CHAPTER I
PRELIMINARIES

To proceed with the investigation of our GDDs, we recall some known designs

here which will be used in our constructions.

2.1 Triple Systems

First, we describe the well-known designs called triple systems. A triple system,
denoted by TS(n; A), is an ordered pair (', T) where 'isan -etand T is a
collection of 3-subsets of  (called blocks or triples) such that each pair of distinct
elements of " occurs together in exactly Ablocks. Note that a TS(n; A) can be

considered as a group divisible design with only one group.

Example 2.1, Let v = {1,2,3,..., 7} and 70 = {{1,2,4},(2,3,5}, (3,46},
{457}, {15, 6}, {2,6, 7}, {13, 73} Then, { L%) is a TS(7; 1).

Example 2.2. Let » = {1,2,3,4) and % = {{1,2,3}, {2,3,4}, {1,3.4}, {L2,4}}.
Then, { 2,%) is a TS(4;2).

The following theorem guarantees the existence of such TS(n; A), see details in
[4].
Theorem 2.3. [4 Let > 3. Then, a TS(n; A) exists if and only if A and are
in one of the following cases:
() A=0 (mod 6),
(i) A= 1or5 (mod6)and = 1or3 (mod 6),



(i) A=2o0r4 (mode)and =0or1(mod3) and
(iv) A= 3 (mod s) and IS odd.

2.2 Factorizations

A variety of the techniques that we use to construct GDDs are related to
A:-factors,

Definition 2.4. A k-factor of a graph G is a spanning /.-regular subgraph of G.

In particular, a 1-factor is a perfect matching. A 2-factor is a union of cycles
which span all vertices of the graph. Besides, if every cycle in a 2-factor is K3,
then such 2-factor is called a A-factor.

Theorems 2.5 and 2.7 are classical results of decompositions of complete graphs
into 1-factors and 2-factors, respectively.

Theorem 2.5. [10] For all even integer , the complete graph Kn can be decom-
posed into ( —1) I-factors.

Example 2.6. A complete graph K4 can be decomposed into three 1-factors.
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Figure 2.1 Three different 1-factors of K4

Theorem 2.7. [10] For all odd integer , the complete graph Kn can be decomposed
into -Fr 2-factors.

Example 2.s. A complete graph K$ can be decomposed into two 2-factors.



T4 I3 T4 I3 Ty I3

Figure 2.2: Two different 2-factors of Kj
2.3 Packings

A packing with triangles of a complete graph Knis a triple (', T, C) where
is the vertex set of Kn\ T is a collection of edge-disjoint complete subgraph K3
of Krt; and Gis the collection of edges in Kn not belonging to any K3in T. The
collection of edges Gis called the leave. If |£] is as small as possible, then (T, £)
is called a maximum packing of order .

We can consider maximum packings as a generalization of triple systems with
A= 1 According to Theorem 2.3, we have that the complete graph Kn can be
decomposed into triangles if and only if = 1or 3 (mode). However, if we
decompose the complete graph Kn for any value of into triangles, the following
result about maximum packings shows what remains as the leave.

Theorem 2.9. [4 Let be apositive integer. If (, T, C) is a maximum packing
of order , then the leave is
(i) al-factor, ifn —o or2 (mod e),
(i) a4-cycle, which is a cycle on 4 vertices, ifn =5 (mod 6),
(iil) a tripole, which is a spanning graph with each vertex having odd degree and
containing " edges, ifn =4 (mod 6) and
(iv) the empty set, ifn =1 or 3 (mod s).



2.4 Uniformly Resolvable Designs

A uniformly resolvable design URD(n, k) is a decomposition of the complete
graph Kn into t 1-factors and k - t A-factors where t —2k — + L The following
theorem provides the existence of @ URD(n, k).

Theorem 2.10. [7] Let and k ke positive integers such that =0 (mod 6) and
1+1<k< —1 Then, there exists a URD(n, k).

Note that when =0 (mod 6), every vertex in the complete graph Kn has odd
degree. Besides, any triangle contributes two to the value of vertex degree. Thus,
the number of 1-factors in a URD(n, k) is always odd. Therefore, by Theorem 2.10,
the complete graph Kn can be decomposed into n~I~ A-factors and t 1-factors,
when t is odd and 3 <t < —L In other words, Kn can be decomposed into
t 1-factors and a collection of triangles when t > 3 is odd. Furthermore, by
Theorem 2.9, the leave of a maximum packing with triangles when =0 (mod s)
is a 1-factor. This means that Kn can be decomposed into one 1-factor and a
collection of triangles. We conclude this result in the following theorem.

