CHAPTER 1lI
GROUP DIVISIBLE DESIGNS
WITH 7Lor 7= 0or 1 (mod 3), 7. 2and 7" 2

3.1 Introduction

The main work in this thesis is to show the sufficiency part of the existence
problem of our GDDs. In particular, we show the construction of group divisible
designs that satisfy Table 1.1 In this chapter, GDDs withm or = 0or 1 (mod 3)
and m, 72 are of our interest while the GDDs with m and =2 (mod 3) and
m, " 2will be considered in Chapter V.

To construct a desired GDD(m, ; Al ALA), we show that there is a K&
decomposition of the corresponding graph XiKmVa2alK . Recall that

Mm = {xi,x2x3,... ,xm}

and

N = (d1,d2,43,...,yN}
are disjoint sets of elements and the notations and \ Kn(Nn) stand
for the complete multigraphs lying on the sets Mm and Nn, respectively.

The following observations are basic tools for our construction. Thus, we
conclude them in Lemma 3.1 for future references.

Lemma 3.1. Let [and be positive integers and let A|,Aj,Az,7i, 1" and 72 be
nonnegative integers.
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(i) If there exist a GDD(m, ;Al, A A2) and a GDD(m, ]7i, 7i', 72), then fliere
exists a GDD(m, ; A+ 7x Al + 71, Ao+ 72).

(i) /] there exists a TS(m; Al —A2), aTS( ;A - A) and aTS(m + ; A?), £lien
there exists a GDD(m, ; Al, Aj, A).

Proof. (i) Let (Mm,Nn,B\) and (Mm,Nn,B2) be a GDD(m, ;Ai, AL A?) and a
GDD(m, ;7i, 71", 72), respectively. Then, the 3-tuple (Mm,NnB\  2)isa
desired GDD.

() Let (Mm,o,£%) be a TS(m;A!l —A2), let (0,Nn,B2) be a TS( ;A —A)
and let (Mm,Nn,Bz) be a TS(m + ; A2). Then, (Mm, TV, 2 Bf)isa
desired GDD.

|

In our construction, several techniques will be used. One of them is to find
some small designs and combine them to get a larger one. By the existence of
well-known triple systems from Theorem 2.3 with the observations in Lemma 3.1,
we can construct some of our desired GDDs directly in Theorem 3.2. However,
note that a GDD(m, ; Aj, A, A2) exists if and only if the corresponding graph
AKmvaz a\Kn has a /*-decomposition. This means that each edge in the graph
must belong to exactly one triangle. Thus, whenm = = land A2 > 0, a
GDD(L,L; Ai, X\, A2) does not exist,

Theorem 3.2, Letm and be positive integers such thatm » 2.~ 2 and
mn 1. Let Ai, Aj and \ 2 be nonnegative integers such that X > Az and Aj > A2,
Then, there exists a GDD(m, ;Al, AL, A2) with parameters m, ,\\,\\ and A
satisfying one of the following:
() m=1or3 (mode), =0o0r4 (modse) A=A (mod 2) and
ifm+ =5 (mods), then\2=10 or3 (mod s).
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(i) m, =1or3 (mod6), A2—0 (mod 2) and
ifm+n=2 (mod 6), then 2= 0 (mod 6).
(i) m=Lord (mods), =5 (modo6), J(A]+ 2A2);
ifm =1 (mod 6), flien A2=0 (mod 2) and
ifm =4 (mod 6), then A = A2 (mod 2).
(iv) m=1 (mod 6), =2 (mod 6), Aj = A2 (mod 2) and Al+ 2A2= 0 (mod 3).

Proof. First, since Al, Aj > A2, we have that Al —A2 and Al —A?2 are nonnegative

integers.

(i) Assume that Aj = A2 (mod 2). Then, AL—A2is even. Note thatm+n = 13
or 5 (mod 6); moreover ifm+ =5 (mod 6), we also have that A2= 0 or
3 (mod 6). Thus, by Theorem 2.3, a TS(m+ ; A2), a TS(m; \\ —A?) and a
TS( ; A —A2) exist. Hence, by Lemma 3.1, we obtain our desired GDD.

(i) Note that m. and A2 satisfy one of the cases: m+n =0 or 4 (mod 6)
and 2= 0 (mod 2): orm+n = 2 (mod 6) and A2 = 0 (mod 6). By
Theorem 2.3, a TS(m + ; A2), aTS (m; Al —A2) and a TS(n; A —A?) exist.
Applying Lemma 3.1, these triple systems form a desired GDD.

(i) 1fm =1 (mod 6), thenm +n = 0 (mod 6) and A2 = 0 (mod 2). By
Theorem 2.3, there exist a TS(m + : A2) and a TS(m,; Al —A2). Note that
3(A'x —A2). Thus, there exists a TS( ; Aj —A2). Then, by Lemma 3.1, we
obtain our GDD.

