CHAPTER III

¢s-INJECTIVE SEMIMODULES

This chapter is primarily about injectivity in the category €s of can-
cellative semimodules over a semiring S. However, some of the principal defi-
nitions and results are stated for an arbitrary category of semimodules. This
chapter is divided into four parts. The first introduces injectivity in a category
M of semimodules. The second is about properties of €s-injective semimod-
ules; in particular, it answers the important question of the existence of nonzero
Cs-injective senﬁmodules. The_‘_two last contain very important results of this
research, namely the connection between essential extensions and €g-injectivity,

and the existence and uniqueness of €g-injective hulls.

3.1. M-injective semimodules

The most obvious way to define injectivity for semimodules is to copy
the definition for modules over a ring almost verbatim, simply changing “ring”
to “semiring” and “module” to “semimodule”. Indeed, this is the approach
taken in [I]. However, it has not met with much success. Almost none of the
standard results about injective modules over a ring have been proved, and
Proposition 15.17 of [1] implies that even the apparently “nice” semiring ZE’;
has no nonzero injective semimodules, if this definition is used. An examination

of the proof of the proposition just cited shows that the trouble is caused by
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the existence of non-cancellative semimodules, even over a cancellative semiring.
This immediately suggests a solution: only allow cancellative semimodules to

be used. I will formalize this idea by using categories.

Definition 3.1.1. Let 901 be a category of S-semimodules. An element I of
M will be called M-injective iff for each pair of elements A and B of M, each
S-monomorphism f: A — B, and each S-homomorphism g: A — I, there exists
an S-homomorphism h: B — I such that g = h o f (i.e., the following diagram

commutes).
YRERS:
gl /// h
)
Proposition 3.1.2.  Let 9 be a category of S-semimodules and (A;)ics a
family of elements of 9 such that [];c; Ai is in 9. Then [];c; A; is M-injective

iff A; is M-injective for all 1 € I.

Proof. Assume that [[;c; Ai is M-injective. Fix k€ I. Let A, B € M,
and f:A — B and g:A — Aj be S-homomorphisms such that f is injec-
tive. Let m:[];c; Ai — Ak be the canonical projection and j: Ax — [];c; A
the canonical injection. Since Hiel A; 1s M-injective, there exists an S-
homomorphism h: B — Hie ; Aisuch that jog = ho f. Then roh: B — A; and
(roh)of=mo(hof)=mo(jog) =(roj)og=g. Hence Ay is M-injective.
Al p
/
gl //
v ‘?k Jh
j w II
1)y
[14:

1€l



30

Conversely, assume that A; is 9l-injective for all : € I. Let A, B
S m, and f: A — B and g: A = [[;c; Ai be S-homomorphisms such that f is
injective. Fix i € I, let m:[];c; Aj — Ai be the canonical projection, and set
g; = m;0g. Since A; is M-injective, there exists an S-homomorphism h;: B — A;
such that g; = h; o f. By the universal mapping property of direct products,
there exists a unique S-homomorphism h: B — [] jer Aj such that h; = m;oh for
all : € I. Since g is the uniqu§ S-homomorphism mapping A to [[;c; A; such
that g; = m;0g for all 1 € I, to show g = ho f it suffices to show m;0(ho f) = g;
forallz € I. Fixi € I; then mjo(ho f) = h;o f = g;. Hence g = ho f, so

Hjel A;j is M-injective. £
Let €5 denote the category of all cancellative S-semimodules.

Corollary 3.1.3. Let (A;)ier be a family of elements of the category Cg.
Then [];c; Ai is an element of €s, and thus [];c; Ai is €s-injective iff A; is

Cs-injective for all € I.

Proof. Note that [];c; Ai € €s by [1], Proposition 13.53. The rest is obvi-

ous. ' #

3.2. Cs-injective semimodules

The main result of this section is Theorem 3.2.7, which says that ev-
ery cancellative semimodule may be embedded in a €g-injective semimodule.
Proposition 3.2.6 plays a major role in its proof, and also provides a class of

specific examples of €s-injective semimodules. As we shall see in this section
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and the next, the key to many of these proofs is the fact that a cancellative
semimodule may be embedded in its group of differences.

Before discussing €s-injective semimodules, I need to say a little about

injective Z-modules.

Definition 3.2.1. The abelian group D is said to be divisible iff for every
element z of D and every nonzero integer n, there exists an element y of D such

that ny = z.

