
CHAPTER2 

THEORETICAL BACKGROUND 

2.1 Solution of Schrodinger Equation of Molecular Systems 

2.1.1 The Schrodinger Wave Equation [24,25) 

The energy and properties of the stationary state of a molecule can be 

obtained from the solution of the Schrodinger equation, 

" 
H'l' = E'1' (2.1) 

" Here H is the Hamiltonain operator. E is the eigenvalue representing 

the energy of the state. 'l' is the wavefunction which is the function of spatial and 

spin coordinates of all particles. The probability distribution of the particles within 

the molecule is interpreted by l'l'l 2 
• 

" The Hamiltonian H, like the energy in classical mechanics, is the sum 

" ~ 
of kinetic ( T) and potential ( V ) operators, 

" " " H=T+V (2.2) 

where for a molecule 
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N 1 2 n 1 2 
=-I-VA+I-v·. 

A=I2MA i=l 2 I 

(2.3) 

and 

1\ 1\ 1\ 1\ 

V = V ne + V ee + V nn 

(2.4) 

The Hamiltonian described above is in the nonrelativistic form, which 

ceases to be appropriated as the velocities of the particles, particularly electrons, 

approach the velocity of light. Certain small magnetic effects, for example, spin­

orbital coupling, spin-spin interactions, and so forth, are also omitted in this 

Hamiltonian. 

2.1.2 The Born-Oppenheimer Approximation 

From (2.2) to (2.4), the molecular Hamiltonian is, 

where A and B refer to nuclei and i and j refer to electrons. The first term in (2.5) 

is the operator for the kinetic energy of the electrons, The second term is the operator 

for the kinetic energy of the nuclei. The third term is the electron-nuclear attraction 

where r;A being the distance between electron i and nucleus A . The fourth term is 

the electron-electron repulsion where r iJ being the distance between electrons i and 

j. The last term is the nuclear-nuclear repulsion where RA8 being the distance 

between nuclei A and B with atomic numbers Z A and Z 8 • 
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Due to the complexity of the Schrodinger equation for molecular systems 

which involved both nuclear and electron coordinates, an approximation is, therefore, 

needed. Since nuclei are much heavier than electrons, they move more slowly. 

Hence, one can consider electrons in a molecule as moving in the field of fixed 

nuclei. Within this approximation, the second term of equation (2.5), that is the 

kinetic energy of the nuclei, can be neglected and the term representing the repulsion 

between nuclei can be considered as a parameter that its value depends on 

internuclear distance R. This approximation is called "Born-Oppenheimer 

approximation". The Hamiltonian that omits the nuclear kinetic energy terms from 

1\ 

(2.5) is called "purely electronic Hamiltonian, He/ " 

(2.6) 

The solution of the Schrodinger equation involving the electronic Hamiltonian is 

given as 

1\ 

He/ 'P el = E el'l' e/ (2.7) 

\f'e
1 is the electronic wavefunction, which describes the motion of electrons in the 

field of fixed nuclei. The total energy £ 10101 of the system of a given set of 

internuclear distanl,;e is then given as 

(2.8) 



14 

2.1.3 The Hartree-Fock Wavefunction 

From the equation 2.6 the electronic Hamiltonian is the 

function of only spatial coordinates of the electrons. To specify electron spin, it is 

necessary to introduce two spin functions, a(w) and fJ(m), corresponding to spin up 

and down, respectively. These two spin functions form complete set and are 

orthonormal. The wavefunction for an N-noninteracting-electron system or the 

Hartree product is given as 

(2.9) 

where X; {i) is the function of space and spin coordinates of electron i xi (r, tiJ i) , 

called the spin orbital. According to the antisymmetry principle, many-electron 

wavefunction must be antisymmetric with respect to the interchange of the 

coordinate of any two electrons, 

If( x~or ·· xJiJ-·· xl i J-·· XN( N JJ =-If( xJIJ-· · xl i J-·· xJiJ ··· XN( N JJ 

(2.1 0). 