If m =4 (mod 6), then m+n =3 (mod 6). Thus, there exists a TS(m1-

; A2) by Theorem 2.3. Note that A —Ao is even and 3|(A-) —A2). Thus, a
TS(m; A —A2) and a TS( ; AL—A2) exist. These triple systems form a GDD
by Lemma 3.1.

(iv) Since A) = A2 (mod 2) and A) + 2A2= 0 (mod 3), A - A2= 0 (mod 6).
Then, by Theorem 2.3, there exist a TS(m+ ;A2), aTS( [JAl - A2) and a
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TS( ; A} —A2). Applying Lemma 3.1, we obtain a desired GDD.

|

Theorem 3.2 shows a construction of some cases in Table L.1. To proceed
our investigation of GDDs where m or = 0 or 1 (mod 3), we first note that
a GDD(ra, ;Al, Aj, A2) is equivalent to a GDD(n, m; Aj, Al, A2). Thus, it suffices
to consider only when m = 0 or 1 (mod 3) and run the value of . Hence, we
separate our construction in this chapter into three sections, depending on the
value of .

32 mand =0or1 (mod3)

In this section, we consider the case that both m and = 0 or 1 (mod 3).
Due to the construction in Theorem 3.2 (i) and (ii), it remains to construct a
GDD(m, ; Al x\. A2) when (m, ) £ {(0,0), (0,4), (4,4)}. Again, by the observa-
tions in Lemma 3.1 together with the existing GDDs when Al = Alin Lemma 2.13,
we obtain our desired GDDs in the following theorem.

Theorem 3.3. Let m and  be positive integers such thatm and =0 or 4
(mod 6). Let A], Aland A2 be nonnegative integers such that AL> A2 and AL> A2,
There exists a GDD(m, A, A(, A2) provided that

(i) \i and X[ are even and

(i) ifm, =4 (mod 6), then A2=0 (mod 3).

Proof. When A2 is even, by Theorem 2.3, there exist a TS(m; A —A?) and a
TS(n; AL—A2). Note that m+ = 0or 20r 4 (mod 6); moreover ifm+ =2
(mod 6), then A2—0 (mod 6). Thus, by Theorem 2.3, a TS(m + ;A2 exists.
Applying Lemma 3.1, we obtain a desired GDD.
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Now, assume that A2is odd, then A2—Lis even. Whenm+n = Oor 4 (mod 6),
we obtain from the previous case that there exists a GDD(m, ; Al =2 Al—=2, A2—1).
Together with a GDD(m, ;2,2,1) from Lemma 2.13, we obtain our desired GDD.
When m + =2 (mod 6), we have that A2= 3 (mod 6). From the previous case,
there is a GDD(m, ; Al —4, Aj —4, A2—3). Together with a GDD(m, ;4,4,3)
from Lemma 2.13 (iii), we obtain our desired GDD. I

33 m=0or1(mod3), =2 (mod6)and / 2

This section is to consider GDDs where m = 0 or 1 (mod 3), = 2 (mod 6)
and /2 Notethatm=0,1,30r4 (mod 6). By Theorem 3.2 (iii), it remains
to construct the GDDs when (m, ) G{(0, 2), (3,2), (4, 2)}.

First, we construct GDDs with ' = 0 (mod 6), = 2 (mod 6) and /| 2
The main construction is provided in Theorem 3.7, which requires the existence of
some small GDDs in Lemmas 3.4 - 36.

Lemma 3.4. There exists a GDD(6, 2; A], 6, A2) where (Ai,A2) G {(0,1), (2,1),
(2,2), (4,3). (4,4)}.

proof. Let B = {{xt,yi, 2} :1 G {L,23,...,6}}. Then, (M6N2B) forms a
epp(s, 2;0,6.1). For (Ai,A2) = (2,1), the graph 2Kg(M6) can be considered
a5 a Ts(6:2). Thus, by Lemma 3., a eops, 22,6 1) exists. For (Ai,A2) G
{(2,2),(43), (4 4)}, we note that 2(A2—1) = Al (mod 2) and 2(A2—1) < bAi- By
Theorem 2.12, we can decompose the graph AIKGM®6) into a collection of triangles
T and 2(A2—1) 1-factors, say Fij where i G{1,2},j G{1,23..... A - 1}. Let
T be a collection of triangles defined by

F ~{hi+Fij £ (1)2},) G (1,23,..., A2—1}}.
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Hence, HUT UJ7is a /A-decomposition of the graph Al/6(A/6) Va2 6A2(ND).
Then, there exists a GDD(6, 2; A, 6. A2) where (Al, A2) G{(2,2), (4,3), (4,4)}. [

Lemma 3.5. There exists a GDD(6, 8; 4, 6, 4).