Theorem 3.2.2.  ([2], Chapter 1, Theorem 6) An abelian group D is an

injective Z-module if and only if D is a divisible group.

Lemma3.2.3. Therelationx = {(ql,q2) [ Q1,92 € Q(')" and |1 — q2] € Zg'}

. + +
is a Zg -congruence on Qg .

Proof. Clear. H#
Notation. Denote Q7 /~ by Q7 /Z{.

Proposition 3.2.4. QF /ZJ is a divisible group.

Proof. First, I must show that QF /Z$ is an abelian group. Since Qf isa
ZF-semimodule, QF /Z{ is also a ZJ-semimodule. Thus it only remains to
show that every element of QF / Zg’ has an inverse. Let [¢]~ be an element of
QF /ZZ. Then there is a positive integer m, such that mg — 1 < ¢ < my. Thus
mg — q € QF and [~ {'[771q — ql= = [+ mg — ql= = [my]x = [0]x. Hence

[mg — ql= = —[q]=. Therefore, QF /Z7 is an abelian group.
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Next, let [g]~ be an element of QF /Zg and n a nonzero integer. If n > 0,
then [¢/n]~ € QF /Z§ and n[g/n]x = [q]=. If n < 0, then —[¢/(—n)]= € QF /ZF

and n(—[g/(—n)]=) = [g]=. Therefore, Qf /ZF is divisible. #

Lemma 3.2.5. Let D be a divisible group and S a semiring. Then

Hong- (S, D) is a €s-injective left group semimodule.

Proof. Note that by Proposition 2.1.12 Hong. (S, D) is an abelian group, and
in addition is a left S-semimodule using the scalar multiplication defined on it

as follows: if s € S and f € Homzé (S, D), then sf: S — D is given by

(sf)(s") = f(s's)  forevery s'€8S.

Observe that since Homz’y (S, D) is a group, it is certainly cancellative.
To show that Hong- (S,D) is €s-injective, consider the following dia-
gram of S-homomorphisms and elements of €s with f injective:
A w0 B

ol
Homy+ (S,D)

I must show the existence of h: B — Homg4 (S,D) such that ho f = g.

Let g:A — D be defined by g(z) = [g(z)](1) for every z € A.
Then g € Hong(A,D). Let :*:B — B be the standard embed-
ding. Then v = go f~' o (:2)71:i? (f(4)) — D is -é homomorphism and
A = i% (f(A)), which is a submonoid of B®. Thus, we have the following dia-

gram, where (i® (f(A))) denotes the subgroup of B# generated by i® (f(A)).
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A i (f(4)) > (12 (F(4)) . B2

Note that B4, (i% (f(A))), and D are groups. By Proposition 2.3.6, there exists
a unique group homomorphism y2: (i® (f(A))) — D such that v2 |;a( A)) =1-
Since D is divisible, D is an injective Z-module by Theorem 3.2.2, so there exists
a group homomorphism h: BA — D such that hol (i2(f(A))),BA = s

I claim that h 032 o f = §. Let a be an element of A. Note that (2 o
) € (i* (£(4))) and ¥2fia(s(ay (i€ (f(a))) = (v 0i* o f)(a), which equals
G(a) from the diagram. Thus (k 0i® o f)(a) = ho Liacsay,.Bs (32 (f(a)) =
72 (1% (f(a))) = g(a), so the claim is proved.

Now, define h: B — Homgyt (S,D) by h(y)(s) = hoi?(sy) forally € B
and all s € S. Clearly h(y) € Homz+ (S,D) forall y € B. Let z, y be elements of
B and t, s elements of S. Then h(z+y)(s) = hoi®(s(z+y)) = hoi®(sz+sy) =
h(z)(s) + h(y)(s), and h(tz)(s) = hoi®(s(tz)) = h 0 i®((st)z) = h(z)(st) =
(th(z))(s). Hence h is an S-homomorphism.

Finally, I will show that ¢ = ho f. Let a be an element of A and s an
element of S. Then [(h. o f)(a)l(s) = [h(f(a))](s) = h o i?(f(sa)) = G(sa) =
[9(sa)](1) = [s9(a)](1) = [g(a)](Ls) = [g(a)](s). Hence ho f =g.

