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In the use of satellite images, clouds can be an obstacle due to their 

opacity property that can block the visibility of ground objects in case of thick 
clouds and can also be blended with the underlying details in case of thin clouds. 
In this research, we propose a novel method to remove thin clouds and retrieve 
the actual information by taking the advantage of HSI color space instead of RGB 
color space. The proposed method aims to estimate the cloud appearance called 
the scattering light, remove thin clouds from intensity channel to avoid an effect 
to the original color, adjust the intensity with gamma correction to recover some 
information accidentally removed from the previous step, and restore obscure 
details by using contrast limited adaptive histogram equalization to enhance the 
intensity result. Furthermore, since thin clouds also affect saturation channel, we 
propose to increase saturation reduced as the result from thin clouds by using 
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CHAPTER I 
Introduction 

 
During the past decade, remote sensing technologies have been developing 

and have been using widely in many fields such as exploration, environment, 
military, civil engineering, and agriculture. These technologies usually involve with 
either aerial images taken by an aircraft or satellite images taken by a satellite 
depending on user’s purposes and conveniences. 

Satellite images are very useful in remote sensing. They are taken by the 
satellites that are launched around the world. Each satellite has different kind of 
sensor or device to receive electromagnetic radiation reflected from the ground, so it 
is possible to collect different types of satellite images not only in visible colors but 
also in other spectra such as infrared, ultraviolet, or microwave. The most important 
advantage of satellite images is the capability to collect data in wide areas from 
further distance when compared to aerial images, and data in those target areas are 
also updated precisely and continuously according to a constant orbit. However, 
since satellite images are taken from outer space through the atmosphere, the cloud 
appearance within satellite images is occasionally unavoidable. Therefore, the cloud 
appearance is one of the problems when satellite images are utilized. 

A cloud is a hydrometeor consisting of liquid water, or ice, or both, 
suspended in the atmosphere. It probably includes larger particles of liquid water or 
ice, as well as some solid particles such as smoke or dust. Clouds form in every 
height level in the atmosphere so clouds can be distinguished by the heights above 
ground level at which they form. There are three main levels of cloud in the 
atmosphere: high-level, mid-level, and low-level. High-level clouds generally have a 
base at altitudes of 3,000 to 7,600 meters in the polar areas, 5,000 to 12,200 meters 
in the temperate regions, and 6,100 to 18,300 meters in the tropical region. Mid-level 
clouds appear from 2,000 meters above the Earth’s surface and probably based as 
high as 4,000 meters around polar areas, 7,000 meters at mid latitudes, and 7,600 
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meters in the tropics. Meanwhile, low-level clouds are typically found at the height 
of 2,000 meters above the Earth’s surface. 

Clouds continuously transform and appear in various characteristics. However, 
clouds that are frequently observed can be classified into ten main genera and 
grouped into three previously mentioned levels: Cirrus, Cirrocumulus and Cirrostratus 
in high-level, Altocumulus and Altostratus in mid-level, Stratocumulus and Stratus in 
low-level, and Nimbostratus, Cumulus and Cumulonimbus which can be formed in 
all levels. 

Besides height levels and cloud characteristics, clouds can be classified by 
opacity as well. Opacity-based classification consists of three types: opacus, 
perlucidus and translucidus. Opacus is a thick sheet of clouds, perlucidus is a sheet 
of clouds consisting of thick clouds patches with small translucent spaces between 
each patches, and translucidus is a thin translucent patch or sheet of clouds. 
Opacity-based varieties cannot be used to classify high-level clouds which are always 
translucent naturally as well as Cumulus, Cumulonimbus and Nimbostratus which 
are always opaque. For the rest of genera, Altocumulus, Altostratus, Stratocumulus, 
and Stratus, can appear in the form of either opacus or translucidus, depending on 
the quantity of their particles. In other words, if their particle densities are low, 
clouds are transparent. Conversely, if their particle densities are high, clouds are 
opaque. Therefore, it is possible to consider thin clouds as these genera in the form 
of translucidus. On the other hand, thick clouds as these genera in the form of 
opacus. 

In the development of remote sensing technology, clouds are still a problem 
due to their opacity property which can block the visibility of ground objects and can 
also distort the actual data in case of thin clouds; therefore, a number of cloud 
removal methods have been proposed in order to obtain the real information 
without thin cloud degradation. These methods aim to eliminate cloud effect and 
retrieve the actual data with different prerequisites such as multiple input images 
taken by specific wavelengths or input images in the same position taken at different 
times. However, without complicated requirements, some methods can be used by 
using only a single input image itself, and they are called single-image methods. This 
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kind of methods is easier to be implemented and applied due to its lesser 
requirements. Most single-image methods usually involve with an image in RGB 
format or RGB color space which consists of three channels: red, green, and blue 
channels. These three channels represent the signals from objects in an image that 
response to each of the three wavelength ranges; i.e., red, green, and blue in white 
light. To remove thin clouds in an RGB image, each channel has to be processed 
individually before they are combined to form an RGB image. However, each channel 
of an RGB image is suffered differently by thin clouds because of the different 
scattering phenomenon in each wavelength of white light radiated from the sun. 
Hence, each channel should be considered separately to yield a better result; in 
other words, the additional steps, such as determining parameters depending on 
each channel, are needed in the process. As a result, it will increase the complexity 
of the method.  

Besides RGB color space, there are many other color spaces that were 
proposed for different purposes. One of these color spaces is HSI color space which 
was designed to represent colors in a similar way to human vision. In this color 
space, there are three attributes; i.e., hue, saturation, and intensity. According to the 
observation, the intensity and the saturation relate to clouds due to the 
characteristics of clouds which are white and bright when appearing in an RGB image; 
hence, it is possible to reduce an effect of thin clouds and recover the clouded 
information by adjusting and enhancing these attributes in HSI color space instead of 
red, green and blue attributes in RGB color space as usual. Therefore, in this work, 
we propose a novel single-image cloud removal method based on HSI color space 
instead of RGB color space which is less complicated to implement and easier to use 
than other RGB-based methods.  

 
1.1 Objectives 

To propose an algorithm which can effectively remove thin clouds and 
enhance details distorted by thin clouds from satellite images and still retain 
important information such as texture and color 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

1.2 Scopes and Assumptions 
1. This work focuses on removing thin clouds, particularly transparent clouds 

that we are able to see land information under the covered area and appear 
in an image. 

2. The proposed method accepts a satellite image containing both thick clouds 
and thin clouds as an input. 

3. The proposed method can preserve white objects such as roads, buildings 
and thick clouds that are nontransparent during the thin cloud removal 
process. 

4. The details under thin clouds can be enhanced in term of texture; i.e., object 
edges and contrast between surrounding pixels, and also color. 