Proof. Let B = {yi,y2} C j\o By Lemma 34, there exists a GDD(6, 2, 0,6,1) on
the vertex set A/6  B. namely (A/j, B,B). Since Ai(m—1) = 20, by Theorem 2.12,
we can decompose the graph 4AT6(A/6) into a collection of triangles T\ and 18
1-factors, say F13 and FRgwhere i, q G{L, 2}, ] G{1.2,3} and» G{3,4,5,... ,8}.
Let J7 be a collection of triangles defined by

F = {Vi+Fijivp+ Fpg th Qf {1)2},j G{1,2,3}p G{3,45,... s }}.

Since Aj( —3) = 30, we can apply Theorem 2.12 again to decompose the graph
6Ke(Ns \ B) into a collection of triangles 72 and 24 1-factors, say Hij and Hpg
where i G {1,2,3,...,6}, 0 G{7,89,...12} and j,p G {1,2}. Let TLbe a
collection of triangles defined by

"= {xt+Hij,yit Hpg :1G{L23,....6},¢G{78,9,..12},].p G{L2}}.
Thus, (Me,Ns,B Tl T2 Fun) isa GDD(6,8;4,6,4). I

The GDDs from Lemma 3.4 are useful to construct some larger GDDs in the
following lemma.

Lemma 3.6. Letm and be positive integers such that m = 0 (mod 6), =
2 (mod 6) and A 2. There exists a GDD(m, ;Al, 6, A2) where (ALA) G

{(21),(2,2),(4.3),(4.4)}.
Proof. We write m = 6h + 6 and —6k + 8 for nonnegative integers h. k. Let

A={x1x2x3 . .x6},B={yLy2 and let (A, A2) G{(2,1), (2,2), (4,3), (4,4)}.
We separate our construction in three cases.
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Case (i) h > k. Since Aland areeven, m > and Al > A2, by Theorem 2.12,
we can decompose the graph AK m(Mm) into a collection of triangles T and \ 2
1-factors, say Fij where i G {1,2,3L.., },j G{1,23,..., A2}. LetF hea
collection of triangles defined by

F={i+Fij:iG{23 ,n},jG{L23,., A}

Besides, the graph 6Kn(Nn) can be considered as a TS(n;s), namely (Nn,B).
Hence, (Mm,Nn,T T B) isa GDD(m, ;Als,A),

Case ()1 h <k Wefirst note that the construction of a GDD(s, s;4, 6,4) is
done in Lemma 3.5. By Lemma 3.4, there exists a GDD(s, 2; Al, 6. A2) on a vertex
set Au Blnamely (A,B,B). Since h* land Al > A2 by Theorem 2.12, we
can decompose the graph AIK6h(Mm\ A) into a collection of triangles T\ and
6Ai + 2A2 1-factors, say Fij and Fpgwhere i G{1,2,3,...,6},j G{1,23,.... Ai},
p G{l2} and ¢ G{1,23,..., A2}. Let Fl and F2 be collections of triangles
defined by

Fi={xi+ Fij:i G{1,23,..,6},j G{1,23,..., Al}}
and
Fo= {yp+ Fpg:» G{1,2},9G{L,23...., A}}.

Since A2 < 6 and h <k, we can apply Theorem 2.12 again to decompose the
graph 6  2(Mh\ B) into a collection of triangles T2 and A? + 12 1-factors,
say Hij and Hpg where i G{1,2,3,... m},j G{1,2,3...., A2}, P G{1,2} and
gG{1,23 .. .,6} Let Bi and T+2be collections of triangles defined by

Fi ={xz+ Hij:iG{123,..,m}jG{L23,., A%}

and
2= {yp+ Hpg P G{L, 2}, gG{L23,... 6}k
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Then, (Mm,Nn,B 71 T2 FI F2 B\ ' 2 isa desired GDD.

Case (iii) 1= h < k. Then, m = 12. By Lemma 3.4, there exists a coo¢(s, 2:
0.6,1) on Au B, namely (A,B,B). Since ai > a2 by Theorem 212, we can
decompose the graph a1K g(A) into a collection of triangles T\ and 2a2—1)+ y (6)
1-factors, say Fij and Foq where 1 G(7.8.0..... 121, ] G2.2.3,...,y » P
w2y and g G{1,23...., & - 1) Let F\ and F2be collections of triangles
defined by

Fi = tfo, C. {7 9. 123 G {1, 2,3,y }I

and

F2={yP+ P :PG{12},qG{L23 .. A- 1}}
Again, by Theorem 2.12, we can decompose the graph AiKe(Mm\ A) into a
collection of triangles T2 and Y (6) + 2A2 1-factors, say FI11 and Hpq where
iG{1,23,...,:}]6G{,23,..,2}, PG{L,2}and qG{1,23,. A2} Let
TLi and 772 be collections of triangles defined by

