.
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Proposition 2.2.7. Let ~ be an S-congruence on an S-semimodule A. Then
there exists an S-semimodule B and a surjective S-homomorphism ¢: A — B

such that =, is the same as ~.

Proof. Let B = A/~ and define ¢: A — B by ¢(a) = [a]~ for all a € A. Then

it is easy to show that ¢ is a surjective S-homomorphism and =, is the same

o N ‘ #

Definition 2.2.8. Let ~ be an S-congruence on an S-semimodule A. Then
the S-homomorphism m: A — A/~ defined by 7(a) = [a]~ for all a € A is called

the natural or canonical surjection of A onto A/~.

Now, I am ready to define kernels of homomorphisms. In a sense I
will define two kinds of kernels. One kind, actually called a zero set, is the
unmodified definition of kernel taken from the theory of modules over rings.
While still useful, it is deficient in an important way: there is no direct way to
test a homomorphism for injectivity using its zero set. What I will call the kernel
is actually a congruence relation. This kernel does provide a simple condition
for determining whether or not a homomorphism is injective. I should point out

here that my definitions are different from those found in [1].

Definition 2.2.9. Let ¢: A — B be an S-homomorphism of S-semimodules.
Then the kernel of ¢, denoted by ker ¢, is the relation =,. That is, kerp =
{(a,b) e AX A | ¢(a) = p(b)}. Also, define the zero set of ¢, denoted by

zsp, to be {a € A I ¢(a) = 0}.

019113
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Lemma 2.2.10. Let ¢: A — B be an S-homomorphism of S-semimodules.

Then ¢ is injective iff kerp = {(a,a) | a € A}.

Proof. Trivial. #

Lemma 2.2.11. Let ¢: A — B be an S-homomorphism of S-semimodules.

Then zs ¢ is a subsemimodule of A.

Proof. Easy. #

The following two propositions are very important basic results on semi-

modules.

Proposition 2.2.12. The Homomorphism Theorem
Let ¢:A — B be an S-homomorphism of S-semimodules. Then

A/kerp = Ime.

Proof. Define ¢: A/ ker ¢ = Im ¢ by

Y ([a]ker ) = ¢(a) forall ac€ A

Then it is easy to check that ¢ is well-defined and an S-isomorphism. #

Proposition 2.2.13. The universal mapping property of quotients
Let p: A — B be an S-homomorphism of S-semimodules, and ~ an

S-congruence on A such that ~ C kery. Then there.exists a unique S-

homomorphism ¢': A/~ — B such that ¢ = ¢’ ow, where m: A — A/~ is

the canonical surjection. Moreover, Im ¢’ = Im ¢.
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Proof. Define ¢': A/~ — B by
¢’ ([a]~) = ¢(a) for all a € A.

Then ~ C ker ¢ implies ¢’ is well-defined, and a simple argument proves ¢’ is
the desired S-homomorphism and is unique. It is clear from the definition of ¢’

that Imp’ = Im . #

2.3. Group semimodules

This section is probably the most important one in this chapter. The re-
sults on group semimodules, especially Proposition 2.3.3 and Proposition 2.3.6,
will be crucial for the proofs of many essential propositions in the next chapter.
Before defining group semimodules, however, I will define the more.general no-
tion of a cancellative semimodule. As will soon become clear, there is a close
connection between cancellative semimodules and group semimodules. More-
over, it is the category of cancellative semimodules that will be of primary

interest in the next chapter.

Definition 2.3.1. An S-semimodule A will be called a cancellative semi-

module iff (A4, +) is a cancellative monoid.

Definition 2.3.2. An S-semimodule A will be called a group semimodule

iff (A, +) is a group.

Proposition 2.3.3. Every cancellative S-semimodule can be embedded in a

group S-semimodule.
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Proof. Let A be a cancellative S-semimodule. Set X = A x A and define an

operation +: X x X — X by
(a1,a2) + (a},a3) = (a1 + aj,az + ay) for all (a1,a2),(aj,ay) € X.

Then (X,+) is a commutative monoid with identity (0,0). For each s € S,
define s(a;, az) = (say,sap) for all (a;,a2) € X. It is easily checked that this
makes X into an S-semimodule.