5. The satellite images used in this work are taken above several areas in 
Thailand by Landsat 8. 

6. The satellite images used in this work are RGB color images with .jpg format. 
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CHAPTER II 
Background Knowledge and Literature Reviews 

 
2.1 Background Knowledge 

2.1.1 HSI color space  
The most fundamental color space for color images is RGB color space which 

represents colors using a mixture of three components: red, green, and blue. These 
basic components can be combined together with different proportion to display 
each color. However, RGB is occasionally unsuitable for some applications, thus 
other color spaces are developed for this reason. In image processing field, many 
color spaces have been proposed and utilized for various objectives. One of them is 
HSI color space which was developed in the 1970s for describing colors as close as 
the way human vision perceives color-making attributes. Naturally, colors can be 
seen as a combination of the original color, the purity of it and the lightness. For 
example, if a pure red light is fused with a white light, it will be seen as a fade red 
color due to the loss of its purity. Meanwhile, the lightness can brighten the original 
color up to the completely white color when it is increased, and can alternately 
darken the original color when it is decreased. This phenomenon is presented in HSI 
color space with three attributes; i.e. hue, saturation, and intensity. Hue is the color 
attribute used to represent a pure color. It is determined by an angle from the 
reference point, which is usually a red color at 0 , between 0  to 360 . Saturation 
refers to the color purity or how much a pure color is diluted by a white light. The 
maximum of the saturation is 1 which means a color is absolutely pure without a 
white light mixture, and the minimum is 0 which means the original color is fully 
diluted and becomes absolutely white. Intensity is the amount of brightness. It is in 
the range between 0 and 1 where 0 implies the darkest black, and 1 implies the 
brightest white.  

Figure 1 shows the model of HSI color space that is represented by circular 
color planes. The circles are perpendicular to the vertical intensity axis. The hue of 
any point is determined by an angle from the red axis designated as 0 , and the hue 
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increases counterclockwise from there. The saturation is the length of the vector 
from the origin to a point. 

 
Figure 1 Model of HSI color space  

Source: Adapted from [1] 
 
Conversion from RGB color space to HSI color space is defined as follows: 
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where ,H  ,S  and I  are the hue, the saturation, and the intensity components of 
each pixel in HSI color space such that 0 360 ,H   0 1S   and 0 1I  , 
whereas, ,R  ,G  and B  are the red, the green, and the blue components of each 
pixel in RGB color space which are normalized to the range [0,1] , respectively. It 
should be noticed that the hue component can be normalized by dividing by 360  
as well, and the other HSI components are already in the range [0,1]  with the given 
normalized ,R  ,G  and .B  

Similarly, an image in HSI color space can be converted back to RGB color 
space differently depending on the range of the hue which is divided into three 
sectors; i.e., RG sector, GB sector, and BR sector by the following equations. 

 
RG sector (0 120 )H   

 cos( )
1

cos(60 )

S H
R I

H

 
= + 

− 
 (4) 

  
 3 ( )G I R B= − +  (5) 
 
 (1 )B I S= −  (6) 
 
GB sector (120 240 )H   
 (1 )R I S= −  (7) 
  

 cos( 120 )
1

cos(60 ( 120 ))

S H
G I

H

 −
= + 

− − 
 (8) 

  
 3 ( )B I R G= − +  (9) 
 
BR sector (240 360 )H   
 3 ( )R I G B= − +  (10) 
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 (1 )G I S= −  (11) 
  

 cos( 240 )
1

cos(60 ( 240 ))

S H
B I

H

 −
= + 

− − 
 (12) 

 
Since HSI color space decouples the intensity and the saturation from the 

original color value (hue), it has a huge advantage when the color information is 
needed to be excluded or to be considered separately during a process. 
 

2.1.2 Image enhancement in spatial domain 
Image enhancement is basically a process for improving the original image in 

order to increase interpretability or perception of information so that the result will 
be more suitable for some specific purposes. Image enhancement methods can be 
performed in both spatial domain and frequency domain. In spatial domain, the 
image pixels are directly managed with a chosen transformation function and 
transformed to the result image which can be mathematically expressed as follows: 

 
  ( , ) ( , )g x y T f x y=  (13) 
 

where ( , )f x y  denotes the original image, ( , )g x y  denotes the transformed result 
image or the enhanced image, and T  denotes a transformation operator on the 
original image ( , )f x y . 

Image enhancement in spatial domain can be performed on each pixel by 
applying an operator to a value of each pixel individually or applying an operator to 
each pixel’s neighborhood. Normally, a neighborhood is defined by a square or a 
rectangle subimage area centered at a pixel ( , )x y , which can be called a patch. A 
transformation operator T  is applied at each location ( , )x y  to yield the output,

( , )g x y , by considering only the pixels inside a neighborhood or a patch. In case that 
a neighborhood is of size 1 1 , ( , )g x y  depends on only a pixel value at a position 
( , )x y  of an image f , and the transformation can be seen as a gray-level or intensity 
transformation expressed as  
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 ( )s T r=   (14) 
 
where r  and s  are variables denoting the gray-level of ( , )f x y  and ( , )g x y  at any 
point ( , )x y , respectively. 
 In any color space, an image is composed of various components depending 
on a color space. Each component is separately presented in an individual image, 
which may be referred to as a channel. Therefore, without combining all of these 
images or channels together, each of them can be interpreted as a gray scale image 
containing gray scale values so that a gray-level transformation can be applied to 
each component of a color image to produce an enhanced result for each 
component before combining with other components of an image and displaying as 
a complete color image.  
 There are several types of functions that are used as transformation 
functions. Two functions are used in the proposed method; i.e., power-law and 
logarithm function. 

2.1.2.1 Power-Law function 
 Power-law transformation function has the basic form:  
 
 s r=  (15) 
 
where   is a positive constant. 

Plots of s  versus r  for various values of   are shown in Figure 2. Power-law 
curves with fractional values of   map a narrow range of dark input values into a 
wider range of output values, with the opposite being true for higher input; that is, 
the darker parts in an input image will be brightened up and the contrast among 
those similar dark pixels will also be increased. Thus, the details that are used to be 
dim can be brighter and clearer, while the brighter parts are also brightened with the 
lower rate compared to the darker parts. Contrary, as shown in Figure 2, curves 
generated with values of 1   have the opposite results from those generated with 
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values of 1  ; in other words, input values will be mapped to lower values instead 
of higher values as in the case of fractional values of  . 

 
Figure 2 Plots of power-law curves with 0.25,  0.5,  0.75,  1,  1.25,  1.5,   = and 1.75  

It should be noted that the exponent term in Eq.(15) is referred to as gamma 
by convention, thus the process that uses power-law transformation by correcting 
the exponent to obtain the desired result is called gamma correction which will be 
referred to as  a power-law transformation in this work. 
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 2.1.2.2 Logarithm function 
 The basic form of logarithm transformation function is 
 
 log(1 )s c r= +  (16) 
 
where c  is a positive constant. Logarithm transformation maps a narrow range of low 
gray-level values in an input image into a wider range of output levels. The opposite 
is true of higher values of input levels. This transformation is suitable for increasing 
the values of dark pixels and expanding the differences among those pixel values to 
gain contrast in an image while compressing the higher-level values.  

The curves of logarithm transformation with varying c  are shown in Figure 3. 

 
Figure 3 Plots of logarithm curves with 1,  1.5,  2,  2.5c = and 3  
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2.1.3 Histogram processing  
An image can be represented by a histogram which plots the number of pixels 

for each gray-level value. The horizontal axis of a histogram represents gray-level 
values depending on a type of an image. For example, if an image contains G  grey-
level values, i.e., 0,  1,  2,  ...,  1G− , then the horizontal axis of a histogram represents 
value 0,  1,  2,  ...,  1G− , while the vertical axis represents the number of pixels in 
each gray-level value. Figure 4 shows an example of a gray scale image which 
contains 256  possible gray-level values from 0  to 255  (left) and its corresponding 
histogram (right).  