= lay+ FU:iG{,23,..,:}j Gl 23,...—11
and
2={Up+ Hpq:PG{1,2},qG{1,2,3,.., A}

Lastly, since h < k and A2 < 6, we can apply Theorem 2.12 again to decompose
the graph sKn-2(Nn\ B) into a collection of triangles 7 and A2m + 12 1-factors,
say Gij and Gpq where j G {1,2,3L.., }j G{L,23,...,A%, PG{L,2} and
0G{1,23,...,6}. Let and ~2be collections of triangles defined by

Q= +Gij:T£{1,23,..,m}jG{123,., A

and
np={ypt+ GpI:PG{)2},gG{L23,... ,6}}
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Hence, Mz, NnB 71 TI 7 T\ 2 "\ w2 Q G)is a desired
GDD. [

The following theorem completes the proof of the existence of GDDs where
m=20 (mod6), =2 (mod6)and /2

Theorem 3.7. Letm and  be positive integers such that m =0 (mod 6), = 2
(mod 6) and / 2. Let Ai,Ai and a2 be nonnegative integers such that Al >
A2 and A1 > A2 If Al = 0 (mod2) and Al= o (mode), then there exists a
GDD(m, ;Al A1, A2).

Proof. The construction is done as usual by applying Theorem 2.3 and Lemma 3.1,
First, write A = a (mod 6)wherea G{1,2 3,..., 6} Ifaiseven, by Theorem 2.3,
there exist a Ts(m +n: (A2—a)), ats(m: (Al—) - (A2—a)) and a s (n; (Al —6)—
(Ao—a)). It follows from Lemma 3.1 that there exists a coo(m, ; Al—a, A—6.A—
a). Similarly, if a is odd, then there exists @ cpom, ; Al —@-F1), Al —6, A —a).
Together with a coom, ;a,6,a) whenae {2 4,6}, and a coom, ;a+ 16,a)
when a G {1,3,5} from Lemmas 2.13 (iv), 35 and 3.6, we have our desired

GDD. O

Now, we consider GDDs with m = 3 (mod 6), =2 (mod 6) and / 2. We
first construct a GDD(m, ;1,3,1) in Lemma 3.8, using a graph decomposition,
then utilize this GDD to construct a GDD for any values of A, Al and A2 in
Theorem 3.9,

Lemma 3.8, Letm and be positive integers such thatm = 3 (mod 6), =2
(mod 6) and / 2. There exists a GDD(m, ;1,3,1).

Proof. We write m = 6h+3and = 6fc+ 8 for nonnegative integers h and k.
Let A = {x1x2,x3} and B = {yi,y2}. First, let B = {{xuyLy2}, {x2yiy2},

PESVON2R) > (X, £2,x3)).
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Case (i) h < k+1. By Theorem 2.12, we can decompose the graph 3#, 2(# \ B)
into a collection of triangles 7 and en + o 1-factors, say FI3  andFjvhere
1G{1,2},) G{1,2,3} and» G{1,2,3,...,6h + 3}. Let T\ bea collection of
triangles defined by

H={Vi+F3%+F:/G{L 2} G{l2,3}},06 {1,23,..., 6h+ 3},

Ifh =0, then the construction is done here and (M3, AL, Bu7i UTT) is our desired
GDD. Now, assume that h > 1 Since h < k +1, we can apply Theorem 2.12 again
to decompose the graph Keh(Mm\ A) into a collection of triangles 72 and five
1-factors, say # 1,1,# 2.1,# 1,2) # 22 and # 32- Let #2 be the collection of triangles
defined by

#2 —{Ui+#iixj+#2:16{12,j G{1,2,3}}.
Then, (Mm,Anl7l 72 TR # B) is a desired GDD.

Case (i) h>k+ 1 Since A> 0 and h >k + 2, by Theorem 2.12, we can
decompose the graph 3% 2(# \ #) into a collection of triangles 71 and nine
1-factors, say Foj and Fp where 1 G{1, 2} and J,p G{l, 2, 3}; and decompose the
graph K&(Mm\ ) into a collection of triangles 72 and 6/c + 11 1-factors, say
#j and H where i G{1,2,3,... 6# +8} and j G{1,2,3}. Let J7 and #2 he
collections of triangles defined by

#l =+ xpt+ 18 {)2},j),PG{L23}}

and
#2 = {yi+ Hi, +H:1G{,23,.,6h+s}j G{123}}.

Hence, (Mm, T2UT  #2)is a desired GDD. [

Theorem 3.9. Letm and be positive integers such that m = 3 (mod 6), =2
(mod 6) and " 2. Let Al, A} and A2 be nonnegative integers such that Al > A2
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and \[ > A2 If XI —o (mod 3) and \\ = Az (mod 2), then there exists a
GDD(m, ;Al, AL A).