This requirement is a very general statement of the Pauli exclusion principle. The 

wave function of (2.9) is not antisymmetric. Using properties of determinant, the 

Hartree-Fock wavefunction in which the exchange of any row or column changes the 

sign of determinant could be formed, 

Xt0) X2(1) X3(1) X nO) 

1 
Xt(2) X2(2) X3(2) Xn(2) 

If = .j(;;)! Xt (3) X2(3) X3(3) Xn(3) 

Xt (n) X2(n) X3(n) Xn(n) 

or 
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lf/1 (l)a(l) lfii (l)JJ(l) lf/2 (l)a(l) .... lf/~(l)jj(l) 

lf/1 (2)a(2) lfii (2)jj(2) lf/2 (1)a(l) If/~ (2) jj(2) 
1 lf/1 (3)a(3) lfiJ (3) p(3) lf/2 (l)a(l) If/~ (3) jj(3) (2.11) =M 

lf/1 (n)a(n) lf/1 (n)jj(n) lf/ 2 (1 )a(l) 1f1 ~ (n)jj(n) 

This determinant is also called "Slater determinant". Since x J (k) is the spin orbital} 

of electron k which called one-electron spin orbital. It is consisted of spatial part or 

molecular orbital (MO) and spin functions. For the spatial part, 2 different 

assignments of orbital can be made i.e. the restricted orbital where the paired a and p 
electrons are assigned the same spatial part and the unrestricted orbital where the 

paired a and p electrons are assigned different spatial part. The Hartree-Fock 

wavefunction that uses restricted orbitals is called "Restricted Hartree-Fock" (RHF) 

and that used unrestricted orbital is called "Unrestricted Hartree-Fock" (UHF). 

2.1.4 Molecular Orbital and Introduction of Basis set 

The molecular orbitals lf/p lf/2 , ... in equation (2.11) can be written in 

term of the linear combinations of orthogonal function which forms the complete set. 

N 

If/; = L c fl/P f1 (2.12) 
fl;J 

The rf>pf/>2, ... ,¢>N are the orthogonal function with known expression. The set of this 

function is called "basis set". 
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The best solution to the approximation of MO could theoretically be 

obtained by the use of an infinite and complete set of basis functions. The most often 

used mathematical expressions for the basis functions are the Slater-type orbital 

(STO) and the Gaussian-type orbitals (GTO). 

The Slater-type orbitals has the form 

(2.13) 

where n, l, m are quantum numbers and r; is orbital exponent. The r , e, ¢ are the 

spherical polar coordinates. This Slater functions were introduced by Slater [26] and 

extremely close in form to the hydrogenic orbitals. In the past, they were mostly used 

for the calculations of small molecules. Their advantage is that only few functions 

are needed for a good description, but not suited to the numerical work, and their use 

in practical molecular orbital calculations has been limited. 

The Gaussian-type orbitals has the form 

(2.14) 

where a, b, c are integer number and a is orbital exponent. The x, y , z are the 

Cartesian coordinates. The GTO were introduced into molecular orbital calculations 

by Boy [27]. They are less satisfactory than STO as representations of atomic orbital, 

particularly because they do not have a cusp at the origin (Figure 2.1 ). Due to this 

deficiency more than one GTOs are often required for a good description. At present, 

most calculation performed uses GTOs instead of STOs since the computation of 

GTO is much faster than that of the STO. So, as many GTO functions, which yields 

the same quality to the STO can be computed in the fraction of time. 
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r 

Figure 2.1 The cusp of Slater function. 

2.2 Basis set [24,28] 

2.2.1 Minimal Basis sets 

A minimal basis set is a representation that contains just the number 

of functions that are required to accommodate all the filled orbitals in each atom. In 

practice, a minimal basis set normally includes all of the atomic orbitals in the shell. 

Thus, for hydrogen and helium a single s-type function would be required. For 

elements from lithium to neon the 1 s, 2s and 2p functions are used and so on. The 

basis sets STO-nG for example, ST0-3G, ST0-4G, are all minimal basis sets in 

which n Gaussian functions are used to represent a Slater orbital. In fact, it is found 

that there is often a little difference between the result obtained with ST0-3G basis 

set and the larger minimal basis set with more Gaussian functions. The only 

exception is for the case of where hydrogen-bonded complexes where ST0-40 
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performs significantly better. The minimal basis sets .are well known to accompany 

with several deficiencies. There are particular problems with compounds containing 

atoms at the end of a period, such as oxygen or fluorine. Such atoms are described 

using the same number of basis functions as the atoms at the beginning of the period 

despite they have more electrons. A minimal basis set only contains one function per 

atomic orbital. Since the radial exponents are not allowed to vary during the 

calculation, the orbital cannot expand or contract in size in accordance with the 

molecular environment. 