Theorem 2.11. Let =0 (mod 6). The complete graph Kn can be decomposed
into a collection of triangles and a collection oft 1-factors, where t is odd and
1 << -1,

We extend the above result to a decomposition of any complete multigraph
AKnwhen =0 (mod 6) and A> Lin Theorem 2.12

Theorem 2.12. Let =0 (mod 6) and X be a positive integer. Then, there is a
decomposition of the graph \K n into a collection of triangles and a collection of k
1-factors, where k = A (mod 2) and 1< k < A( —1).

Proof. When 1< k < A by Theorem 2.11, we decompose k copies of Kn into
triangles and k 1-factors. Since A—k is even, the remaining (A —k)Kn can be



10

considered as a TS( ; A—k). Now, assume that A< k < A( —1). Since k = A
(mod 2) and 1< k < A( - 1), we can write k = Xa+ 2b for nonnegative integers a
and bsuchthataisodd, 1< a< -land0<b< A Again, by Theorem 2.11, we
decompose each of b copies of Kn into triangles and a+ 2 1-factors and decompose
each of the remaining (A —Db)Kn into triangles and a 1-factors. I

Our work in Chapter 111 and Chapter 1V is to construct the GDDs that satisfy
the necessary conditions in Theorem 1.2. However, we first note that if Al = Al
a GDD(m, ; Al; AL A2) can be considered as an original GDD with two associate
classes, namely GDD( =m + 2 3; Al, A2), in which the existence problem had
been already done [5, 6, 8, 9]. We state some results in the following lemma, which
will be ingredients for our construction.

Lemma 2.13. [5 6] Let h and k be nonnegative integers. All of the following

GDDs exist:
(i) aGDD(6h +6,6/c+ 6,2 2,1),
(i) a GDD(6h +6,6k +4:2 2,1),

(ili) a GDD(6h +4,6c+ 4;4,4,3),

(iv) a GDD(6h + 6, 6k + 2;6,6,5), wherek " 0 and
) (

(v) aGDD(6h + 2,6k + 2,4,4,1), whereh ™ 0 andk /0.
The following notations will be used throughout this thesis.

(1) When we say that B is a collection of blocks of a ' - et, B may contain
repeated blocks. Thus, the union in our constructions is referred to the union

of multisets.
(2) Let m be a positive integer. We write m = for m = a (mod 6) where
ae{01,2,..,5}

(3) Lete={, }beanedgeina graphG. We usea + e for the triple{a, , }.
If w is a setof edges of a graph G, then a+ X stands for [V|triples (or,
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equivalently, triangles) in {a+e :e £ X}. For a subgraph H of G, we also
write a+ H instead of a + E(H).

Example 2.14. Let G be agraph with the vertex set V(G) —{a,£1,£2,£3, £4, £5}
and let G be a 2-factor of ¢ with 4 vertices £1.¢2, £3 and za. Thus, G is a 4-cycle,
say 6 = (£1t2¢ £4). Then, a. C stands for 4 triangles {a,£1,£2}, {a, £2, £3},
{8,235, 54y and {a, e, £1}, illustrated in Figure 2.3.

Example 2.15. Let X = {{£1,y1}, {£2,42}, {£3,43}, {€i,£2}} be a set of edges
in a graph G. Then, a+ X stands for 4 triangles {a, £1,41}, {a, £2,42}, {a,£3,43}
and {a, £1,£2}, illustrated in Figure 2.4.

T T2

T4 I3
Figure 2.3: The graph obtained from the union of all triples in a+ C

T (]

T3 Y3

Figure 2.4: The graph obtained from the union of all triples in a+ X

Remark 2.16. Note that if H is a spanning subgraph of degree k, then for any
vertex £ in the graph H, there exist k triples in a+ H that contain both vertices
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aand X In particular, if H is a 1-factor (or 2-factor), then a and X occur together
once (or twice, respectively) in a+ H, for each vertex Xin H.
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