Proof. The construction is done as usual by applying Theorem 2.3 and Lemma 3.1.
We assume that A = 6 (mod 3) where b€ {0,1,2}. Then, there exist a TS(m +
A2 —b) and a TS(m; (A] —hb) - (A2- b)). Note that h< A< x\,A =10
(mod 3) and A) = A2 (mod 2). Then, A > 36. Hence, (Ar- 36) - (A2—6) = 0
(mod 6) and there is a TS( ; (A) - 36) - (A2- 6)). By Lemma 3.1, there is a
GDD(m, ;A - 6. A —36. A2—6). Together with 6 copies of GDD(m, ;1,3,1)
from Lemma 3.8, we obtain a desired GDD. I

The last case in this section is to construct GDDs with m =4 (mod 6), =2
(mod 6) and ” 2. The main construction is shown in Theorem 3.12.

Lemma 3.10. There exists a GDD(4,2 2,4,1).

Proof Let B = {{xi, /Ly2}, {x2yLy2}, {X3,41,y2>, {X4,41,42}, {Xi, x2,x3},
{x2,x3,x4}, {xi,x3,x4}, {xi,x2,x4}}.
Then, (M4,N2,B) is a GDD(4, 2, 2, 4,1). 0

Next, we show the existence of @ GDD(m, ;2 4,1), which will be used in our
main construction.

Lemma 3.11. Letm and be positive integers such thatm = 4 (mod 6), =2
(mod 6) and ” 2. There exists a GDD(m, ;2 4,1).

Proof. We write m = en+ 4and = elc+ s for nonnegative integers h, k and let
A = {X1X2,X3X4} and B = {yuy2}.

Case (i) h <k+ L By Lemma 3.10, there is a GDD(4, 2; 2,4,1) on the vertex
set AUB, namely (H, B,B). Since h < k+ 1, by Theorem 2.12, we can decompose
the graph 4Kn-2(Nn\ H) into a collection of triangles 7) and es,+ 12 1-factors,
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say Fij and Fpwhere i G{1,2},j G{, 2.3, 4} and P G{1,2,3 ..., sh+ 4}. Let
T\ and F2 be collections of triangles defined by

Fl—{U+Fij - £{L2},] G{L234}}
and

Fo= o+ FpiPG{L23,.., 0N+ 4},
If h = 0, then our proof is done here and (Ma,Nn,B Tl -7 F2) yields a
desired GDD. Let h/ 0. By Theorem 2.12, the graph 2Km-4(Mm\ ) can be
decomposed into a collection of triangles T- and ten 1-factors, say Hi and Hpq
where i G {1,2},P 6 {1,2,3,4} and q G {1,2}. Let F,and Fa be collections of
triangles defined by

e3= s w1l G{1,2}}

and

Fa= X+ /p9:pG {1234}, 9G{L2}}.
Thus, (MmAr, 7| 72 1 72 "3 -Tl)isadesired GDD.

Case (i) h >k + 1 From Lemma 3.10, there is a GDD(4,2;2,4,1) on the
vertex set Au B, namely (A,B,B). By Theorem 2.12, we can decompose the
graph 4Kn-2(Nn\ B) into a collection of triangles 7 and 12 1-factors, say Fij
and ¢, where: G {1,2} andJ,» G {1,2,3,4}. Let -7 be a collection of triangles
defined by

Ti= {6+ Fj X+ Fp:iG{1,24,p G{1,2,3,4}}.

Since h > k + 1, by Theorem 2.12, the graph 2A'm-4(Mm\ v4) can be decomposed
into a collection of triangles T2 and sA+ 12 1-factors, say Hj and Hpq where
i 6{1,2,3,...,elc+8},p G{L,2 3,4} and q G {1,2}. Let F2and Fj, be collections
of triangles defined by

F2o={/j+H :16{1,2,3,.., 6c+ 8}}
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and
— Qo+ Hog 1p € {1,234}, G {1, 2}},
Therefore, (Mm, AT, JS) is a desired GDD, I

Now, we conclude this case in the following theorem.

Theorem 3.12. Letm and be positive integers such thatm = 4 (mod 6), = 2
(mod 6) and / 2. Let Al, Aland A 6e nonnegative integers such that Al > A2
and AL> A2 If both \i and Al are even and AL+ 2A2= 0 (mod 3), then there
exists a GDD(m, ; Al Al, A2).

Proof. First, we note that Al is even and Al- A2= 0 (mod 3). That is. A—A2= 0
or 3 (mod e). Hence, if Az is even, then Al —A2 = 0 (mod e); and if A2 is odd,
then A —A2= 3 (mod s).