Next define the relation ~ on X by (ai1,a2) ~ (a},a}) iff a; + a), =
ay + az. It is straightforward to show that ~ is an S-congruence on X. Hence
X/~ is an S-semimodule. To show X/~ is a group, it only remains to show
every element has an inverse. Let [(a;,a2)]~ be an element of X/~. Then
[(a1,a2)]~ +[(az,a1)]~ = [(a1 + a2, a1 +a2)]~ = [(0,0)]~. This shows [(az,a;)]~
is the inverse of (a1, a-zfj],v.

Finally, I claim the map ¢: A — X/~ defined by ¢(a) = [(a,0)]~ for
all @ € A is an embedding. Verifying that ¢ is an S-homomorphism is easy.
To prove ¢ is injective, suppose a,a’ € A are such that p(a) = ¢(a’). Then
(a,0) ~-(a’,0), which implies a + 0 = a’ + 0, i.e., @ = a’. Hence ¢ is an

embedding. 4

Definition 2.3.4.  For each cancellative S-semimodule A I will denote the
semimodule X/~ in the proof of Proposition 2.3.3 by A? and call A® the
group S-semimodule of differences of A. In addition, I will denote the
map a — [(a,0)]~ by i®: A — A® and call it the standard embedding of 4

into A2.
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In [1], A® is defined for an arbitrary S-semimodule A, and is given the
name the S-module of differences of A. It is proved there that i2 is injective
iff A is cancellative.

Because 12: A — A2 is injective, it follows that 4 = i2(A). It is also

of interest to note that [(a1,a2)]~ = 1% (a1) —1%(az) for all a;,a; € A, and thus
45 = (i (@) - i%(a) | a0z € A},

The following proposition is similar to Proposition 14.1 in [1].

Proposition 2.3.5. Let A be a cancellative S-semimodule and G a group
S-semimodule. If p: A — G is an S-homomorphism, then there exists a unique

S-homomorphism @: A% — G such that ¢ 012 = ¢.

Proof. Define @: A% — G by

@ (1% (@) — 1% (a2)) = ¢(a1) — ¢(az) for all a;,a; € A.
The proof will be done once the four steps below are proved.

Step 1. @ is well-defined.
Let 1% (a;)—i?(a2),1%(a})—12(a}) € A® be such that i®(a;)—i%(az) =

i8(a}) — i (a}). Then the following sequence of equations may be derived.

1% (a1) +1%(ay) = i%(a}) +1%(a2)
TS Ui Bl G
i7(a1 + ap) =17 (a; + az)

/ /
a1+ ay = a; + a
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¢(a1 + a3) = p(ay + a2)
w@ﬂ+¢@@=w@ﬁ+¢wq

p(a1) — p(az) = p(ay) — p(a3).

Hence ¢ is well-defined.

Step 2. @ is an S-homomorphism. [& [ 7% el
i'\:'"{ \ & 8 // 7
\. .;i( "\:

Step 3. ® A = P ; " - Ny

Step 4. @ is unique.

Steps 2—4 are very easy, so I will leave their proofs out. #

Proposition 2.3.6. Let M be a submonoid of an abelian group G, ¢o: M — D
a homomorphism of M into an abelian group D. Let (M) denote the subgroup
of G generated by M. Then there exists a unique homomorphism ¢?: (M) — D

such that ¢® |y = .

Proof. I will divide the proof into four steps.

Step 1. (M)={z-y | =,y € M}.
It is clear that {:z: -y | T,y € M} is a subgroup of G containing M,
so(M)C {z—y | z,y € M}. Conversely, if z,y € M, then z,y € (M), which

is a group, and thus z — y € (M). Therefore (M) = {z —y | T,y € M}.
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Step 2. Define ¢®: (M) — D by ¢p?(z —y) = ¢(z) — ¢(y) for all z,y € M.
Then ¢* is a well-defined group homomorphism.
Recall that D is a group, so —¢(y) is defined. The rest of the proof of

this step is similar to Steps 1 and 2 in the previous proof.
Step 3. 2|y = o.