Therefore, Homg+ (S, D) is a €g-injective left group semimodule.  #

Proposition 3.2.6. Let F be a free right S-semimodule and D a divisible

abelian group. Then Hong (F, D) is a Cg-injective left group semimodule.
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Proof. By Proposition 2.1.12, Homg+ (F, D) is a left group S-semimodule, so
it only remains to show it is €s-injective. Let B be a subset of F' such that
every element a of F' can be written uniquely as a = Zbe p bss, where s € S
for all b € B and only finitely many of the s;’s are nonzero. Let My = S for all
be B.

I claim that Homg4 (F. D) 2 [yen Homg+ (M, D). (As motiva-
tion, note that by Proposition 2.5.2(iii), F = @) ,cp Ms.) Define a map
¢ Hong. (F,. D) = [liem Hong- (My, D) as follows: for each A € Hong. (F,D),
let

H(A) = (Ms)seB,

where Ay € Homg+ (M3, D) is given by Ap(s) = A(bs) for all s € S. Then
it is easily checked that ¢ is a group homomorphism and ¢ is injective. I

will show that ¢ is surjective. Let (y)seB € HbeB Homzau(Mb,D). De-

fine \F — D by A(Z4epbss) = 2pep(ss). Then X is well-defined and

A E Hong (F,D). It is easy to show that Ay = ~, for all b € B. Hence
#(A) = (7»)sep and ¢ is surjective. Thus Homz+ {(FD)=H. o Hong (M3, D).
By Lemma 3.2.5, Homgz+ (M, D) = HomZ;r (S, D) is €gs-injective and by Corol-
lary 3.1.3, [[,cp Homgy (M,, D) is €s-injective. Therefore Homy+ (F,D) is also

Cs-injective. #
Theorem 3.2.7. Every cancellative S-semimodule A is a subsemimodule of

a Cg-injective group semimodule.

Proof. By Proposition 2.1.13, it suffices to show that A is embedded in a €5--

injective group semimodule. Let D = QF /Z7. Then D is a divisible group, all of
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its elements are of finite order, and for each positive integer n, D has an element

of order n. Let A = Homgy+ (A, D). Note that A is a right S-semimodule by the
note following Proposition 2.1.12, where for each s € S and A € Hong (A,D)
As is defined by (As)(a) = A(sa) (for all a € A).

By Proposition 2.5.2(iv), there is a free right S-semimodule F' and a

surjective map a: F — A. Define an S-homomorphism a*:HomZg (A,D) —
Hong. (F,D) by a*(A\) = Aoa for all X € Hong. (A,D). It is easy to show

that o* is injective. Hence Homgz+ (A, D) can be embedded in Hong (F, D),
which is a €g-injective left group semimodule by Proposition 3.2.6. To finish

the proof, it suffices to show A can be embedded in Hong. (fi, D).
Define 6: A — Homys (4,D) by 6(a)(@) = @(a) for all @ € A and

all @ € A. Then 6 is an S-homomorphism, so it only remains to show that
6 is injective. By Proposition 2.3.5, there exists a unique S-homomorphism
6: A = Homgy (A, D) such that §0i2 = 6, where i®: A — A2 is the standard

embedding. Because 2

is injective, it is enough to show that 8 is injective, and
since A% and Homzé. (A, D) are both groups, it suﬂfices to show @ maps nonzero
elements to nonzero elements.

Let a be a nonzero element of A®. I claim there exists a Z-

homomorphism A: A2 — D such that d = A(a) is nonzero. There are two

cases:

Case I. a has infinite order.

Then (a), the subgroup of A% generated by a, is a free Z-module. Let

d be a nonzero element of D and define a group homomorphism A: (a) — D

1183 N 6Ad
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by M ka) = kd for all k € Z. Since D is divisible, D is an injective Z-module.

Consider the following diagram:

(a) = 7‘D

Then there exists a Z-homomorphism A: A2 — D such that A = X o L(a), a0 =

Al(ay- In particular, Ma) = A(ay(a) = A(a) = d, which is nonzero.

Case II. a has finite order.

Then there is an element d of D such that o(d) = o(a). Hence (d) = (a).
Let A\:(a) — (d) be the isomorphism such that A(a) = d. Clearly d # 0. As in
Case I, there exists a Z-homomorphism A\: A% — D such that A\ = Al(ay, and
consequently d = \(a) # 0.