If A2 is even, by Theorem 2.3, aTS(m+n; A2), aTS( ; Aj—A2) and a TS(m; Al—
A2) exist. We obtain a desired GDD by Lemma 3.1. Assume that Az is odd. Thus,
by Theorem 2.3, there exist a TS(?n+ ;A2—1), a TS(m; (Al —2) —(A2—1))
and a TS( ; (Al —4) —(A2—1)). Again, we can apply Lemma 3.1 to construct
a GDD(m, ;A - 2. Al —4, A - 1). Together with a GDD(m, ;2,4,1) from
Lemma 3.11, we obtain our desired GDD. I

34 Tl=0or1 (mod3)and 7= 5 (mod 6)

Our last section in this chapter is to consider GDDs withm = 0or 1 (mod 3) =
0,1,3 or 4 (mod 6) and =5 (mod 6). From Theorem 3.2 (iv). it remains to
construct a GDD(m, ; Al Al A2) wherem =0or 3 (mod 6) and =5 (mod s).
The main construction is concluded in Theorem 3.18. Lemmas 3.13 - 3.15 are
for small GDDs as these GDDs are too small to be constructed by the general
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construction in Lemma 3.16. Therefore, we construct each of them individually by
slightly different techniques.

Lemma 3.13. There exists a GDD(6,11; 2, 3, 2).

Proof. In this case, we let B —{js1, 42, I} First, we can apply Theorem 2.12 to
decompose the graph 2K6(M6) into a collection of triangles T and six 1-factors,
say Fij where i G{1,2 3}, ] G{1,2}. Let F\ be a collection of triangles defined

by
F\ = {Xi + Fii ;i G{1, 2.3}, G{1,2}}.

Let B = {{yi,y2,Vs}, {d1,42,1}, {1,42,43}} be a collection of triangles on B.
Now, by Theorem 2.5, the graph 3K$(Nn\B) can be decomposed into 21 1-factors,
say Hij and Hpg where i G{1,2,3,...,6},] G{1,2} and P,qG{1,2, 3}. Let F2
be a collection of triangles defined by

Jo= {Xi+ H1u,yp+ Hpg :i G{1,2,3,... ,6},3 G{1,2},p,q G{1,2,3}}.
Therefore, (Me, Nil, T B F\ Ff) is the desired GDD. I
Lemma 3.14. There exists a GDD(12,17; 2, 3, 2).

Proof. First, we let B = {1, 1l, 4,44, 45}- By Theorem 2.5, the graph . Ki2(Mi2)
can be decomposed into 22 1-factors, say H and Fsz where i G {1,2,3,..., 17}
and j G {1,2,3,4,5}. Let F\ be a collection of triangles defined by

Fo={yi+Fy+F2:i6{1,23, . 17},] 6{12 34,5}

We consider the graph 3K5(B) as a TS(5;3), namely (B, B). By Theorem 2.12,
the graph 3Ki2(Ni7\ B) can be decomposed into a collection of triangles T and
27 1-factors, say Hi and HPqwhere i G {1,2,3,..., 12}, P G {1,2,3,4,5} and
qG{L,2 3} Let F2be acollection of triangles defined by

F2= {Xi+ Hi,yp+ Hpq:i G{1,23,..., 12}, G{1,2,3, 4,5},¢ G{L,2, 3}}.
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Then, (MI2Nn,BuT UT u F2)is the GDD. I
Lemma 3.15. There exists a GDD(s, 11; 1, 3,1).

Proof. Let B = {yi, y2,43,44,45}. By Theorem 2.5, the graph Ko(M6) can be
decomposed into five 1-factors, say FI, F2,F3,Fa and F5. Let Fi be a collection of
triangles defined by

Fl = {yi +Fi:i G{1,234 5}

By Theorem 2.12, the graph 3Ke(Nn \ B) can be decomposed into a collection
of triangles T and eleven 1-factors, say Hi'1 and Hj2 where ZG{1,2,3,..., 6} and
i 6{1,2 34,5} Let F2be acollection of triangles defined by

Fo={x + T} + D2 G{L23,..., 64 € {1,234 5},

By Theorem 2.7, the graph 3K5(B) can be decomposed into six 2-factors, say
¢6,C7,¢8,..., C\l. Letc be acollection of triangles defined by

¢ ={yj+cr.je{6,78— 11}
Hence, (M6,Nu, T FI F2 C)isa GDD(s,11; 1, 3,1). 0

Now, we establish a construction of GDD(m, ;1,3,1) and GDD(m, ;2,3 2)
for all m =0 (mod 6) and =5 (mod 6) in Lemma 3.16. These GDDs will be
used to construct GDDs for all possible Al, Aj and A2.

Lemma 3.16. Letm and be positive integers such that m =0 (mod e) and
=5 (mod 6). There exist a GDD(m, ;1,3,1) and a GDD(m, ;2 3,2).

Proof. We consider a construction in the following two cases.
Case () m > . Foreach A£ {12}, by Theorem 2.12, the graph AKTUM7)
can be decomposed into a collection of triangles 71 and A 1-factors, say FhJ when
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1G{1,23,.., }andj G{1,2,3,... Al Let be a collection of triangles
defined by

= U R HE{L230., L G(L23,., Al

By Theorem 2.3, the graph 3Kn(Nn) can be considered as a TS( ;3), namely
(Nn,B). Hence, (Mm,Nn.T\ T\ B) isa GDD(m, ;A3 A).