 

 
Figure 4 An example of a gray scale image (left) and its corresponding histogram 

(right) 
 
The histogram of an image with G  total possible gray-level values can be 

defined as the discrete function  
 

 ( )k kh r n=  (17) 
 

where 
kr  is the k th gray-level value for 0,  1,  2,  ...,  1k G= − , and kn  is the number 

of pixels in an image whose gray-level is .kr  
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An image histogram can be used for many purposes, such as enhancement, 
compression, segmentation, and description. The processes that involves with an 
image histogram is called a histogram processing.  

2.1.3.1 Histogram equalization  
One of the techniques that uses a histogram to enhance the contrast is 

histogram equalization. This process increases the contrast by spreading out the most 
frequent gray-level values, i.e. stretching out the gray-level range of an image, so that 
after applying this process, the gray-level values will be more distributed on a 
histogram, and the difference between pixels with similar gray-level values will be 
more obvious. This technique uses a cumulative distribution function (CDF) as a 
transformation function, ,T  to map an original gray-level value denoted by 

kr  to a 
new gray-level value denoted by ks  as follows: 

 

 
0

( ) ( 1) ( )
k

k k j

i

s T r G p r
=

 
= = − 

 
  (18) 

 
for 0,  1,  2,  ...,  1k G= − , where G  denotes the total number of gray-level value 
and ( )jp r  denotes the estimated probability of occurrence of gray-level value jr  
which can be computed by 
 

 
( )

( )
j

j

h r
p r

n
=  (19) 

 
where n  denotes the total number of pixels in an image. 
 Figure 5 shows the result of applying histogram equalization on an image 
shown in Figure 4 (left), and its corresponding histogram (right) that is more 
distributed than the original histogram as the result of histogram equalization.  
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Figure 5 An example of the result image (left) and its corresponding histogram (right) 

after applying histogram equalization 
 

2.1.3.2 Adaptive histogram equalization  
 Instead of computing histogram equalization for an entire image, adaptive 
histogram equalization (AHE) computes several histograms, each corresponding to a 
distinct section of an image called a tile, and uses them to redistribute the gray-level 
values in each tile. It is; therefore, suitable for improving the local contrast and 
enhancing the definition of edges in each region of an image. This technique consists 
of the following steps: 
 Step 1: an image is partitioned into equally sized rectangular tiles as shown 
on the right part of Figure 6.  

Step 2: In each tile, histogram equalization is applied and a transformation 
function for each tile will be generated.  

Step 3: Each pixel will be mapped by using up to four transformation 
functions from its neighborhood tiles depending on its position.  

I. For the tile center pixels displayed as black squares in the left part of 
Figure 6, the transformation functions derived from the tiles that these 
pixels belong are the most appropriate, and can be used normally. 

II. For pixels in the blue part of the image shown in Figure 6, they are 
bilinearly interpolated between four mapped values obtained from 
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four transformation functions derived from the tiles with center pixels 
closest to them.  

Suppose that a pixel ( , )x y  is in the blue part of the image in 
Figure 6. Let 

0 0( , ),x y  
0 1( , ),x y  

1 0( , )x y  and 
1 1( , )x y  be the center 

pixels of the tiles closest to a pixel ( , )x y ; and 0 ,T  
1,T  2T , and 3T  be 

the transformation functions derived from histogram equalization for 
the tiles with center pixels 

0 0( , ),x y  
0 1( , ),x y  

1 0( , )x y , and 
1 1( , )x y , 

respectively. The interpolated gray-level value of a pixel ( , )x y  
denoted by ks  is  

 

0 0 01 1 1
0 2 1 3

1 0 1 0 1 0 1 0 1 0 1 0

( ) ( ) ( ) ( )k k k k k

x x y y x xy y x x x x
s T r T r T r T r

y y x x x x y y x x x x

   − − −− − −
= + + +   

− − − − − −   
 (20) 

 
  where 

kr  is a gray-level value at a pixel ( , ).x y  
 

III. For pixels that are close to the shaded green boundary in Figure 6, 
they are linearly interpolated between two mapped values obtained 
from two transformation functions derived from the tiles with center 
pixels closest to them.  

Suppose that a pixel ( , )x y  is in the green region and in either 
the first or the last row of an image on the right side of Figure 6. Two 
tiles closest to a pixel ( , )x y  are aligned horizontally. Their center 
pixels are denoted by 0 0( , )x y  and 

0 1( , )x y , and their transformation 
functions generated from histogram equalization are 0T  and 

1T , 
respectively. The interpolated gray-level value of a pixel ( , )x y  is 
denoted by ,ks  and can be computed as follows: 
 

 0 1
0 1

1 0 1 0

( ) 1 ( ) 1k k k

y y y y
s T r T r

y y y y

   − −
= − + −   

− −   
 (21) 

 
where ( , )x yr  is a gray-level value at a pixel ( , ).x y  
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 For a pixel ( , )x y  in the green region in the first and the last 
column of the image on the right side of Figure 6, two tiles closest to 
a pixel ( , )x y  are aligned vertically. Their center pixels are denoted by 

0 0( , )x y  and 
1 0( , )x y , and their transformation functions generated 

from histogram equalization are 0T  and 
1T , respectively. the 

interpolated gray-level value, ( , ) ,x ys  can be similarly computed by  
 

 0 1
0 1

1 0 1 0

( ) 1 ( ) 1k k k

x x x x
s T r T r

x x x x

   − −
= − + −   

− −   
 (22) 

 
IV. Pixels near corners (shaded red in Figure 6) are transformed with the 

transformation function of the corner tile where they belong as same 
as the center pixels. 

 

 
Figure 6 An example image partitioned into small tiles with four regions (black, blue, 

green and red regions) for different interpolations 
Source: Adapted from [2] 

 
 This technique is highly suitable when an input image contains regions that 
are significantly lighter or darker than other regions in an image, and the contrast in 
those regions will not be enhanced sufficiently when using ordinary histogram 
equalization. 
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2.1.3.3 Contrast limited adaptive histogram equalization 
 Since AHE technique has a tendency to over-amplify noise in relatively 
homogeneous regions of an image; therefore, contrast limited adaptive histogram 
equalization (CLAHE) [3] is presented in order to prevent this problem by limiting the 
contrast amplification before the transformation function in each divided region is 
derived. 
 CLAHE method applies histogram equalization to each tile the same way as 
AHE, but limits the amplification by clipping the histogram at a predefined value and 
redistributing the clipped pixels to each gray-level value as illustrated in Figure 7 
before computing the CDF for each tile. This clipping limits the slope of the CDF and 
that of the transformation function to avoid noise enhancement. The value at which 
the histogram is clipped is called the clip limit and can be calculated by  
 

 CL clip

gray

n
n n

n
=   (23) 

 
where 

CLn  is an actual clip limit, clipn  is a constant parameter in the range [0,1]  
indicating a normalized clip limit,  n  is the number of pixels in a tile and grayn  is the 
number of gray-level values in a tile. If the number of pixels in each gray-level value 
is greater than ,CLn  the pixels will be clipped and the total number of clipped pixels 
will be distributed to each gray-level value equally. After distribution, if the number 
of pixels is over the clip limit illustrated as the green region on the right histogram of 
Figure 7, these pixels will be redistributed until the remaining pixels over the clip 
limit have been all distributed. Lastly, AHE will be applied to the distributed 
histogram to derive the transformation function and compute the new gray-level 
value as already mentioned. 
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Figure 7 An illustration of clipping pixels that are over the selected maximum value 

and are redistributed to each gray-level 
Source: Adapted from [2] 

