การสังเคราะห์และศึกษาการส่งผ่านผิวหนังนอกกาย ของเกลืออินทรีย์ไลโดเคน

MAD

นางสาวสุปรียา ละออง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต ภาควิชาเภสัชเคมี บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย พ.ศ. 2534 ISBN 974-578-921-6 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

SYNTHESIS AND <u>IN VITRO SKIN PERMEATION STUDY</u> OF LIDOCAINE ORGANIC SALTS

MISS SUPREEYA LA-ONG

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Department of Pharmaceutical Chemistry

Graduate School

Chulalongkorn University

1991

ISBN 974-578-921-6

Copyright of the Graduate School, Chulalongkorn University

Synthesis and in vitro Skin Permeation Study Thesis title

of Lidocaine Organaic Salts

By

Miss Supreeya La-ong

Department

Pharmaceutical Chemistry

Thesis Advisor

Associate Professor Opa Vajragupta, Ph.D.

Associate Professor Sunibhond Pummangura, Ph.D.

Academic Year

1990

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Master's Degree.

> Thanon Vojiashaya Dean of Graduate School (Prof. Thavorn Vajrabhaya, Ph.D.)

Thesis Committee:

Suttatip Chartaraskul Chairman

(Associate Prof. Suttatip Chantaraskul, M.Sc in Pharm.)

Opa Vajrapupta

(Associate Prof. Opa Vajragupta, Ph.D.)

Sumbhard Immangu. Membe

(Associate Prof. Sunibhond Pummangura, Ph.D.)

Panda Vayumhasuman Member

(Instructor Panida Vayumhasuwan, Ph.D.)

สุปรียา ละออง : การสังเคราะห์และศึกษาการส่งผ่านผิวหนังนอกกายของเกลือ อินทรีย์ไลโดเคน (SYNTHESIS AND <u>IN VITRO</u> SKIN PERMEATION STUDY OF LIDOCAINE ORGANIC SALTS) อ.ที่ปรึกษา : รศ.ดร. โอภา วัชระคุปต์, อ.ที่ปรึกษาร่วม : รศ.ดร. สุนิพนธ์ ภุมมางกูร, ¹³⁰ หน้า. ISBN 974-578-921-6

การวิจัยนี้เป็นการออกแบบ และสังเคราะท์เกลืออินทรีย์ควอเทอร์นารีแอมโมเนียมของ ไลโดเคนในรูปโพรดรัก (prodrug) ซึ่งคาดว่าจะเพิ่มการส่งผ่านทางผิวหนังได้โดยกลไกการขนส่ง แบบไอออนคู่ (ion-pair) สารที่สังเคราะห์ได้จำนวน 4 สารคือ ไลโดเคนอะดิเปต, ไลโดเคน มาสีเอต, ไลโดเคนมาโลเนต และ ไลโดเคนโทชิเลต นำมาหาค่าสัมประสิทธิ์การกระจายตัว (apparent partition coefficient) และทดสอบการส่งผ่านผิวหนังโดยใช้หนังจากลูกหมู การวิเคราะท์ทาปริมาณสารที่ส่งผ่านผิวหนังใช้เทคนิคอนุพันธ์ลำดับที่ 1 ของสเปคโตรโฟโตเมทรีของการ ดูดกลืนแสง การประเมินผลการส่งผ่านคำนวณในรูปของปริมาณสะสม และอัตราเร็วในการส่งผ่าน ผิวหนัง ผลที่ได้เมื่อนำมาเปรียบเทียบกับไลโดเคนและไลโดเคนไฮโดรคลอไรด์ พบว่าการส่งผ่าน ผิวหนังของเกลือไลโดเคนอะดิเปตและเกลือไลโดเคนมาโลเนตที่ 12 ชั่วโมงมีค่าสูงกว่าไลโดเคน ไฮโดรคลอไรด์ และมีค่าใกล้เคียงไม่แตกต่างจากไลโดเคนอย่างมีนัยสำคัญที่ระดับความ เชื่อมั่น 95% จากรูปแบบของการส่งผ่านผิวหนังของเกลืออินทรีย์ไลโดเคนที่แตกต่างจากไลโดเคน พร้อมทั้งการ ส่งผ่านผิวหนังที่สูงกว่าไลโดเคนไฮโดรคลอไรด์ อาจแสดงถึงการขนส่งแบบไอออนคู่ของโพรดรักที่เกิด เพิ่มชี้นจากการขนส่งแบบธรรมดา

ภาควิชา เภสัชเคมี	ถายมือชื่อนิสิต	สุปริยา	n:001
สาขาวิชา เภสัชเคมี	ลายมือชื่ออาจารย์ที่ปรึกษ	11	
ปีการศึกษา2533	ลายมือชื่ออาจารย์ที่ปรึกษ	m IOV	7 30 370 0 84

SUPREEYA LA-ONG: SYNTHESIS AND IN VITRO SKIN PERMEATION STUDY OF LIDOCAINE ORGANIC SALTS. THESIS ADVISOR: ASSOC. PROF. OPA VAJRAGUPTA, Ph.D., CO-ADVISOR: ASSOC. PROF. SUNIBHOND PUMMANGURA, Ph.D. 130 PP. ISBN 974-578-921-6