Step 4. ¢* is unique.
Steps 3 and 4 are proved by arguments similar to those used for the correspond-

ing steps in the previous proof. #

Proposition 2.3.7. Let A be a group S-semimodule, B an S-semimodule

and ¢: A — B an S-homomorphism. Then ¢ is injective iff zs p = {0}.

Proof. It is obvious that zs¢ = {0} if ¢ is injective. Thus assume that zsp =
{0}. Let z,y € A be such that ¢(z) = ¢(y). Then ¢(z — y) = p(z) + ¢(—y) =

e(y) +e(-y) =9y —y) =¢(0) =0. Thus ¢ —y € zsp, so ¢ = y. Hence ¢ is

injective. #

2.4. Direct products and direct sums

Fortunately, we can define direct products and direct sums in the same
way as for modules over rings. We also get that most of their basic properties are

the same. Again, the material in this section may be found (in an abbreviated

form) in [1].
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Definition 2.4.1. Let (A;)ier be a family of S-semimodules. Consider the

set A = [];c; Ai with operations:

(zi)ier + (¥i)ier = (=i + vi)ier,

s(zi)ier = (szi)ier-

Then A is an S-semimodule called the direct product of the family (A;)iey.
For each i € I the mapping mi,:[[;c; Ai — Ai, defined by
i ((x,-),-eI) = &, is called the natural or canonical projection of [];.; A;
onto A;,, and is clearly an S-epimorphism.
For every i9 € I the mapping ji,: Ai; = [];c; Ai defined by j;,(t) =
(z:)ier, where z; = 0 for all'i # 4o and z;, = t, is called the natural or

canonical injection of A;, into [];c; Ai, and is clearly an S-monomorphism.

With the obvious modification this definition can also be used to define

the direct product of a family of right S-semimodules.

Proposition 2.4.2. The universal mapping property of direct prod-
.ucts

Let A = [];c; Ai be the direct product of the family of S-semimodules
(Ai)ier and let m;: A — A; be the canonical projection for all : € I. If B is an
S-semimodule and ¢;: B — A; are S-homomorphisms for all 1 € I, then there
exists a unique S-homomorphism f: B — A such that q¢; = m;o f for all 1 € I;

in other words, the following diagram is commutative for every i € I:

B4 A=T A

5
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Proof. Let f: B —+ A be defined by f(z) = (qi(x))iel for all z € B. Then it is

easy to check that f is the desired S-homomorphism and that f is unique. #

Lemma 2.4.3. The canonical projections and injections satisfy the following

properties:
w0k =1, ; for all 1€ 1,
7; 0 ji = 0 (the zero mapping) for all i,i' € I,i1 #4'.
Proof. Obvious. L

Notation. If I = {1,2}, I will denote [];.; Ai by A1 x A,.

Before stating the next definition, let me introduce a bit of terminology.
If B is a set, then I will say that a particular property holds for almost all
elements of B iff there is a finite subset F' of B such that the property holds for

every element in B \ F.

Deﬁnitiop 2.4.4. Let (Ai)ier be a family of S-semimodules. Consider the

subset

GBE A = {(wi)iel € HAi

1

z; =0 for almost all indiciesz € T }

of [1;e; Ai. Then A = @) ;. A; is clearly a subsemimodule of [];.; Ai, called

the direct sum of the family (Ai)ier.
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Remarks. Observe that the above definition applies equally well to families
of left semimodules and families of right semimodules. Let (A;);es be a family
of S-semimodules and fix ig € I. The restriction of the canonical projection
Tiy t0 @) ;c Ai is still an S-epimorphism, which will be called the canonical
projection of @) ;.; Ai onto A, ; it will also be denoted by 7;,, even though,
strictly speaking, it is a different function. Similarly the canonical injection j;,
actually maps A;, into @) ;c; A;. Hence whenever I am discussing direct sums

I will refer to it as the canonical injection of A;, into @) ;. Ai.