 

2.1.4 Cloud physical model   
A cloud is a hydrometeor consisting of liquid water or ice, or both that 

suspends in the atmosphere. It probably includes larger particles of liquid water or 
ice, as well as some solid particles, such as smoke or dust. When satellite images are 
taken above a cloud covered area and if clouds are thick enough, sunlight will not 
be able to pass through those clouds, so the ground reflectance cannot be detected 
by a satellite. Similarly, although thin clouds are transparent and allow sunlight to 
pass through, some of the sunlight will be absorbed, and the transmitting light will 
be attenuated after all. Sunlight is also scattered by cloud particles, reflected back 
and causes the appearance of clouds as different level of white or gray sheets in an 
image. Thus, each clouded image is a combination of the ground reflectance from 
attenuated solar radiation and the scattering light caused by clouds which is 
illustrated in Figure 8. 
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Figure 8 Cloud physical model of thin cloud distortion in a satellite image 

 
 By observing the effect of clouds in a satellite image, a cloud physical model 
[4] was proposed to describe a cloud distortion process as follows: 
 
 ( )( , ) ( , ) ( , ) 1 ( , )J x y aLJ x y t x y L t x y= + −  (24) 
   
where ( , )J x y  is a clouded image,  and  are the pixel coordinates,  is the 
atmospheric light brightness, ( , )J x y  is the real reflectance of the ground object, 

 is the cloud transmission, and  is the attenuation coefficient of sunlight. 
The range of ( , )J x y , , ,L  and  is from 0 to . Considering the right hand 
side of Eq.(24), the first term ( , ) ( , )aLJ x y t x y  denotes the reflectance of the ground 
object which is incident by attenuated sunlight,  and passes through clouds with 
the rate of cloud transmission, ; i.e., if the cloud transmission is maximum, 
the light can completely pass through, and the real ground reflectance is unaffected 
by the cloud transmission . In contrary, if the clouds have a thickness or 
opacity, the cloud transmission will be decreased, which means the light cannot pass 
through clouds, and will be absorbed and also reflected back partially, and will 
cause the white bright cloud appearance in an image. This reflected light is 

x y L

( , )t x y a

( , )t x y a 1

,aL

( , )t x y

( , )t x y
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represented in this model by the second term, ( )1 ( , )L t x y− , which can be called 
the scattering light term. When clouds are very thick,  approaches 0 , and the 
scattering light will be as much bright as the atmospheric light brightness. On the 
other hand, if clouds are transparent or even do not exist,  will approach 1 
and cause ( )1 ( , )L t x y−  to approach 0;  that is, the whole light can pass through 
clouds and there is no scattering light appearing in an image. 

According to this model, several cloud removal methods have been 
proposed in order to obtain an image without cloud degradation by recovering 

( , )J x y  from a satellite image ( , ).J x y  
 
2.2 Literature reviews 

Many cloud removal methods have been proposed over the last decade. 
Each method can be used with different inputs and requirements. These methods 
can be categorized by their required inputs into three groups: single-image methods, 
multi-spectral-image methods, and multi-temporal-image methods. 

Single-image methods normally use only the data containing in an image 
itself. These methods usually consider clouds as noises and try to eliminate them by 
some techniques such as adaptive homomorphic filter [5] or Gaussian low-pass filter 
[6].  

Unlike single-image methods, multi-spectral-image methods need multiple 
types of spectral images taken in various specific wavelengths such as images taken 
in cirrus band from Landsat 8 [7] which were used to correct the contamination of 
cirrus clouds in an image by using the relationship with other images taken by visible 
wavelength or infrared. However, circus band is available only for Landsat satellite, 
so this method has a massive condition for usage as well as other methods that 
need uncommon spectral images.  

Similarly, multiple images are also needed in multi-temporal-image methods. 
These methods basically use partial cloud-free images from different periods to 
generate an image without clouds. For instance, satellite image time series succeed 
to generate cloud-free image by using Sparse Unmixing-based Denoising (SUBD) [8]. 
This method estimates the new value of a pixel covered by clouds from the 

( , )t x y

( , )t x y
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evolution in time of the values in non-corrupted pixels around it. Although most 
multi-temporal-image methods usually generate an image without any damages to 
the actual data because their processes only adjust clouded pixels while leaving 
other non-clouded pixels, but cloud-free images may not always be available in the 
expected areas.  

In fact, single-image methods are usually not able to compete with multi-
spectral-image and multi-temporal-image methods in term of effectiveness; however, 
due to ease of use and implementation, the results obtained from most single-image 
methods are quite acceptable compared to other types. On the other hand, single-
image methods are still popular due to their simplicity with less preliminary 
conditions comparing to the other types since they use only the data containing in a 
single image which is commonly taken in a visible wavelength that almost every 
satellite is capable to operate.  

Most of single-image methods usually follow the idea of the cloud physical 
model previously mentioned. Liu et al. [6] utilized the low-frequency characteristic of 
clouds in frequency domain. According to their work, areas covered by clouds are 
related to low-frequency components in frequency domain due to the fact that 
clouds generally appear as a white sheet and cause the underlying details to 
become blur or be blended with other details around them. As a result, they 
considered clouds as noises which are presented as the scattering light term in the 
model, and attempted to estimate this term using a low-pass filter in frequency 
domain. They suggested to apply Gaussian low-pass filter to three channels of a 
clouded RGB image separately, then defined each of them as approximated 
scattering light term for each channel, and subtract them from the original image. 
The result shows that most of the scattering lights are excessively removed, thus 
adding an offset value to retrieve a proper result is needed. The mean value of each 
band is chosen as an offset, and is added to each band. However, using the mean 
values as offsets is still not suitable for some cases, especially when clouds are very 
few, or spread partially in an image.  

In the same year, Shen et al. [5] also considered thin clouds as low-frequency 
information and proposed a method based on the classic homomorphic filter, the 
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technique uses a logarithm property and high-pass filter in frequency domain to filter 
low-frequency components out while preserve only high-frequency components 
which correspond to the ground details. Moreover, since each channel in an RGB 
image is affected differently by thin clouds due to the fact that light is scattered 
unequally when passing through thin clouds [9], they also proposed a step to semi-
automatically choose parameters in each channel in RGB color space. This method 
with this additional step actually yielded the better results compared to previous 
methods that used the same parameters for every channel, but it resulted in 
increasing complexity in their method as well.  

