CHAPTER II

FUNDAMENTAL CONSIDERATION

Theory of Thin, Isotropic Elastic Plates

The thin elastic plate bending theory is based on
assumptions [13] that plane sections remain plane during bending
that the deflection are small comparing with the thickness of
plate. The effect of shear forces on the deflection of plates

also disregarded.

the
and

the

A thin plate element of thickness h , in polar co-ordinates

(p,0) , as shown in Fig. la and 1b together with the positive state of

stress resultants. These moments and shear forces all acts per unit

length, while the slopes and deflections refer to the middle surface

of the plate. The expressions of the stress resultants in terms of

the deflection, w , may be written as [131:

M = =D [ dPw+v (1ow+1 2w ) ],
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M, = -D(1-v»)2(1dw), (3)
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Q = -Da(Vw), (4)
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Q = -D1a(Vw), (5)
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where M, = normal bending moment per unit arc length,

M_ = transverse bending moment per unit length,

By = =8 _J3% twisting moment. per unit length,

g = normal shear per unit. arc length,

Q = transverse shear per unit length,

v = 2%/0p" + (1/prasap + (1/p°)0° /20"

= Laplacian opertor,
D. = Eh’/ 12(1-v") = flexural rigidity.

In which, E is the modulus of elasticity, h the plate thickness and v

the Poisson’s ratio.

Furthermore, the Kirchhoff’s shears per unit length v and

V_, may also be computed as:

Vo = g 1M, (6)
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By considering equilibrium of the stress resultants of plate

element.,, Fig. 1, it leads to the governing equation [13]:
vZvZ wp,® = q(p,0)/D. (8)

In which, g(p,0) denotes transverse load per unit area applied to the

plate.

Betti’s Reciprocal Theorem

The boundary integral equations may be conveniently formulated
by using the Betti’s reciprocal theorem based on energy considerat.ions
143 It stated that if a linearly elastic body subject to two
separate force systems is in equilibrium and compatibility, the work
that would be done by the first system of forces in acting through the
corresponding displacements produced by the second system of forces is
equal to the work that would be dong by the second system of forces in
acting through the corresponding displacements produced by the first

system of forces.

Boundary Integral Equations Formulation

To solve a problem of plate bending, it would be perfect if
one can seek a function that satisfies the governing equation, Eq. 8,
and the prescribed boundary conditions of the plate. However, for
plates of irregular plan forms or boundary conditions, it will

extremely complicated, if possible at all, to obtain such solution
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funct.ions. Aiternatlvel a boundary element technique, based on
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Betti’s reciprocal theorem, may be formulated as follows:

Consider an annular plate with a bounded domain A , as shown
in Fig. 2, in which, a and b denote the outer and inner radius
respectively. Two distinct systems of éompatible deflections and
equilibrating stresses, one real and one virtual (designated by
asterisks), are considered acting separately on the same plate domain.
The real one (Fig. 2a), which is loaded by transverse loads of
intensity q(¢,q) , are prescribed by mixed boundary conditions of
simple, clamped and free edges supports with N_ interior columns.
Let the outer edge of the real plate be divided into K sections of
different boundary conditions with the beginning angle v' s = 15203,
...,K, while sections K+1 to L belong to the inner edge. Along
each of these sections of the edge and at each interior column, the

boundary conditions may be any one of the following:

- For simple supports, W ; - =t 0 (9a)
For clamped supports, W = owop=_ O (9b)
For free edges, ¥, = Mp I (9¢)
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For interior column'supports, W (10)

In which, w, ow/dp = deflection and normal slope, V-5 normal

Kirchhoff’s shear, and B, = normal bending moment.

In the virtual system, Fig. 2b, a fundamental solution is



taken as:
. 2 .
w (p,03¢,00) = r In r / 81D, (11)

which is the deflection at a point (&,0) due to a unit singular load
acting at a point (p,8) , where the distance between the two points

are denoted by:
T = {pz + ga - 2p¢ cos(a-e)}I/z. (12)

This deflection function which satisfies the governing equation, Eq.
8, is compatible and the associated stress resultants obtained by

appropriate differentiation, Egs. 1 to 7, are in equilibrium.

Since the real system in Fig. 2a must also be in equilibrium
and compatibility, and the material is assumed to be linear elastic, a
virtual work equation of the two systems based on Betti’s reciprocal

theorem may be written:

® wip,9) = J qé,a) w*(p,e;g.a) dA(S,a)
A
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+ 2 I [ Vp(gl,a) w*<p,e;g',a> - Mo(g',a) aw*(p,e;él.a)

I=1 v ‘ o8

Ey W(g',a) V‘*(p,e;g',a) - aw(gl,a) M‘*(p,e;gl,a) ] g'da
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NC
+ z R _,a) W (p,03& ,a) ; bspsa, 0$6<2T, (13)
n=1
where é' = a H ¥ < I K, ~for the outer edge,
b s K+#1 < I < L, for the inner edge. (14)

R, = column unknown reaction.
And )] = 1 when (p,0) is inside the plate domain,
1/2 when (p,0) is right on the boundary. (15)

The latter value of ¢ is due to the fact that when a unit load of the
virtual system, Fig. 2b, acts right on a smooth boundary point, only a
half of it is in the domain of the plate to produce virtual external

work.
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In Eq. 13 above, 8w*/8§, V" and M‘* denote normal slope,
Kirchhoff’s shear and normal bending moment corresponding to the

def lection, W , in Eq. 11 of the virtual system.

Furthermore, in any section on the boundary, two of the four
unknown integrand functions, w, ow/dp, V_ and ", will be prescribed
by one of the boundary conditions in Eq. 9. Thus, in each section of
the plate boundary, there remains only a pair of unknown functions.
Therefore, altogether there are 2L unknown integrand functions plus
N_ unknown values of column reactions, R_ . These unknowns can be

determined by approaching the unit load in the virtual system to each



and every section of the boundary and to each point of the column
location, and consider the deflection function, as derived in Eq. 13

together with its normal slope as follow:

At each sect.ion on the boundary,

1 w(pJ,e) = [ qé,a) w*(pJ,e;g,a) dA(S,00)
2 A
Lyt
+ E I [ V@0 w058 0 - M &0 au(p’,038 @)

I=1 v 28
- v, v‘*(pJ,e;g',a) + w0 Mg*(pa,e;gl,a) ] ' du
N ap

c

+ Z R_(Z,a) wp’ 658 ,a) 3V 6y, J=1,2,3,...,L, (16)

n=1
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1 ou(p ,0) = I q,a) aw (p ,038,a) dA(S,00
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- w0 v, p”,058 00 + awg' 0 oM, (p”,038 00 ] ' du
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2 ) RGay oW’ 038 ) y'eyt?, J=1,2,3,...,L. (D)
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In which, pJ = a for il $id Sk,

e

b ;3 fork+i < J:< L. (18)
At each column location,

0 = I qié,a) w*(pm,em;g,a) dA(E,a)
A
L Yl+1
+ E I[ Vo o0 wip,,0, 38" o0 - M (€0 awp,0, 58 @
I=1 vy ;g_
- w(g',a) V‘*(pm,em;gl,a) + 8w(§',a) M‘*(pm,em;él,a) ] g'da
2
Nc

+ 2 Rc(gn,an) w*(pm,em;gn,an) som=1.,2,3,...sN s (19)

n=1

The integral equations which are formulated in Eqs. 16, 17 and
19 are sufficient to be solved for the 2L unknown integrand functions
and the N_ unknown values of column reactions, R_, by the familiar

numerical technique as to be elaborated in the next chapter.
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