2.2.2 Extended Basis sets 

The problems with minimal basis sets can be addressed if more than 

one function is used for each orbital. For STO, a basis set which doubles the number 

of functions in the minimal basis set is described as double zeta basis. The double or 

triple or more of STO minimal basis function allows the linear combination of the 

'contracted' and the 'diffuse' functions which gives an overall result that is 

intermedi:;tte between the two. In other words, the size of orbital can be modified 

during the course of calculation. An alternative to the double zeta basis approach is 

to double the number of functions used to describe the valence electrons but to keep 

a single function for the inner shells called "split valence double zeta basis". For 

GTO, the similar notation like STO can also be used. The 3-21G exemplifies the 

notation used for such split valence double zeta basis sets. In this basis set, three 

Gaussian functions are used to describe the core orbitals. The valence electrons are 

also represented by three Gaussian; the contracted part by two Gaussian and the 

diffuse part by one Gaussian. The most commonly used split valence basis sets are 3-

21 G, 4-31 G, and 6-31 G. Other type of extended basis set is Dunning basis set [29] 

such as DZV and TZV. 



19 

2.2.3 Polarized basis set 

Just simply increasing the number of basis functions does not 

necessarily improve the model. In fact, this possibly leads to a wholly erroneous 

result, particularly for molecules with strongly anisotropy charge distribution. All of 

the basis sets employed in modem quantum chemical calculations usually use 

functions that are centered on atomic nuclei. The use of split valence basis sets can 

help to overcome the problems with non-isolated atom. For instance, the electron 

cloud in an isolated hydrogen atom is symmetrical, but when the hydrogen atom is 

present in a molecule the electrons are drew towards the other nuclei. This distortion 

can be considered to correspond to mixing p-type character into the 1 s orbital of the 

isolated atom, to give a form of sp hybrid. In a similar manner, the unoccupied d 

orbitals introduce asymmetry into p orbital. In other words, the addition of p function 

for H atom and d function for heavier atom enable orbitals on nuclei to polarize and 

form bond. These functions, p for hydrogen and d for 151 and 2nd row element, have a 

higher angular momentum and they are called the "polarization" function. An 

asterisk (*) indicates the use of polarization basis functions. Thus, 6-31 G* refers to a 

6-31 G basis set with polarization functions on the heavy (non-hydrogen) atoms. Two 

asterisks, such as 6-31 G* * indicate the use of polarization functions on hydrogen and 

heavy atoms. For Dunning's type basis sets, the annexation of"P" at the end of basis 

set notation, for example DZVP and TZVP, is made to represent the polarized basis 

set. 

2.2.4 Basis set incorporating diffuse function 

Another deficiency of the basis sets is their inability to deal with 

species that have a significant amount of electron density away from the nuclear 

centers such as anions and molecules containing lone pair. This failure arises because 

the amplitudes of the Gaussian basis functions are rather low far from the nuclei. To 
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remedy this deficiency highly diffuse functions i. ~· functions with very small 

exponent, is added to the basis set. These basis sets are denoted using a '+'; thus the 

3-21 G+ basis set contains an additional single set of diffuse s- and p-type Gaussian 

functions for heavy atoms. A '++' indicates that the diffuse functions are included 

also for hydrogen as well as for heavy atoms such 6-31 G++. 

2.3 Effective Core Potential (ECP) [30] 

The tremendous cost of ab initio calculations, especially for atom with 

large atomic number, has 1notivated many attempts to find computational shortcuts. 

One such approach is based on the observation that core orbitals are relatively inert 

to changes in chemical bonding (the so called "frozen core approximation"). Another 

observation is that the effect of core electrons on the valence electron can be treated 

through the use of a potential energy term expressed as the sum of local functions 

multiplied by projection operators. Based on these two assumptions, effective core 

potentials (ECP's) or pseudopotentials, as they are sometimes called reduce the 

computational problems to deal with valence electron only. Most early results 

obtained from ECP's compared favorably with results obtained from all-electron 

calculations, although there was a tendency to find shorter bond lengths and 

somewhat deeper potential energy curves. An another advantage of ECP is that for 

atom with very high atomic number the quantum relativistic effect can be included to 

the ECP. 

The generation ofECP's is performed as following: 

1. The "core" orbitals to be replaced and the remaining "valence" orbitals are 

defined. 



I 1UliUJftflnH l'tll l.J~U; lltJU; 011 21 
• J ..._ .. 

11Jf1tHOHUlllf11 )lfJ1nU 
• 

2. Numerical valence orbitals ( ¢;) are obtaine.d from self-consistent Hartree­

Fock calculations for I = 0, 1, .... , L, where L, in general, is one greater than the 

highest angular momentum quantum number of any core potential. 