Other color spaces besides RGB color space can be considered for thin cloud 
removal as well. HSI color space is one of the color spaces which can be used to 
remove thin clouds. Recently, HSI color space has been used in a haze removal 
method proposed by Zhu, Mai and Shao [10]. They examined the correlation 
between intensity, saturation, and haze concentration by collecting a large number 
of hazy images, and observed the effect of haze on an image in HSI color space. 
They found that saturation of the hazy area decreases sharply, and intensity 
increases at the same time producing high value of the difference between intensity 
and saturation; that is, the haze concentration is positively correlated with the 
difference between intensity and saturation. Therefore, the scene depth, which 
relates to the concentration of haze, was estimated by linear combination of 
intensity, saturation, and the difference between these two components and was 
used to retrieve the real ground reflectance. Since the model of a hazy image is 
similar to the thin cloud degradation model, it is possible to use HSI color space in 
thin cloud removal as it was used previously. 
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CHAPTER III 
Proposed Method 

 
 

In this work, we propose a novel single-image method for thin cloud removal 
in HSI color space instead of RGB color space as usual. The proposed method is 
mainly divided into two steps: 1) thin cloud removal and 2) ground reflectance 
enhancement. During the first step, the method aims to remove thin clouds from an 
input satellite image in the intensity channel by adjusting the result with gamma 
correction, and then the distorted details covered by thin clouds will be enhanced 
by applying logarithm image transformation to the saturation channel in the second 
step. The final result can be produced by combining the results obtained from these 
two steps with the original hue and converting back to RGB color space. 

 

3.1 Thin cloud removal step 
3.1.1 Scattering light term estimation 
Considering the thin cloud degradation model expressed in Eq.(24), we can 

denote the scattering light term by ( , )S x y  as 
 

 ( )( , ) 1 ( , )S x y L t x y= −  (25) 
 
In order to obtain the real ground reflectance, Eq.(24) can be rearranged as follows: 
 

 ( )( , ) 1 ( , )
( , )

( , )

J x y L t x y
aJ x y

Lt x y

− −
 =  (26) 

  
From Eq. (25), we have 
 

 ( , ) ( , )
( , )

( , )

J x y S x y
aJ x y

L S x y

−
 =

−
 (27) 
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In this step, we propose to remove thin clouds in the intensity channel which 

has the same model as thin cloud degradation model and can be expressed as 
follows: 

 

 
( , ) ( , )

( , )
( , )

I I
I

I

J x y S x y
aJ x y

L S x y

−
 =

−
 (28) 

   
where ( , ),  ( , )I IJ x y J x y  and ( , )IS x y  denote the cloud intensity channel, the real 
ground reflectance and the scattering light term in the intensity channel, 
respectively.  

The process begins with estimating the scattering light term intensity denoted 
by ( , ),IS x y  and also the atmospheric light, ,L  so that we can substitute these 
values into the rearranged Eq.(28) to firstly obtain the real ground reflectance 
intensity with sunlight attenuation, ( , ).IaJ x y   

By observation, the clouded pixels usually have unusual higher intensities 
than the cloud-free pixels due to the appearance of clouds as a white or grey sheet 
in an image. Since the intensity component in HSI color space relates to the 
brightness, it is possible to indicate the opacity of clouds which is represented by the 
scattering light term, ( , ),IS x y  from the intensity component. However, some high 
intensity pixels in a satellite image are probably parts of buildings, roads, or even 
thick clouds which should not be removed in a thin cloud removal step. In order to 
neglect these bright spots, we suggested to find the minimum intensity in a patch for 
each HSI clouded image to estimate the scattering light term as follows: 

 

 ( , ) min ( , )
( , ) ( , )

I IS x y J x y
x y x y


 

 =  
    

 (29) 

where ( , )IS x y  is the estimated scattering light term in the intensity channel, 
( , )IJ x y  is an intensity value,   is a constant parameter which can be adjusted in 

order to keep some details from subtraction, and ( , )x y  denotes a patch centered 
at a pixel ( , )x y . When ( , )IS x y  represents a minimum value in a patch ( , )x y  the 
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bright spots in an image will be neglected; i.e., if each bright spot in an image is 
smaller than the size of a patch ( , )x y , the higher value pixels of a bright spot will 
not be chosen as an estimated scattering light of a pixel ( , )x y , and other lower 
values surrounding a bright spot will be chosen instead; that is, they are neglected. 

For example, Figure 9 shows an example of the process when a pixel value of the 
estimated scattering light is presented. The left figure is an example of a satellite 
image with the bright object in the center of an image, and the right figure is the 
estimated scattering light image. Considering the pixel in a yellow square, its 3 3  
patch is shown as a red rectangle. The pixel in the same position in the estimated 
scattering light (the right figure) is the minimum value of the patch on the left figure. 
This process is applied pixel by pixel for the entire image, and the final result is 
shown in Figure 10 where the estimated scattering light image is completely dark, so 
when a satellite image is subtracted by the estimated scattering light image as 
expressed in the denominator of the right hand side of Eq.(28), the bright object will 
not be subtracted, and will be preserved. 
 

 

 

 

 

 

 

 

Figure 9 Example of a process of the scattering light term estimation 
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Figure 10 An example of the final result of the scattering light term estimation 
process 

 
3.1.2 Atmospheric light estimation 
In the previous step, the scattering light term in the intensity channel ( , )IS x y  

is estimated first. Afterwards, the proposed method needs the atmospheric light, ,L  
to be estimated. Many researchers have proposed distinct atmospheric light 
estimations; however, most of them usually follow the concept of most opaque 
clouded pixels which will be discussed in the following paragraph. 

Suppose a pixel ( , )x y  is covered by the most opaque clouds, which cause 
( , )t x y  to approach 0 ,  can be expressed mathematically as: 

 

 ( )( )
( , ) 0 ( , ) 0
lim ( , ) lim ( , ) ( , ) 1 ( , )I I

t x y t x y
J x y aLJ x y t x y L t x y

→ →
= + −  (30) 

   
where the left hand side of the equation represents a pixel ( , )x y  in a satellite image 
such that it is covered by high opacity clouds, and the right hand side of the 
equation is from Eq.(24).  
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Thus, we have 
 

 ( )
( , ) 0 ( , ) 0 ( , ) 0 ( , ) 0
lim ( , ) lim ( , ) ( , ) lim lim ( , )I I

t x y t x y t x y t x y
J x y aLJ x y t x y L Lt x y

→ → → →
= + −  (31) 

 
i.e., 
 
 ( , ) 0

lim ( , )I
t x y

J x y L
→

=  (32) 

 Hence, it is possible to estimate the atmospheric light by using the intensity 
value of a pixel which is covered by the most opaque clouds in an image. However, 
finding the most opaque clouded pixels can be difficult because some bright spots 
such as buildings or roads can occasionally also appear in a satellite image, and their 
intensities are similar to thick clouds. In order to avoid this mistake, the most opaque 
pixel is needed to be identify implicitly. For our work, we chose to estimate the 
atmospheric light by taking an advantage of the estimated scattering light image 
already mentioned before. Since the estimated scattering light image, ( , )IS x y , 
directly correlates to the cloud thickness, and those bright spots are already 
neglected in this image, we therefore considered finding the most opaque pixel in 
this image instead of an original satellite image. However, it is possible that there are 
still some bright objects such as large buildings left in the estimated scattering light 
image, hence, we try to avoid choosing the pixels that belong to these left objects 
by first finding the 10% highest value pixels in ( , )IS x y ; then, considering the pixel 
with the highest intensity in ( , )IJ x y  among those 10% highest value pixels in 

( , )IS x y  as in [11]. This process can be mathematically expressed as follows: 
 

 
( , )
max { ( , )}I
x y

L J x y


=  (33) 

 
where   denotes a set of 10% highest value pixels in ( , )IS x y  image. 
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3.1.3 Primary ground reflectance recovery 
After the scattering light term and the atmospheric light are estimated, they are 

substituted into Eq.(28) to produce ( , )IaJ x y  which is called the primary ground 
reflectance in this work and denoted by: 

 

 
( , ) ( , )

( , ) : ( , )
( , )

I I
I I

I

J x y S x y
J x y aJ x y

L S x y

 −
= =

−
 (34) 

 
where ( , )IJ x y  is a primary ground reflectance in the intensity channel. Figures 11 
shows the image as a result obtained after each step. 
 