Proposition 2.4.5. The universal mapping property of direct sums
Let A = @Zie ; Ai be the direct sum of the family of S-semimodules
(Ai)ier and let ji: A; — A be the canonical injections for all i € I. If B is an
S-semimodule and k;: A; — B are S-homomorphisms for all 1 € I, then there
exists a unique S-homomorphism g:A — B SI;ICII that k; = go j; for all 1 € I;

that is, the following diagram commutes for all z € I:

A =@ e Ai 5 B
jiT k:
A’

1

Proof. Let g: A — B be defined by

g{z) = Zk,-[m(:c)] forall z € A,
i€l :

where 7;: A — A; is the canonical projection for all 2 € I. Note that this sum

is well-defined since only finitely many summands k;[r;(z)] are different from 0.

It is easy to finish the proof from here. : #
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Notation. If I = {1,2}, then &) ;.; A; will be denoted by A; & 4,.

Note. @) ;c; Ai = [[;c; Ai iff I is a finite set.

2.5. Free semimodules

The idea for defining free semimodules is similar to that for defining free
modules over rings. Perhaps surprisingly, most of the basic properties of free
modules are still true in .this more general setting. The approach I have taken
follows that of [2] for the case of modules over rings. For a slightly different,

but equivalent approach, see [1].

Definition 2.5.1. A subset B of an S-semimodule A is called a basis of A
iff for évery element a of A there exists a unique family (sp)sep of elements of S
such that s, = 0 for almost allb € B and a = ) ;. g ssb. Moreover, A is called

a free (left) semimodule iff there exists a subset B of A such that B is a basis

of A.

Note. If B is a basis of a free semimodule A, then B generates A and B\
is linearly independent (using the standard definition of lineé,r independence).
However, the converse is not true. For example, the set {1,2} is a linearly
independent subset of the Z§-semimodule Zg, and it also generates ZZ, but it

is not a basis (observe that 2 does not have a unique representation).

Free right S-semimodules can be defined in an analogous manner. The

next proposition is very important.
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Proposition 2.5.2. Fundamental properties of free S-semimodules

(1)

Note.

(The universal mapping property)
If A is a free S-semimodule with basis B and f: B — C is any
mapping into an S-semimodule C, then there exists one and only one

S-homomorphism h: A — C which extends f.

i
' B
1B,4
B — A

Let B be a nonempty set, and let My = S for allb € B. Then @),z Ms
is a free S-semimodule. Moreover, if for each element b of B, f €

& ycp My is defined by

Y1 Sror sl b,
fo(V) =
=0 £ b;

then {fb I be B} is a basis of @) ;g My and the map b — f; is a
bijection of B with {fb | be B}.

Let F be a free- S-semimodule with basis B. For each b € B let My=385.
Then @ ,cg My = F.

For every S-semimodule A there is a free S-semimodule F' and a surjec-
tive S-homomorphisma: F' — A. If A is finitely generated, it is possible

to choose F with a finite basis.

All four parts of the above proposition are true for right semimodules

as well as left semimodules, although I will only prove them in the case of left

semimodules.
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Proof. (i) By hypothesis, for every element a of A there is a unique family
(ss)seB of elements of S such that sy = 0 for almost allb € B and a =}, g ssb.

Define h(a) = Y ,cpssf(D); it is an easy task to check that h satisfies the

conditions of the statement.

(ii) It is straightforward to verify that {f,, | be B} is a basis of @), g Ms;
thus by Definition 2.5.1 @), g M is free. It is obvious that the map b — f; is

a bijection.

(iii) Let G = ‘BZbeBMb- Then G 1s a free S-semimodule and B* =
{fs | b€ B} is a basis of G. Using the universal mapping property of free
S-semimodules there exist S-homomorphisms ¢: F — G and %:G — F such
that ¢(b) = fp and ¥(fy) = b for all b € B. But then ¥ o p: F — F and
P o p(b) = b for all b € B, so by the uniqueness part of the universal mapping
property, ¥ o ¢ = 1p. Likewise p 09 = 1g. Thus ¢ is an isomorphism of F

with G.

(iv) Let X be a set of generators for A, and for each z € X let M; = S. Then
F= @erx M, is a free S-semimodule and {fx | x € X} is a basis of F.. By
the universal mapping property there is a unique S-homomorphism a: FF — A
such that a(f;) = z for all z € X. Since X generates A, a must be surjective.

The last assertion is clear from the above proof. #
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