Organic quarternary ammonium salts of lidocaine were designed and synthesized in this research study. The synthesized compounds were regarded as prodrugs of lidocaine and were expected to enhance skin permeability by ion-pair mechanism. Four organic salts were lidocaine adipate, lidocaine maleate, lidocaine malonate and lidocaine tosylate. In vitro permeation study through pig skin and determination of partition coefficients were carried out. First derivative UV spectrophotometry was employed to quantitate the permeated amount. The skin permeabilities were calculated as cumulative amount (Q) and flux (J). The skin permeation of lidocaine adipate and lidocaine malonate after 12 hours of application were significantly higher than lidocaine hydrochloride but was not significantly different from lidocaine ($\alpha < 0.05$). The increase in permeation of organic salts from lidocaine hydrochloride and the different profile of permeation from lidocaine may be the result of prodrug structure contributing ion-pair transportation besides normal route of transportation.

ภาควิชา	เภสัชเคมี
สาขาวิชา	เภสัชเคมี
ปีการศึกษา.	2533

ลายมือชื่อนิสิต Supreeya la ong. ลายมือชื่ออาจารย์ที่ปรึกษา Oc Var ray myt

อายุถือซึ่นอาจารย์ที่ปรีกษา

ACKNOWLEDGEMENTS

The author wishes to express her grateful appreciation to those who assisted her in her research and in the writing of this thesis:

To Associate Professor Dr. Opa Vajragupta, her major advisor, for her continued interest, invaluable suggestions, encouragement and guidance throughout the research studies, without whom none of this work would have been possible.

To Associate Professor Dr.Sunibhond Pummangura, her co-advisor, for his invaluable advice and willing cooperation.

To all staff of the Pharmaceutical Chemistry
Department, Faculty of Pharmaceutical Sciences,
Chulalongkorn University, for their advice and helpful
cooperation.

To the staff of the Scientific and Technological Research Equipment Center for their cooperation in analyzing pure compounds.

To the Graduate School of Chulalongkorn University for the provision of partial financial support.

To the staff of Pharmaceutical Chemistry Department, Faculty of Pharmacy, Mahidol University for their suggestion and assistance in the operation of Hitachi spectrophotometer and mechanical shaker.

To the staff of B.J. (Benja-osoth) Ltd. for their helpful cooperation.

To her friends for their friendship, understanding and encouragement.

And lastly to her parents for their love, inspiration, encouragement and cheerfulness throughout her graduate study.

CONTENTS

				Page
THAI ABSTR	ACT			iv
ENGLISH AB	STRACT			v
ACKNOWLEDG	EMENT			vi
LIST OF TA	BLES			X
LIST OF FI	GURES			xii
ABBREVIATI	ONS			xvii
CHAPTER				
I	INTRODUCTION			1
II	HISTORY			5
III	EXPERIMENTS AND	RESULTS		
	SYNTHESIS			
	A. Materials			14
	B. Methods and	results		15
	1. Lidocaine	e		16
	2. Lidocaine	e adipate .		17
	3. Lidocaine	e maleate .		18
	4. Lidocaine	e malonate		19
	5. Lidocaine	e tosylate		20
L.	IN VITRO SKIN P	ERMEATION S	TUDY	
	A. Materials .			46
	B. Methods and	results		
	1. Solution	s		47
	2. Permeati	on cell		49
	3. Skin pre	paration		49

		Page
	4. Analytical method	52
	5. Measurement of permeabilities	53
	DETERMINATION OF APPARENT PARTITION	
	COEFFICIENTS	
	A. Materials	85
	B. Methods and results	
	1. Solutions	86
	2. Analytical method	88
	3. Procedure	89
V	DISCUSSION	99
IV	SUMMARY	110
REFERENCE		112
		122
		130

LIST OF TABLES

TABLE		Page
1.	Structure activity relationship of	
	lidocaine analogs	11
2.	Recrystallization solvent, melting point	
	and percent yield of test compounds	22
3.	Approximate solubility of test compounds.	23
4.	Elemental analyses of test compounds	24
5.	Characteristic IR data of test compounds	
*	as potassium bromide pellets	25
6.	Characteristic ¹ H NMR data of test	
	compounds	26
7.	First derivative of absorbance (D_1) of	
	standard solution of test compounds at	
	272.9 cm ⁻¹	57
8.	Regression parameters of first derivative	
	mode	58
9.	\mathbf{D}_1 value of matrix interferences	59
10.	Percent recovery of test compounds	60
11.	\mathbf{D}_1 value of receptor phase after	
	application of test compounds	61

TABLE		Page
12.	Corrected D_1 value and C_{T} at various time intervals after application	62
13.	In vitro permeability of test compounds.	63
14.	Comparison of permeability results at 12 hours after application	64
15.	Comparison of permeability results at 24 hours after application	65
16.	Comparison of permeability results at 36 hours after application	66
17.	Comparison of permeability results at 48 hours after application	67
18.	Absorbance of standard solution of test compounds	92
19.	Regression parameters of absorbance mode.	93
20.	Apparent partition coefficient of test compounds	94
21.	Comparison of properties of test	109
Α.	Duncan's table	129