   
(a) (b) (c) 

 

  

(d) (e) 
 

Figure 11 (a) An RGB clouded image, (b) the corresponding intensity,  
(c) the corresponding estimated scattering light, (d) the intensity after subtraction, 

and (e) the primary ground reflectance intensity obtained from the method. 
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3.1.4 Real ground reflectance recovery  
In this step, we would like to obtain only the real ground reflectance, ( , )IJ x y . 

Although thin clouds in the primary ground reflectance obtained from Eq.(34) are 
already removed, there is still the sunlight attenuation coefficient in the recovered 
primary ground reflectance. This coefficient causes a satellite image to be dimmer 
than usual. Moreover, there might be an excessive deduction occurred during the 
previous step; therefore, we propose to slightly increase the intensity of the primary 
ground reflectance to reduce the effect of sunlight attenuation coefficient, and also 
regain the intensities that were excessively deducted as much as possible. A gamma 
correction is used in this step to slightly increase the intensity of ( , )IaJ x y . We select 
the fractional gamma in order to map the original intensity to higher intensity, and 
also increase the contrast between similar pixels to gain the visibility of some details 
that are dark and blended to nearby pixels. However, increasing the intensity without 
a limitation may cause it to be over the range. Hence, we specify the interval of 
gamma correction by finding the maximum and minimum intensities of changed 
pixels in ( , )IJ x y  as follows: 

 
  

( , )
max ( , )I
x y

b J x y


=   (35) 

and  
 
  

( , )
min ( , )I
x y

a J x y


=   (36) 

where  ( , ) | ( , ) ( , ) 0 .I Ix y J x y J x y = −    

 
Thereafter, intensities in ( , )IJ x y  will be increased by using a gamma 

correction within the range, [ , ]a b , as follows: 
 

 
 

( )
( , )

; ( , )
( , )

( , ) ;

I

I

I

J x y a
b a a x y

b aJ x y

J x y otherwise










 − − +   

 −=   



 (37) 
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where   is a constant parameter such that 0 1.   The lower the constant   is, 
the brighter the result will be.  
 From Eq.(37), the primary ground reflectance intensities of changed pixels will 
be increased up to the maximum value b  because the original intensities should not 
be increased over the highest intensity values among changed pixels to avoid turning 
back to clouded pixels, and the contrast will also be increased as well. Meanwhile, 
other pixels that are not deducted in the previous step will be increased by gamma 
correction as usual. 
 Figure 12 shows an example of the result obtained from each step. Figure 
12(a) is a sample RGB clouded image. After performing the thin cloud removal step, 
Figure 12(b) shows the result obtained from the primary ground reflectance recovery 
step in RGB color space which is dimmer than expectation and Figure 12(c) shows 
the final result in RGB color space produced by the real ground reflectance recovery 
step which is brighter and clearer in term of ground details.  
 

 

 

 

 

 

 
Figure 12 (a) An input clouded image, (b) the primary recovered ground reflectance 

image, and (c) the real ground reflectance image. 

 
3.1.5 Real ground reflectance contrast enhancement 

  Due to the low contrast of the result obtained from the previous steps, we 
also propose to enhance the contrast of the result by using CLAHE in order to gain 
more details, such as edges and shadows, and also emphasize low intensity regions, 
such as water surfaces. The result image from previous step is equally partitioned 
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into 64  tiles (8 8  tiles) and clipn  is set to 0.01 . The result after applying CLAHE to 
the result image in Figure 12(c) is shown in Figure 13. 
 

 
Figure 13 The contrast-enhanced real ground reflectance 

 
3.2 Ground reflectance enhancement step 
 According to the observation, the saturation channel is also affected by thin 
clouds. The appearance of thin clouds as a white bright sheet in a satellite image 
causes saturation value to be decreased due to the fact that saturation is lower 
when the color appearing in RGB color space is whiter. Therefore, during this step, 
the saturation channel will be increased in order to enhance the colors of ground 
information which are blended with thin clouds. However, some pixels with 
extremely low saturation values probably correspond with either thick clouds or 
white objects such as white buildings or roads; therefore, pixels with low saturation 
values are not supposed to be increased significantly so that the original white color 
in those pixels can be preserved. We thus use a logarithm image transformation 
function expressed as: 
 
 ( , ) log(1 ( , ))S SJ x y c J x y = +  (38) 
to map the original saturation to the higher saturation with different rate; i.e., the 
saturation in the low range is increased with the rate less than the saturation in the 
high range where ( , )SJ x y  is the enhanced saturation image of an image ,J  

( , )SJ x y  is the saturation of an image ,J  and c  is a constant parameter where 
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( )
1

,
log 2

c   and some thick clouds and white objects can be preserved by adjusting 

c  to be close to 
( )

1

log 2
.  

Finally, the recovered ground intensity ( , )IJ x y  and the enhanced saturation 
( , )SJ x y  are combined together with its original hue, and the combined image in HSI 

color space is converted back to RGB color space as shown in the next chapter. 
 

 

 

 

 

 

 

Figure 14 (a) The original saturation of clouded input image (b) The enhanced 
saturation after the ground reflectance enhancement step 
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CHAPTER IV 
Results and Discussion 

 
 The proposed method was evaluated on a set of 26 Landsat 8 satellite 
images provided by the USGS EarthExplorer (EE) tool, available from U.S. Geological 
Survey (USGS). These images were taken over different areas of Thailand from 2013 
to 2018. Each image has different amounts of thin clouds and thick clouds for testing 
the capability of the method in various scenarios.  
 Table 1 shows a set of Landsat 8 satellite images used in the experiments. 
The first column shows an image number. The second column shows the RGB 
satellite image obtained from the USGS EarthExplorer (EE) tool. The third and fourth 
columns show the position of the area where a satellite image was taken in a format 
of path and row number used in Landsat 8 satellite system. The last column shows 
the acquisition date of each image in a format year-month-day. 
  