To show 6(a) # 0, let v = X042, Then v: A — D, so v € A. Note that
because a € A®, there exist elements a;, a; of A such that a = i®(a;) —4 (az).
Thus 8(a) = 0i®(a1) — 01 (az) = 6(a;) — 0(az), so B(a)(y) = 8(ar)(A0i?) —
8(az)(A0i®) = Xoi®(a1) — Aoi®(az) = A(a) = d # 0. Hence §(a) # 0, s0 8 is
injective.

Therefore, A can be embedded in Hong. (fi, D), which can be embed-
ded in the €s-injective group semimodule Hong (F,D), so A is embedded in a

Cs-injective group semimodule. e

Corollary 3.2.8. If there exists a nonzero cancellative S-semimodule, then

there exists a nonzero €g-injective semimodule.

Proof. This follows from Theorem 3.2.7. #
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The hypothesis that there exists a nonzero cancellative S-semimodule
in the above corollary is necessary, because there are semirings with no nonzero

cancellative semimodules, as the following example shows.

Example. Consider S = Z§ U{co} as mentioned in Chapter I. Then the only

cancellative S-semimodule is {0}.

Proof. Let A be a cancellative S-semimodule. If z € A, then oo -z =

(00 4+ 1) -z = oo - z + = which implies that z = 0. Hence A = {0}. #

Corollary 3.2.9. Let D = Qf/Z{. If there exists a nonzero cancellative

S-semimodule, then Hong- (S, D) is nonzero.

Proof. Thisfollows from the proofs of Theorem 3.2.7 and Proposition 3.2.6. #

3.3. Essential extensions of semimodules

The important theorem here is Theorem 3.3.4. The two last results of

this section are needed in some of the proofs concerning €s-injective hulls.

Definition 3.3.1. An S-semimodule B is an essential extension of a
subsemimodule A iff for every S-semimodule C and every S-homomorphism

f:B — C, f|a is injective implies f is injective.

Note. To say that B is an essential extension of A is the same as saying that

A is large in B in the terminology of [1] (see page 179).
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Lemma 3.3.2. Let A be a cancellative S-semimodule. Then A® is an essen-

tial extension of 12 (A).

Proof. Let C be an S-semimodule and f: A — C an S-homomorphism such
that f|;a(a) is injective. To show f is injective, let i?(a1) — 12 (az) and % (b)) —
i8(b,) be elements of A such that f(i®(a;) — i®(az2)) = f(i%(b1) — 14 (b2)).
Adding f(i®(a2)) + f(i®(b2)) to both sides and simplifying yields the equation
£ (an)+i2 (b)) = FE5 (b1)+i5 (a2)), But 8 (ar)+i% (b) and i (by) +i4 (az)
are elements of i2(A4) and fliaca) is injective, so we get i%(a1) +12(b) =

' z'A(bl) o iA(a2). Thus iA(al) 5 z'A(<l2) = iA(bl) - iA(bg), and f is injective.

Therefore, A2 is an essential extension of i®(A4). #

Proposition 3.3.3. Let A be a cancellative S-semimodule. If A has no

proper cancellative essential extensions, then A is a group S-semimodule.

Proof. Let A be a cancellative S-semimodule and assume A has no proper
cancellative essential extensions. By Lemma 3.3.2, A® is an essential extension
of i®(A). Note that A = i®(A) by the S-isomorphism . Let ¢ = i®. By
Proposition 2.1.13, there exists an S-semimodule A* with A C A* and"an S-

isomorphism *: A* — A2 such that ¢*|4 = .

A* _‘P_._) AA
Ul Ul
AL 84

I claim that A* is an essential extension of A. Let C be an S-semimodule
and f:A* — C an S-homomorphism such that f|4 is injective. Note that

fo(p*) 1:A® = C and fo (¢*)7!;aca) is injective. Since A® is an essential
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extension of i2(A), fo(p*)7! is injective. Consequently, f is also injective,
which implies that A* is an essential extension of A. Since A* = A%, A* is a
group S-semimodule; a fortiori, A* is cancellative. Thus A* is a cancellative
essential extension of A. By assumption, A = A*. Therefore, A is a group

S-semimodule. #

Theorem 3.3.4. Let A be a cancellative S-semimodule. Then A is Cg-

injective iff A has no proper cancellative essential extensions.

