Chapter II
Theoretical Considerations

It has been. mentioned that the transport of
moisture within a porous media is proportional to its
concentration gradient if influence of temperature and
pressure gradients can be neglected (W.J.A.H. Schoeber,
1976). This simplification allows the phenomenon to be
described by a diffusion equation with a diffusion
coefficient which varies with water concentration. The
measurement of the concentration dependence of this
diffusion coefficient has been the object of several
studies (S. Yamamoto, M Hoshika, Y. Sano, 1984; M.
Suzuki, S. Maeda,1978; V.T.Karathanos, G.Villalobos, G.D.
Saravacos,1990j. Among concentration dependence of
diffusion coefficients‘mentioned in the above references
are the linear concentration dependence, the exponential
concentration dependence, and the power-law concentration
dependence.

The following will be a derivation of the
equations describing moisture diffusion in a porous media
where moisture concentration alone will be the major
driving force. The boundary conditions will relate to a

water saturated bed of porous media suddenly exposed at



the top to ambient air at varying conditions. The system

will operate under isothermal conditions.

The Diffusion Equation

The derivation of the diffusion equation may be

done by a differential moisture balance in a slab of

porous media as follows
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Figure 2.1 Schematic representation of a column

filled with a porous media

The mass balance on a slab in a column between position

z = 2z and z = z+Az can be written as

rate of mass in - rate of mass out = rate of mass

accumulation
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Dividing by AAz and taking the limit as Az —0 gives
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From equation (2-3) to (2-5) we obtain
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Let D be dimensionless : D, and D, depends on

concentration.

We finally obtain-
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We have the following initial condition

m(t=0,z) = mg(z) (2-8)

and the following boundary conditions



@(t,z =0) = 0
oz

.o m(t,z=2) = mg(2) (2-9)

1. Placing the equations in a finite difference

form.

We write m(t,z) in the form of m(i,j) where i
refers to time increments and j refers to (depth)
position within the column. ‘

The partial differential equation then becomes
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Dr(m;aZ2+ = \—az) = (_at) (2-11)

We illustrate the finite difference method

(Finlayson,1980) by application to equation 2-7, and let
my(t) = m(z4,t)

dm- 1
atj ~ a3 [Dr(m§4+3/2XM541 = Mj) = Dr(mj-1/2Xm5 - 41 )] (2-12)

Application of a simple Euler method gives

m(i+ llj)_m(illj)
At

= Azz[Dr(mi,j+1/2Xm(l,J+1)-m(l,J)) =T
’Dr(mi,j—ljzxm(ilj)-m(i,j-1))]
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where m(i,j) = m(ti,z5)
We expand the equation in a Taylor series and use
a truncation error,(Finlayson,1980) and the scheme is

second-order provided.

%[Dr(mi,jﬂ/z)*Dr(mi,j—l/z)] = Dr(mi,j)+O(Azz) ‘ (2-14)

Where 0(Az2) is the truncation error.

If we let D be constant for each interval then

m(i+1:j)*-m(i:j) - dm(llj)

At dt (2-15)
Dr(mij), . . v ks 3
= —————;—’J—(m(la+1)-2m(l,3)+m(1,3-1)
Az
As D, (m) may be expressed as either D, = am+(1l-a)
or D, = expla(m-1)] or Dy = m@
The boundary conditions become
m(0,j) = mo(J)
(2-16)

m(t,j=Ng+1) = mg

Where Ng = number of discretizations.

2. The computational subroutine to integrate the

equation

It was decided to ﬁse the Crank Nicolson method
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based on an iterative search method for the i+l row (time
interval). We divide the column into Ng4i parts(my).
Knowing m(0,j) being the initial condition we éeek the
value for row number 1 or m(i,j), we need to assume this
i=1 row first, then compute the elements of the row i=1
from point j=Ngq to point j=0 iteratively. This method is

based on solving the Ng-1 matrix
Calculation of the diffusion equation.

1. Calculation of the main equation of the

Crank - Nicolson Method

Starting with the following equation.

om 8%m
(ch‘) = Dr(m)—é‘z—z‘ (2-17)

We assume point E as the half time increment

mi{i,3-1) m(i,j) m(i,j+1)
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am - m(i+llj)—m(ilj) .
5t—|E e (2-18)
and
ol _ 1(624“‘! Ol (2-19)
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equation (2-17) then becomes

m(i+1,3)-m(i3)

R I A
D{mji 4)———=[m(i,j-1)-2m(i,]

AL x{ l'J)ZAzz[ (1,-1)-2m(i,3)
+m(i,j+1)+m(i+1,j+1)-2m(i+1,3) (2-20)
+m(i+1,j+1)]

D(mj; 5)At .
Let M —E(—i'—g-— we rewrite
7

(L+M)m(i+1,3)=(-Mmi,])

+§M(m(i,j +1)+m(i,j-1))
: (2-21)
S+ EM(m(i +1,j+1)+m(i+1,j+1))

0
Defining a new working array F(i,j) (which we

know) as follows

(1+MR,5) = (1 -M)m(i,j%M(m(i,j +1)+m(i,i-1)) (2-22)

We rewrite

. o' " g M . " . . _
m(1+1,j)—F(1,3)+——2(1+M)(m(1+1,3+1)+m(1+1,] 1)) (2-23)
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Which is the equation that is to be used for the
calculation. |
2. Development of the computer program in the

C-language

There are several functions we want the progame
to do. Firstly the program calls in the initial and
boundary <conditions and then we ©can create a
concentratipn brofile_at yarious points along the column
every houf. -

Then we need a program that can sum the équare of
the differences between the experimental points and
pdints obtained from the first program. We need a

subroutine for the form of the Dy equation.

FORM OF D, EON.

EXP.DATA

Figure 2.2 computation process

a is a parameter of the D, Equation, € is the

criteria between experimental data and computed value.
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