3. Smooth, nodeless pseudo-orbitals ( ¢;) are derived from the Hartree-Fock 

orbital ( ¢;) in a manner so that ¢; behaves as closely as possible to ¢; in the outer, 

valence region of the atom. 

4. Numerical effective core potentials U1 are derived for each I by 

demanding that ¢1 is a solution in the field of U1 with the same orbital energy E1 as 

the orbital ¢1 • 

5. The numerical potentials are fitted m analytic form with Gaussian 

functions. The total potential is represented as 

L-l 

U(r) = UL (r) + L[U,(r) -UL (r)]p1 (2.15) 
/:0 

where U L , U1 is Gaussian functions, 

p1 is projection operators, 

r is distance between atom. 

6. The numerical pseudo-orbitals are also fitted to Gaussian functions to 

obtain basis sets for molecular calculations. 

The example of ECP basis set is LANL2DZ [30] which uses full double zeta 

on first row element and Los Alamos ECP plus double zeta basis for Na-Bi. 
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2.4 Density Functional Theory [31] 

The probability distribution of electrons which corresponds to the 

solution of the Schrodinger equation (2.1) can be presented as density matrix, 

(2.16). 

The general form of the equation (2.16) is 

(2.17). 

For normalized 'I' N , 

(2 .18). 

where tr(y N) is the sum of the diagonal elements of the matrix r N . Equation (2.16) 

is called Nth order density matrix for a state of N-electrons systP.m. The reduced 

density matrix of order p is then defined as 

(2.19). 

where (;) is a binomial coefficient. So 

(2.20) 

(2.21 ). 
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From E = (\f' N IHI \f' N) and the definition of the density matrix, we obtain 

(2.22) 

(2.23) 

The first and 2nd order spinless density matrices are given as 

and 

(2.25) 

where s is the spin coordinate. The short form of the diagonal elements of p 2 can be 

written as 

(2.26) 
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and the diagonal element of p 1 (r1, r1) which is the electron density is 

(2.27) 

From equation (2.26) and (2.27) we get 

(2.28) 

and 

(2.29) 

Then the energy formula of equation (2.23) becomes 

The three terms in equation (2.30) represent the electronic kinetic energy, nuclear­

electron potential energy and the electron-electron potential energy respectively. The 

second order density can be expressed in terms of the first order density as 

(2.31) 

where h(r1, r2 ) is the pair correlation function. Substitute equation (2.31 ) into the 

third term of equation (2.30), we obtain 
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Looking very closely, the first term is recognized as the Coulomb integral in terms of 

p(r) which is 

(2.32) 

So the energy in density functional theory can be expressed by 

(2.33) 

where the exchange correlation density Pxc (r1, r2 ) is defined as 

(2.34) 

The last term of equation 2.33 can not be determined since the exact 

expression for Pxc is not know. Thus, the. approximation method are used. 

One of the approximation for exchange energy in DFT is the local-density 

approximation (LDA) E;oA which is given by 

E~DA = -C x L J p:13 dr , (2.35) 

where c = l(_l__) I/J 
X 2 4Jr 
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The LDA for the exchange correlation energy, E;:A, is [31] 

LDA f dk f 1 ~ 4.1r f LDA ] Exc = --2 dr- I dJ..-2 p(r)LS-t (k;p(r)) -1 , 
(21r) 2 JJ lkl (2.36) 

where S JDA ( k; p(r)) is S;. ( k) for a homogeneous electron gas with density p(r) . 

The S -t, the density fluctuation, in r space is given as 

(2.37) 

where its transformation to the Fourier space k is 

(2.38) 

The other approximation for exchange energy is Becke's 1988 parameter denoted as 

t-..£:88
, given by 

2 

MB88 = EwA _ P"' fp4/3 xs dr 
X X L... S 1 6j3x "nh-1 

s + s Sl X 5 

(2.39) 

h fJ · · 1 · d IV Psi w ere IS a constant, s 1s e ectron spm, an x s = ~ . 
P .,' 

Perdew and Wang proposed the gradient corrected correlation energy as 

(2.40) 

where 5 c (r,, S) is the correlation energy per particle for a uniform electron gas, 



c; = (p a - p p ) is the local polarization, 
n 

r, = (3/ 4nn )lf3 is the local Seitz radius, 

t = \Vn\/2gksn, 

The function H is the summation of H 0 and H 1 where 

27 

I 2 li3 a=0.09 , {J=vCc(O), v=(16n-)(3n- ) · , Cc =0.004235 , Cx =-0.001667, and 

A= 2a 1 

fJ 
-la<c{r,.t;>j (g lpl ) 

e -1 

The correlation energy proposed by Lee et a/, known as Lee-Yang-Parr correlation 

functional, for closed shell systems is expressed as [32] 