Proof. Assume that A is a €g-injective semimodule. Let B be a cancellative
S-semimodule such that B is an essential extension of A. Then A C B. Because

A is Cs-injective, there exists an S-homomorphism h: B — A such that 14, =

holy,g.
1a,B -
=t B
e
1 -
AL
Since h|s = 14, h|a is injective. Thus h itself is injective because B is an

essential extension of A. I will now show B C A. Let b € B. Then h(b) = a for

some a € A, so that a = 14 g(h(b)). Thus

h(a) = h(14,8(R())))
= 14(h(b))

== hibl

Since h is injective, b = a, which implies b € A. Consequently, A = B. Hence

A has no proper cancellative essential extensions.
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Conversely, assume that A has no proper cancellative essential exten-
sions. By Proposition 3.3.3, A is a group S-semimodule. By Theorem 3.2.7,
there exists a €s-injective group semimodule @ such that A C Q.

Let P={E CQ | E is a group S-semimodule and EN A = {0} }.
Applying Zorn’s Lemma, let X be a maximal element of P, ie., X C Q, X is
a group S-semimodule and X N A = {0}. Note that X, Q, and A are groups,
and thus (A @ X)/X and Q/X are well-defined, and (A @ X)/X C Q/X. It
is easily checked that (A @ X)/X and /X are actually S-semimodules, and
that the map ¢: A — (A & X)/X given by ¢(a) = a+ X for all a € A is an
S-isomorphism. Applying Proposition 2.1.13, let C'* be an S-semimodule with
A CC* and ¢*: C* — Q/X an S-isomorphism such that ¢*|4 = .

BRI Q) X

Ul Ul
A (A X)/X

I claim that C* is an essential extension of A.

Let C be an S-semimodule and f: C* — C an S-homomorphism such
that fIA is injective. Consider @ 5 Q/X —Sfi» p A C, where 7(q) = ¢+ X
forall g€ Q. Let ¥ = fo(p*)7! on. Then X C zs ¥, and zs ¥ € P. Indeed, the
oniy requirement not obviously satisfied is that zs) N A = {0}. Let a € zs) N A.
Then 7(a) = a + X = ¢(a) = ¢*(a), so that (¢*)~! o w(a) = a. It follows that
0 =v(a) = fo(p*)"! onw(a) = f(a), and because f|4 is injective, this implies
a = 0. Hence zsy) N A = {0}. Since X is a maximal element of P, X = zs1.
Now I can show that f is injective by applying Proposition 2.3.7. Let ¢ € zs f.

Since ¢*(c) € Q/X and 7 is surjective, there exists an element ¢ of @ such

that 7(q) = ¢*(c). Consider that ¥(q) = fo (¢*)"' on(q) = f(c) = 0. Thus
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g€zsyp =X,s07(q) =q+ X = X. Then ¢*(¢) = X, which is the identity of
Q/X. Since ¢* is an S-monomorphism, ¢ = 0*, where 0* is the identity of C*.
Hence zs f = {0*} which implies f is injective. Consequently, C* is an essential
extension of A.

By assumption, C* must equal A. Thus ¢ = ¢*,s0 (ABX)/X = Q/X.
Hence A@ X = Q. Note that A® X = A x X (direct product). Since Q is €g-

injective, A x X is also €s-injective. By Corollary 3.1.3, A is €g-injective. #

Corollary 3.3.5. Every Cg-injective semimodule is a group S-semimodule.

Proof. This follows from Theorem 3.3.4 and Proposition 3.3.3. #

Lemma 3.3.6. Let AC H C H' be S-semimodules.
(i) If H is an essential extension of A and H' is an essential extension of
H, then H' is an essential extension of A.

(i1) If H' is an essential extension of A, then H' is an essential extension

of ..

Proof. (i) Let C be an S-semimodule and f: H' — C an S-homomorphism
such that f|4 is injective. Note that foly g: H — C and (foly gi)|a = flais
injective. Thus f o1y g is also injective. But then f|g = foly g is injective,

and so f is injective. Therefore, H' is an essential extension of A.

(ii)) Let C be an S-semimodule and f: H' — C an S-homomorphism such
that f|g is injective. Since A C H, f|a is also injective. Then f is injective,

immediately from the assumption. Therefore, H’ is an essential extension of
Y y

H. #
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Lemma 3.3.7. Let p: A — A’ be an S-monomorphism of cancellative S-
semimodules, B a cancellative essential extension of A, and Q a €gs-injective

semimodule containing A’. Then ¢ can be extended to an S-monomorphism

¥v:B = Q.