Case (i) m < . We note that a GDD(s, 11; 2,3, 2), a GDD(12,17;2,3,2) and a
GDD(s, 11; 1,3,1) are done in Lemmas 3.13 - 3.15. Here, we construct other GDDs,
which are the caseswhen > 23or (m, ,A G{(6,17,1), (12,17,1), (6,17, 2)}. We
let B = {71,42,43,44,45}. First, we note that 3( —s) > Am+15 if and only if 3(ri-
[) > Am. Thus, except the cases when (m, , A G{(s,11,2), (12,17, 2), (6,11,1)},
we can apply Theorem 2.12 to decompose the graph 3Kn-s(Nn\B ) into a collection
of triangles 7i and Am + 15 I-factors, say Hij and Hpq where  G{1,2,3,..., m},
jG(L,23..... ALPG{123 45 andqG{12 3} Let and he collections
of triangles defined by

M= P+ HO i G{12,3,..m}j G{L23 .A}}

and
= {+ {12,3,4,5},9G{1,23}}.

Since m A 0, by Theorem 2.12, the graph AKm(Mm) can be decomposed into a
collection of triangles 72 and 5A 1-factors, say Fjj where i G {1,2,3,4,5} and
] G{1,2,3...., A} Let Ji be a collection of triangles defined by

F3= (Vi+Fij sie {12,345},] G{12,3.... A}

By Theorem 2.3, the graph 3K$(B) can be considered as a TS(5; 3), namely (B, B).
Therefore, (ATANN, T\ Tl Tj, 71 72 B)is a desired GDD. ]
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Next, we show a construction of GDD(m, ]2,3,2) where m = 3 (mod 6) and

= 5 (mod 6). The construction technique used in Lemma 3.17 relies on the
existence of a maximum packing in Theorem 2.9. This technique is powerful and
establishes the desired GDDs in a short solution,

Lemma 3.17. Letm and be positive integers such that 7z = 3 (mod 6) and
=5 (mod 6). There exists a GDD(t7, ]2, 3,2).

Proof. We write 77,- 671+ 3and = 6k + 5 for nonnegative integers h and k. We
give the construction depending on the values of h and k in the following four
Cases.

Case (i) h >k Let B = {d1,22,3} We note that the graph 2Km(Mm) V2
3K${B) can he considered as a graph 2Ksh+e(Mm B) together with a triangle
To = {41542, 43}- Since h >k, by Theorem 2.12, the graph 2/fe/+6(Mm B) can
be decomposed into a collection of triangles 71 and 2(6k) + 4 1-factors, say Fij
where 7G{1,2,3,..., 6Tt 2} and | G{1,2}. Let T\ be a collection of triangles
defined by

Fl= {Vi+ Fig hi € {1.2,3,...5k+ 2},j G{L2}.

By Theorem 2.9, each copy of /¢enr2 in 3Kek+2{Nn N B) can be considered as a
maximum packing of order 6A+ 2, having a 1-factor as the leave. Thus, there
are a total of three 1-factors, denoted by F\, F2 and T3. Let Fabe a collection of
triangles defined by
Fo={yr+Fr:rG{12, 3}}
Then, (Mm,Nn,{To} J\ 2 T\ isa desired GDD.
Case (i) 2< h <k Let A ={x\,x2,xz} and B = {or15 2125 2135 da a5 » From the

previous case, there exists a GDD(3, 5; 2, 3, 2) on the vertex set AUB, say (A, B,B).
Since h > 2, by Theorem 2.12, we can decompose the graph 2Ksh(Mm\ A) into
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a collection of triangles T\ and 16 1-factors, say Fjj and FPgwhere i G {1, 2,3},
] 6{1,2},» G {12,3,4,5 and qG {34} Let T be a collection of triangles
defined by

Fr= {xI+ Fij, yp+ Fpg i G{1,2,3},j G{1,2},p G{1,2,3,4,5},9G {3,4}}.

Since h <k, by Theorem 2.12, the graph 3Kfik(Nn\ B) can be decomposed into
a collection of triangles 72 and 2(6h + 3) + 15 1-factors, say Hij and Hpq where
16{1,23,...16h+3}, ] 6{1,2},P G {123 4,5} and qG {3,4 5. Let 72 and
7-3 be collections of triangles defined by

72= {xt+ H| i G{1,23,...,6h+3}j G{1,2}}

and
w~g = Olp + 'p £ {152,3,4,5},(G {3,4,5}}.

Then, (Mm,Nn,B  J\ 72 Fz 71 7i) is a desired GDD.

Case (ili) 1=h <k. Inthis case, we let B\ = {d1,12,4:} and £2 = {74,75}
Note that the graph 2Kq(Mq) v23K3(Bi) can be considered as a graph 2ji2
together with a triangle To = {71,72,73}. By Theorem 2.12, we can decompose
the graph 2K 12 into a collection of triangles 71 and four 1-factors, say F4), Fae, Tst
and F52. Let Fi be a collection of triangles defined by

Fi={ypt Fp9:P G4, 5}, 061 2}}.