Table 1 A set of Landsat 8 satellite images used in the experiment 

Image no. Input Path Row Acquisition date 

1 

 

128 048 2014-11-10 

2 

 

128 048 2014-12-12 

3 

 

128 048 2015-06-22 
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Image no. Input Path Row Acquisition date 

4 

 

128 048 2015-11-13 

5 

 

128 048 2016-10-30 

6 

 

128 048 2016-12-01 

7 

 

128 048 2017-01-02 

8 

 

128 048 2018-04-11 

9 

 

128 048 2018-10-04 

10 

 

129 050 2013-10-29 
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Image no. Input Path Row Acquisition date 

11 

 

129 050 2014-04-23 

12 

 

129 050 2014-05-25 

13 

 

129 050 2014-08-13 

14 

 

129 050 2014-09-14 

15 

 

129 050 2015-07-15 

16 

 

129 050 2016-01-07 

17 

 

129 050 2016-05-14 
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Image no. Input Path Row Acquisition date 

18 

 

129 050 2016-11-22 

19 

 

129 050 2017-02-10 

20 

 

129 050 2017-02-26 

21 

 

129 050 2017-04-15 

22 

 

129 050 2017-09-22 

23 

 

129 050 2018-01-28 

24 

 

129 050 2018-04-02 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

Image no. Input Path Row Acquisition date 

25 

 

129 050 2018-05-04 

26 

 

129 050 2018-05-20 

 
The proposed method was compared with other single-image methods; i.e., 

Liu’s method [6] and He’s method [11]. In order to compare the effectiveness of 
these methods, we firstly compared the result images obtained from the proposed 
methods with cloud-free satellite images at the same positions. However, since it is 
difficult to obtain a cloud-free satellite image in exactly the same area and also 
exactly the same time, we thus use a cloud-free satellite image taken at the closest 
date to each of the input images to calculate the mean squared error (MSE) that can 
be expressed as: 
 

 ( )
2

, , 1 1

1
( , ) ( , )

3

M N
ref

k k

k R G B i j

MSE H i j H i j
MN = = =

 
= − 

 
   (39) 

 
where  ( , )kH i j  is a result image size of M N  in the k  channel in RGB color 
space,  ( , )ref

kH i j  is a reference image in the k  channel in RGB color space with the 
same size as ( , )kH i j , and MSE  is a mean squared error calculated from a result 
image and a reference image. 
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 Moreover, we also evaluated the methods’ capability to retrieve distorted 
and lost details as a result from thin clouds by using Contrast Gain (CG) that was 
used in [12, 13] and defined as follows: 
 

 
1 1 1 1

1
( , ) ( , )

M N M N
H H

i j i j

CG C i j C i j
MN



= = = =

 
= − 

 
   (40) 

 
where HC

  and HC  are contrast images of a result image, ,H   and an input image, 
,H  respectively, and can be calculated by 

 

 ( , )
( , )

( , )

H
H

H

S x y
C x y

m x y
=  (41) 

 
where ( , )Hm x y  and ( , )HS x y  are the mean and the variance of intensity values in a 
group of pixels within a patch of size (2 1) (2 1)p p+  +  centered at pixel ( , )x y , and 
can be expressed as: 
 

 
2

1
( , ) ( , )

(2 1)

p p
H

i p j p

m x y H x i y j
p =− =−

= + +
+

   (42) 

 
and 
 

 
2

1
( , ) ( , ) ( , )

(2 1)

p p
H

i p j p

s x y H x i y j m x y
p =− =−

= + + −
+

   (43) 

 
where p  can be any integer number, and we set 2p =  for every image in this work 
for simplicity. Similarly, HC

  can also be calculated by using Eq.(41)-(43) with an 
image H  instead of an image .H  

A contrast image is an image where each pixel indicates the contrast or the 
difference between a pixel itself and other neighbor pixels. The higher the value in 
each pixel is, the greater the difference will be; i.e., if there is a texture appearing in 
an area where pixels belong, the contrast value in those pixels will be higher than 
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pixels that belong to other plain or smooth areas. Hence, a good result obtained 
from a cloud removal method should have a higher CG value because of more 
details that used to be blurred and blended with surrounding areas as a result of 
being covered by thin clouds.  

The results are shown in Table 2 where the first column shows the clouded 
input images, the second column shows the cloud-free images from the closest date 
to the input images, and the result images obtained from Liu’s method, He’s method 
and the proposed method are shown in the third, the forth and the fifth columns, 
respectively. 
 
Table 2 The result images obtained from the proposed method and other single-
image methods 

 

 

Input 
 Cloud-free 

image 
Liu et al He et al Proposed 
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Liu et al He et al Proposed 
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Liu et al He et al Proposed 
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 From Table 2, MSE and CG of each result image is calculated and shown in 
Table 3 and Table 4, respectively. 
 
 

Input 
 Cloud-free 

image 
Liu et al He et al Proposed 
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Table 3 Comparison of MSE calculated from the results obtained from Liu’s 
method, He’s method, and the proposed method (The lowest MSE among the 
results in each input image is displayed in bold) 
 

Image no. 
MSE 

Liu et al He et al Proposed 
1 0.01981 0.01851 0.01545 
2 0.02842 0.01945 0.01314 
3 0.02219 0.02183 0.01952 
4 0.02195 0.02149 0.02000 
5 0.02635 0.02833 0.02111 
6 0.02910 0.02920 0.02003 
7 0.03798 0.00677 0.00371 
8 0.04788 0.00188 0.00178 
9 0.04710 0.00703 0.00694 
10 0.03706 0.01229 0.01087 
11 0.04562 0.00769 0.00549 
12 0.04307 0.01225 0.01011 
13 0.04466 0.00895 0.00748 
14 0.04485 0.01671 0.01385 
15 0.04429 0.01591 0.01538 
16 0.05021 0.00772 0.00314 
17 0.05423 0.01222 0.01099 
18 0.04330 0.00843 0.00490 
19 0.04359 0.00846 0.00703 
20 0.04775 0.01207 0.01188 
21 0.05322 0.02338 0.02229 
22 0.04853 0.01899 0.01587 
23 0.04110 0.00943 0.00501 
24 0.03656 0.01648 0.01495 
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Image no. 
MSE 

Liu et al He et al Proposed 

25 0.02984 0.00699 0.00651 
26 0.03450 0.00667 0.00569 

 
 
Table 4 Comparison of CG calculated from the results obtained from Liu’s method, 
He’s method, and the proposed method (The highest CG among the results in each 
input image is displayed in bold) 
 

Image no. 
CG 

Liu et al He et al Proposed 

1 0.10256 0.02442 0.07736 
2 0.07621 0.01556 0.05182 
3 0.06786 0.00757 0.04565 
4 0.10733 0.01920 0.08086 
5 0.08369 0.01757 0.05511 
6 0.07267 0.01809 0.04808 
7 0.08931 0.02028 0.06042 
8 0.07854 0.01974 0.05440 
9 0.07910 0.01318 0.05647 
10 0.11001 0.02685 0.08450 
11 0.07602 0.01657 0.05240 
12 0.09173 0.01915 0.07444 
13 0.08584 0.01829 0.07087 
14 0.09163 0.02109 0.07898 
15 0.11633 0.02357 0.10817 
16 0.07452 0.01821 0.04744 
17 0.09343 0.02178 0.07236 
18 0.08184 0.02440 0.05855 
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Image no. 
CG 

Liu et al He et al Proposed 

19 0.10225 0.02596 0.07578 
20 0.12632 0.03496 0.10536 
21 0.14339 0.03674 0.14084 
22 0.08620 0.02813 0.07677 
23 0.09400 0.02504 0.06646 
24 0.10061 0.02808 0.07815 
25 0.09844 0.02525 0.07973 
26 0.09028 0.02442 0.07383 

 
 From Table 3, the proposed method can outperform other methods in term 
of similarity to the cloud-free image of each result image which can be noticed from 
the lowest MSE value in every result.  