E = -a f 1 {p + bp-2/3 [c ps,J - 2t + (_!_ t + _1 V 2 p )]e -cp-v) } (2.41) 
c 1 + dp - 1/3 F W 9 W 18 

where 
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is a local "Weizsacker" kinetic-energy density, a, b, c, and dare constants, and 

c = ~ (37r2 )2;3 
F 10 

A.D. Becke proposed the another approximation for Exc which included three semi-

empirical parameters, a0 ,ac, and ax, as in the following, [33] 

(2.42) 

where E;xact is the exact exchange energy, ~.E~88 is Becke's 1988 exchange 

functional [34], and 11E:w91 is Perdew and Wang ' s 1991 gradient correction for 

correlation [35]. Using Exc of Becke's three parameter and Ec of Lee-Yang-Parr for 

the correlation term, this DFT method is called B3L YP, 

E(B3LYP) = E:xc(Becke' s threeparameter) + Ec (LYP) (2.43). 
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2.5 Molecular Mechanics [28] 

Owing to the limit of the computer, many chemical problems involved large 

molecules are not feasible to be calculated using quantum mechanical methods. 

Since it incorporates both motion of electrons and nuclei and are time-consuming. 

The force field method or the molecular mechanic method, which based on empirical 

equations ignore the electronic motions and calculate the energy of a system as a 

function of the nuclear position only. The molecular mechanics potential is written as 

the summation of 4 kinds of the interactions within a system i.e. bond stretching, 

angle bending, bond torsion, and non-bonded interaction; 

(2.44). 

V(r N) denotes molecular mechanics or sometime called "steric energy or steric 

strain" which is a function of the positions (r) of N particles. The first term, the bond 

stretching, is the interaction between pairs of bonded atoms modeling by the 

harmonic potential that gives the increase in energy as the bond length I; deviates 

from the reference value I; 0 • The second term, angle bending, is summation over all 

valence angles in the molecule. The third term is a torsional potential that the energy 

changes as a bond rotates. The last term is the non-bonded term, which is calculated 

between all pairs of atoms (i and j) that are in different molecules or that are in the 

same molecule but separated by at least three bonds. In a sample force field, the non­

bonded term is usually consisted of the Coulomb potential term for electrostatic 

interactions and Lennard-lones potential for van der Waals interactions. 
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One type of molecular mechanic met~od is the Universal force field (UFF) 

[36] . The Universal force field describes the bond stretching, angle bending, torsion, 

van der Waals, and electrostatic same as the general molecular mechanics potential. 

However, it adds the inversion term, which described by the cosine Fourier 

expansion in m for atoms I bonded exactly to three other atoms J , K, L, 

(2.45) 

where K IJKL is the force constant in kcal/mol and m IJKL is the angle between the 

IL axis and the IJK plane. C 0 = 1, C 1 = -1, C 2 = 0 for the carbon sp2
• 

2.6 ONIOM Approach (our own n-layered integrated molecular 

orbital and molecular mechanics) [37] 

Although the density functional theory obtained from the combination with 

coulomb and exchange integrals has led to theoretical methods which scaled almost 

linearly with the size of the system, the accurate ab initio modeling of chemical 

systems containing a large number of atoms is still a challenging task. Morokuma et 

a!. [38] proposed the Integrated Molecular Orbital and Molecular Mechanics 

(IMOMM) method which partitioned the system into 2 parts where different levels of 

theory are treated. Thus, inter~sting or difficult part of the system is treated with 

more accurate method while the rest of the system is treated with the less accurate 

method. By this approach, a lot of computation time can be saved and "real" instead 

of "model" system can be studied. The crucial aspect in this and other hybrid 

schemes is the interaction between the inner and the outer part (higher level of 

theory)/(lower level of theory) of the system. The total energy E(X- Y) of the 

entire system X - Y where X is the inner region and Y is the outer region can be 

defined as 



31 

E(X- Y) = EtowCX- Y)- Etow(X) + Ehigh (X) (2.46) 

where E10w(X- Y) is the energy of the entire system X- Y which X is inner 

region and Y is outer region which calculated at the low level 

of theory. 

is the energy of the inner region which calculated at the low 

level oftheory. 