LIST OF FIGURES

FIGURE	P	age
1.	Infrared Absorption Spectrum of Lidocaine	
	as a Potassium Bromide Pellet	27
2.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine in Chloroform-d	28
3.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine in Chloroform-d and Deuterium	
	Oxide	29
4.	Infrared Absorption Spectrum of Lidocaine	
	Adipate as a Potassium Bromide Pellet	30
5.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine Adipate in Dimethyl Sulfoxide-	
	d ₆ and Chloroform-d	31
6.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine Adipate in Dimethyl Sulfoxide-	
	d_6 , Chloroform-d and Deuterium Oxide	32
7.	Mass Spectrum of Lidocaine Adipate	33
8.	Infrared Absorption Spectrum of Lidocaine	
	Maleate as a Potassium Bromide Pellet	31

FIGURE

9.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine Maleate in Chloroform-d	35
10.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine Maleate in Chloroform-d and	
	Deuterium Oxide	36
11.	Mass Spectrum of Lidocaine Maleate	37
12.	Infrared Absorption Spectrum of Lidocaine	
	Malonate as a Potassium Bromide Pellet	38
13.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine Malonate in Chloroform-d	39
14.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine Malonate in Chloroform-d and	
	Deuterium Oxide	40
15.	Mass Spectrum of Lidocaine Malonate	41
16.	Infrared Absorption Spectrum of Lidocaine	
	Tosylate as a Potassium Bromide Pellet	42
17.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine Tosylate in Chloroform-d	43
18.	Proton Nuclear Magnetic Resonance Spectrum	
	of Lidocaine Tosylate in Chloroform-d and	
	Deuterium Oxide	44

FIGURE	Pag	ge
19.	Mass Spectrum of Lidocaine Tosylate	45
20.	Permeation Cell	50
21.	Franz and Hadgraft Diffusion cell	51
22.	Ultraviolet Absorption Spectra of Lidocaine in Isotonic Phosphate Buffer pH 7.4 in	
	First Derivative Mode	68
23.	Ultraviolet Absorption Spectra of Lidocaine Hydrochloride in Isotonic Phosphate Buffer pH 7.4 in First Derivative Mode	69
24.	Ultraviolet Absorption Spectra of Lidocaine Adipate in Isotonic Phosphate Buffer pH 7.4	
	in First Derivative Mode	70
25.	Ultraviolet Absorption Spectra of Lidocaine Maleate in Isotonic Phosphate Buffer pH 7.4 in First Derivative Mode	71
26.	Ultraviolet Absorption Spectra of Lidocaine Malonate in Isotonic Phosphate Buffer pH 7.4 in First Derivative Mode	
27.	Ultraviolet Absorption Spectra of Lidocaine Tosylate in Isotonic Phosphate Buffer pH 7.4 in First Derivative Mode	4 73

FIGURE

28.	Calibration Curve of Test Compounds in	
	First Derivative Mode 7	4
29.	Ultraviolet Absorption Spectrum of Receptor	
	Phase from Control Experiment after 12	
	hours 7	5
30.	Ultraviolet Absorption Spectrum of Receptor	
	Phase from Control Experiment after 12	
	hours in First Derivative Mode	76
31.	Cumulative Amount (Q) of Test Compounds	
	Permeated versus Time	77
32.	Cumulative Amount (Q) of Test Compounds	
	Permeated versus Time	78
33.	Cumulative Amount (Q) of Test Compounds	
	Permeated versus Time	79
34.	Cumulative Amount (Q) of Test Compounds	
	Permeated versus Time	80
35.	Flux (J) of Test Compounds versus Time.	81
36.	Flux (J) of Test Compounds versus Time.	82
37.	Flux (J) of Test Compounds versus Time.	83
38.	Flux (J) of Test Compounds versus Time.	84

FIGURE

39.	Ultraviolet Absorption Spectra of Lidocaine	
	and Lidocaine Adipate in Octanol-Saturated	
	Isotonic Phosphate Buffer pH 7.4	95
40.	Ultraviolet Absorption Spectra of Lidocaine	
	Maleate and Lidocaine Malonate in	
	Octanol-Saturated Isotonic Phosphate Buffer	
	рн 7.4	96
41.	Ultraviolet Absorption Spectra of Lidocaine	
	Tosylate and Lidocaine Hydrochloride in	
	Octanol-Saturated Isotonic Phosphate Buffer	
	рн 7.4	97
42.	Calibration Curve of Test Compounds	98

ABBREVIATIONS

cm centimetre

conc concentration

C.V. Coefficient of Variation

g gram

hr hour

Дg microgram

ДМ micromole

mg milligram

mL millilitre

nm nanometre

rpm revolutions per minute

S.D. Standard Deviation

SEM Standard Error of the Mean