Let B = {{71,74,75}, {72,74,75}, {73,74,75}}- Now, since t > 2, we can apply
Theorem 2.12 to decompose the graph 3Ksk(Nn\ (Fj F2)) into a collection of
triangles 72 and 33 1-factors, say Hij and HYqwhere i 6 {1,2,3,..., 9}, j 6 {1,2},
p G {1,23,4,5} and g G {3, 4, 5}. Let F2and s be collections of triangles defined

by
P2 = {Xi + Hij 11 6{1,2,3,...,.9},j G{L.2}}
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and
Ja={yp+ Hpy :PG{1, 23,45}, qG{3 4 5}

Then, (Mg, Nn,{To} » 71 72UT1UT2 J7)is a desired GDD.
Case (iv) O—h <k Forft=1 welet Nu = {yi} {zb,43,4s,.. -Mil}- Let
1= {{£1, £2,8s}, {xi,x2,yi}, {x2,£3yyi}, {xi, x3,yi}}. By Theorem 2.5, the
graph Kw(Nn \ {yi}) can be decomposed into nine 1-factors, say Ftz and Fp
where 1 G{1,2,3}, ] G{1,2} and p G{1,2 3} Let T he a collection of triangles
defined by

oT={£2+ Fij,yi+Fp:le {1,23}) G{L,2}p G{1,23}}.

Note that the graph 2Kw(Nn\ {/1}) can be considered as a TS(10; 2), namely
(Nn \ {yi},B2). Hence, (M3,Nn,Bi UJU B2) is a desired GDD. Now, we
assume that k > 2. Let £2 = {yj,y2y3 )\ 4s}. From Case (i), there exists a
GDD(3, 5; 2, 3, 2) on the vertex set M3 B, namely (Ms, T, #3). Since k > 2, by
Theorem 2.12, the graph 3Kek(Nn\ 5) can be decomposed into a collection of
triangles 71 and 21 1-factors, say FZ] and FRqwhere i G {1,2,3}, j G {1,2},
PG{1,2,3,4,5} and g G{3,4,5}. Let F\ be acollection of triangles defined by

T\ = qe2+ F13,yp+ Fpg:i G {1, 2,3},j G{1,2,PG{1,2,3 4,5}, 06 {34 5.
Therefore, (M3,Nn,Bs Tl 1) is a desired GDD, I

Finally, we conclude the construction for any possible values of Al, A} and A2
in the following theorem.

Theorem 3.18. Letm and le positive integers such thatm =0 or 3 (mod 6)
and =5 (mod 6). Let Al, Al and A2 ke nonnegative integers such that Xi > A2
and Au> A2 IfAv="00r3 (mod 6) and m. AL A2 satisfy:

(i) ifm =0 (mod 6), then Al = A2 (mod 2) and
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(i) ifm =3 (mod 6), then A —0 (mod 2),
then there exists a GDD(m, ', Al, AL A2).

Proof. We separate the construction depending on the value of A2 in the following
three cases. All triple systems in this proof exist by Theorem 2.3,

Case (i) A2=0or 3 (mod 6). Then, there exists a TS( ; AL—Ao). Ifm =0
(mod 6), then a TS(m+ ; A2) and a TS(m; Al - A2) exist. Ifm = 3 (mod 6), then
A2 —0 (mod 6). Hence, there exist a TS(m + ;A2) and a TS(m; Al —A2). By
Lemma 3.1, we have our desired GDD.

Case (ii) A2= Lor4 (mode). Whenm =0 (modse), aTS(m+ :A- 1) and
aTS(m; (A] —1)- (A2—1)) exist. Since Al > A2, we have that A) > 3and there is a
TS( ; (Av—3) —{A2—1)). By Lemma 3.1, there isa GDD(m, ; Al—L A =3, Ao—1).
Together with a GDD(?n, ; 1,3.1) from Lemma 3.16, we have a desired GDD. When
m =3 (mod 6), A= 4 (mod 6). Then, there exist a TS(m+ :A—4) and a
TS(m; (A] - 4) - (A2- 4)). Since Av> Ao> 4 and A= 0or 3 (mod e), there is
aTS( ; (A1—s) —(A0 —4)). By Lemma 3.1, a GDD(m, ;A - 4, Av—se, A0 —4)
exists. Together with two copies of GDD(m, ;2,3,2) from Lemma 3.17, we have
a desired GDD.

Case (iii) A2=20r 5 (mod 6). Similar to Case (i), a GDD(m, ; Al —2 A —
3, A2—2) exists by Lemma 3.1. Then, together with a GDD(m, ;2 3,2) from
Lemmas 3.16 and 3.17, we obtain the desired GDD. I
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