Ehigh(X) is the energy of the inner region which calculated at the high 

level oftheory. 

The equation 2.46 is best described using the below diagram. 

Level of theory 

Ehigh(X) 
High no------

Medium 

Low 

Model Real 

Figure 2.2 The ONIOM extrapolation scheme for a molecular system partitioned into 

two layers. 

From the equation 2.46, there is no necessity for a special interaction 

Hamiltonian, since the interaction between the two layers is consistently treated at 

the low level oftheory. 
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As mentioned before, an important and critical feature of all the combination 

schemes is the treatment of the link atoms. In Figure 2.3, the atoms present both in 

the model system (inner layer+ link atom) and the real system (inner+ outer layer) 

are call set 1 atoms and their coordinates are denoted by R1 • The set 2 atoms are the 

artificially introduced link atoms [38]. 

X (set 4) 

Model System = inner layer + linkatoms 
Real System = inner layer + outer laver 

Figure 2.3 Definition of different atom sets within the ONIOM scheme. 

They only occur in the model system and their coordinates are described by 

R2 • In the real system they are replaced by the atoms described by R3 • Atoms that 

belong to the outer layer and not substituted by link atoms are called set 4 atoms with 

the coordinates R4 • The geometry of the real system is thus described by R1 , R3 and 

R4 and they are the independent coordinates for the ONIOM energy: 

(2.47) 

In order to generate the model system, described by R1 and the link atoms 

R2 , we define R2 as a function of R1 and R3 : 
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(2.48) 

If atom A belongs to set 1 and atom B belongs to set 3, the set 2 link atom 

(symbolized by H in Figure 2.2) is placed onto the bond axis A-B. In terms of 

internal coordinates we choose the same bond angles and dihedral angles for set 2 

atoms as for set 3. Therefore, in the model calculations the link atoms always aligned 

along the bond vector of the real system. For the exact position r2 of a single H atom 

along an A-B bond ( r3 - r1 ), a fixed scale factor (or distance parameter) g is 

introduced. Hence, 

(2.49) 

For example, the ethane molecule (CH3-CH3), we can divide the ethane 

molecule into two regions. The inner region is the methane molecule, which treated 

with the high level. The outer region is the methyl group, which treated with the low 

level. The link atom is hydrogen atom in high level and in low level is carbon atom 

as shown in Figure 2.4. 

H H "' / c:----c 
' \ ,' \ 

H, H H H 
link atom 

Inner region Outer region 

Figure 2.4 Inner and outer regions using for partitioning of ethane molecule. 
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The expression ofthe ONIOM energy gradient along with a certain functional 

relationship between set 2 and set 113 atoms, is straightforward. For a two-layer 

ONIOM system, we obtain 

(2.50) 

where J is the Jacobian matrix that projects the forces on all set 2link atoms (R2 ) 

onto set 1 ( R 1) and set 3 atoms ( R 3) . The differentiation of the vector components 

of one set 2 atom r2 with respect to components of r1 and r3 yields a very simple 

Jacobian: 

8r2,a I 8r3,b = go a,b 

ar2,a I arl ,b = (1 - g )5 a,b 

(2.51) 

(2.52) 

where a and b denote the catesian components x, y, and z. 5 is the Kronecker delta 

symbol. 

The Hessian matrix, H ONIOM is the definition of the second derivatives of 

the ONIOM total energy EoNIOM can be achieved easily, 

2 
H ONIOM = V EoNIOM (2.53) 

The force constant matrixes of the model system at low level (H1) and high 

level (H 2 ) have to be transformed by applying the Jacobian J and its transposed 

JT . Hence, we obtain for a two-layer ONIOM system: 
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HoNIOM2 =H3 -JT(R2;Rt,R3)x*H1 *J(R2;R1,R3) 

+JT (R2;Rt>R3)* H 2 *J(R2;Rt>R3) (2.54) 

Similarly, gradient and second derivative expressions can be derived easily 

for the three or n-layer ONIOM partitioning [37]. 


	CHAPTER 2 THEORETICAL BACKGROUND
	2.1 Solution of Schrodinger Equation of Molecular Systems
	2.2 Basis set
	2.3 Effective Core Potential (ECP) 
	2.4 Density Functional Theory
	2.5 Molecular Mechanics
	2.6 ONIOM Approach (our own n-layered integrated molecularorbital and molecular mechanics)