B '?-) Q
lA'ET TlAI’Q
A v A

Proof. Let 14 p5:A— B and 1l g: A’ = Q be the inclusion maps. Since Q is
Cs-injective, there exists an S-homomorphism ¢: B — @Q such that 14 gop =
Y olap. Note p|g =1 o0lap =14 o0y isinjective. Since B is an essential

extension of A, ¥ is injective. It is easy to check that ¢ extends ¢. #

3.4. Cs-injective hulls

The main result of this section is that every cancellative S-semimodule
has a €s-injective hull. Thanks to the work done in the previous section, its
proof is almost the same as the proof of the analogous theorem for modules over

rings.

Definition 3.4.1. Let 901 be a category of S-semimodules and I, A elements
of M. Then I is an M-injective hull of A iff I is 9M-injective and I is an

essential extension of A.

Lemma 3.4.2. Let I be a Cs-injective hull of a cancellative S-semimodule

A. Then

(1) I is a maximal cancellative essential extension of A. .
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(i) I is a minimal Cg-in jective semimodule containing A.
Proof. (i) This follows from Theorem 3.3.4.

(ii) Let J be a Cs-injective semimodule such that A C J C I. Note that I
is an essential extension of A. By Lemma 3.3.6(ii), I is an essential extension

of J. But by Theorem 3.3.4 J has no proper cancellative essential extensions.

Thus J = 1. #

Theorem 3.4.3. Every cancellative S-semimodule has a €s-injective hull.

Proof. Let A be a cancellative S-semimodule. By Theorem 3.2.7, there exists

a €s-injective group semimodule @ such that A C Q. Let
P = {E | E is a cancellative essential extension of A and AC E C Q}.

Then P satisfies the hypotheses of Zorn’s Lemma. Let H be a maximal element
of P, i.e., H is a maximal cancellative essential extension of A contained in Q.

I claim that H is a Cs-injective hull of A. It only remains to show
that H is Cs-injective, which I will do by using Theorem 3.3.4. Let H ' be a

cancellative essential extension of H. Consider the following diagram:

IH,H’
H — H'

]'H,Ql ,///
g =
Since Q is Cs-injective, there exists an S-homomorphism *: H' — Q such that
lyo = i* o 1y g = 1*|y. Then ¢* is injective, because H' is an essential
extension of H and #*|y is injective. Let H"” = ¢*(H'). Then H C H". Let

C be an S-semimodule and f: H” — C an S-homomorphism such that f|g is
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injective. Note that foi*: H' = C, and f o ¢*|y is injective. This implies that
f oi* is injective, so f is also, since :* maps H' onto H"”. This proves that H"
is an essential extension of H. By Lemma 3.3.6(i), H” is an essential extension
of A. Note that H C H” C Q and H is a maximal essential extension of A in
Q, so H" = H. Now, let b’ € H'. Then *(h') € H" = H, so denote ¢*(h')
by h. Using the above diagram, i*(h') = h = 1y g(h) = ¢* o 1y, u/(h) = i*(h).
Since 7* is injective, A’ = h. This shows H' = H.

The above work proves that there is no cancellative essential extension
of H distinct from H. By Theorem 3.3.4, H is €gs-injective. Therefore H is a

€s-injective hull of A. /A —

Proposition 3.4.4. If ¢:A — A’ is an S-isomorphism of cancellative S-
semimodules, and H and H' are €g-injective hulls of A and A’, respectively,
then ¢ can be extended to an S-isomorphism +¢: H — H'. ‘

In particular, the €g-injective hull of A is unique up to an S-

isomorphism leaving invariant every element of A.

Proof. Assume that ¢: A — A’ is an S-isomorphism from one cancellative

S-semimodule to another, and H and H' are €g-injective hulls of A and A',
stively. Then H is ssential extensi f i

respectively. Then H is an essential extension of A and H' is a Cg-injective

semimodule. Consider the following diagram:

g.5nw

lA,HT TIA',H’
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By Lemma 3.3.7, there exists an S-monomorphism ¢: H — H' extending ¢.
Clearly A’ C (H) and ¢ (H) is a €s-injective semimodule. By Lemma 3.4.2(ii),
Y(H) = H'. Therefore, ¥ is an S-isomorphism.

To prove the last statement, observe that 14:A — A is an S-
isomorphism. Thus, for any €s-injective hulls H and H' of A, the above work

shows that 14 may be extended to an S-isomorphism ¢¥: H — H'. #
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