In contrary, considering the CG values shown in Table 4, although our 
proposed method can produce the results with higher CG compared to those 
obtained from He’s method, but their CG values are still less than CG values of the 
results obtained from Liu’s method in all experiments as illustrated in Figure 15. In 
other words, Liu’s method can raise edges of the ground objects much better than 
other methods. However, it can be seen from Table 2 that the actual information of 
the result images, especially color, obtained from Liu’s method are lost severely, so 
the outputs from this method are clearly different from the others, and not 
appropriate for any uses. Thus, when result images and CG values are both 
considered together, it shows that He’s method and our proposed method can 
produce the results with useable features, such as texture and color, but the 
proposed method can gain more contrast compared to He’s method in every test 
image.   
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Figure 15 The CG values of the result images obtained from Liu’s method, He’s 

method, and the proposed method 
 
 Considering output images from our proposed method, there are some parts 
in each output image that are still blur and clouded due to being covered by too 
much opaque thin clouds to be deducted by the proposed method with parameters 
defined in this case. This outcome leads to necessity of identifying potential or 
limitation of the proposed method in term of the capability to remove thin clouds 
with different opacity.  
 For this reason, the input and output images are compared to identify 
clouded pixels that can be recovered by the proposed method. Frist, pixels in each 
image are classified into two groups: clouded pixel and non-clouded pixel. This 
classification is conducted on a criteria that is based on our observation of cloud-free 
images in the dataset. According to our observation, the thickness of cloud can be 
indicated by the difference between intensity and saturation; i.e., ,I S−  because 
clouds are generally white corresponding to high intensity and low saturation; that is, 
the higher the difference between these two values is, the whiter the color 
appearing in an RGB color image will be. Therefore, it is used in this case to examine 
cloud’s thickness by first generating a histogram of I S−  from the cloud-free images 
which is shown in Figure 16. It should be noted that all negative values are 
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considered as zero in this histogram. According to this histogram, the majority of the 
differences lie between 0 to 0.3 whilst the counts in other bins are less than 0.1% of 
the total number of pixels in this histogram. Thus, in this work, a pixel that has the 
difference between intensity and saturation less than 0.3 will be considered as a 
non-clouded pixel; on the other hand, a pixel with the difference greater than 0.3 
will be considered as a clouded pixel.  
 

 
Figure 16 A histogram of I-S from the cloud-free images in the dataset 

 
 After clouded pixels are detected, each pair of the input and output images is 
compared to recognize clouded pixels that have been recovered by the proposed 
method. If the detected pixels in the input image disappeared in the output image, 
these pixels will be considered as pixels that can be handled by the proposed 
method with the parameters fixed in this experiment. The differences of these 
recovered pixels are then collected and represented by a histogram shown in Figure 
17. This histogram shows that there is no pixel with the difference between intensity 
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and saturation higher than 0.74 and the number of pixels in each bin gradually drops 
as the differences increase from 0.3 to 0.74. Conversely, a histogram of clouded 
pixels remaining in output images in Figure 18 shows that a pixel count in each bin 
increases from 0.3 to 0.6 and keeps decreasing after that with a minor fluctuation 
until it reaches the maximum count at the difference equal to 1. These remaining 
pixels may correspond to pixels covered by thin clouds that cannot be recovered by 
the proposed method as well as thick clouds and bright objects.  
 

 
Figure 17 A histogram of I-S of pixels that have been recovered by the proposed 

method with the parameters fixed in the experiment 
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Figure 18 A histogram of I-S of clouded pixels remaining in output images 

 

In other words, the proposed method with the fixed parameters can 
recovered clouded pixels in an input clouded image if the pixel has the difference 
between intensity and saturation within the range from 0.3 to 0.74 with a decrement 
in cloud removal effectiveness when the difference between intensity and saturation 
increases up to 0.74. 
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Chapter V 
Conclusions 

 
This work presents a new method for thin cloud removal performing in HSI 

color space instead of RGB color space. The proposed method uses both intensity 
channel and saturation channel to remove thin clouds, and enhance the ground 
reflectance while keeping hue unchanged in order to preserve the original color of 
ground objects as much as possible. The proposed method was evaluated on a set 
of Landsat 8 satellite images taken above areas in Thailand. These images contain 
thin clouds that must be removed and also thick clouds as well as other bright 
objects, such as buildings and roads that should be avoided in thin cloud removal 
step. Our method shows that these thick clouds and bright objects can be neglected 
by using a minimum value in a small patch to represent each pixel of the estimated 
scattering light term. This can be seen from the output images in Table 2 where most 
thick clouds and bright objects still appear without any distortions.  
 The output images in Table 2 also reveal that the proposed method can 
remove most of the thin clouds in satellite images if the opacity is not very high, 
namely when the difference between intensity and saturation is not higher than 0.74, 
and it can perform more effectively when the difference is lower and is close to 0.3. 
Furthermore, the proposed method can retrieve some actual information such as 
color and texture which can be seen from more vibrant color of output images and 
the contrast gained after applying the method. Table 3 also shows that when the 
similarity between the output and its corresponding cloud-free image is considered 
by using MSE value between two RGB images as expressed in (39), the proposed 
method can generate outputs in RGB format that have red, green and blue 
component closest to their corresponding cloud-free images. In other words, the 
proposed method can outperform other methods in term of generating outputs that 
are closest to their corresponding cloud-free images which can be seen from the 
lowest MSE values in every result.  
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Nonetheless, considering the CG values shown in Table 4, even though our 
proposed method cannot produce the results with the highest CG value as Liu’s 
method, but the result images obtained from Liu’s method are significantly degraded 
which is caused by using the constant mean value as an offset to compensate the 
excessive thin clouds deduction as mentioned in Chapter II. On the other hand, our 
proposed method can yield the better results based on both output images’ 
features; i.e., texture and color, and also the measurements, i.e., MSE and CG. 

Furthermore, parameters in our proposed method can be adjusted in order 
to cope with thicker clouds. The parameter  , used for keeping some details from 
subtraction during an estimation of the scattering light term, can be set to a higher 
value to increasingly deduct the scattering light term. Although the higher   can 
remove higher opacity thin clouds, but it can also cause the output to become 
darker than expectation especially in most areas without thin clouds. Thus, before 
applying gamma correction in real ground reflectance recovery step, the parameter 
  used for retrieving accidentally lost brightness should be set dependently on  . 
In other words, as the higher the   is set, the lower the   should be selected so 
that the brightness of a darker image caused by the higher   can be increased more 
by gamma correction. 

 
5.1 Future work 
 In this work, the proposed method aims to remove thin clouds and also 
retain the actual information especially those in areas without thin clouds. However, 
the proposed method does not include a thin cloud detection step that can identify 
non-clouded pixels so that these pixels can be excluded from any transformation or 
calculation processes. Therefore, such thin cloud detection step can be incorporated 
as a preprocessing step in order to absolutely preserve cloud-free pixels and 
produce a more precise output. 

Moreover, this work has also shown that thin cloud removal can also be 
performed in HSI color space as well as RGB color space. The proposed method can 
successfully reduce thin cloud distortion and enhance details covered by thin clouds 
by adjusting intensity and saturation in HSI color space. Alternatively, there are also 
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other color spaces having a potential to develop a thin cloud removal method such 
as HSV color space, which is similar to HSI color space but different in term of 
brightness component calculation, and CIELAB color space which also has a 
brightness component but may require a further investigation due to the lack of 
saturation component.  
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