
CHAPTER IV
GROUP DIVISIBLE DESIGNS 

WITH m and ท =  2 (mod 3), m 2 and ท / 2

In this chapter, we focus on the existence of GDDs with rn and ท =  2 (mod 3), 
m  ^ 2 ,  ทะ/ 2, Al > A2 and A'1 > A2. We prove the sufficiency of the existence prob­
lem by constructing GDDs satisfying the necessary conditions in Theorem 1.2. The 
investigation is separated into three sections for each (m, ท) in {(2, 2). (2, 5), (5, 5)}.

4.1 m and ท = 2 (mod 6), m  /  2 and ท /  2
First, we construct GDDs with m  and ท =  2 (mod 6), ๓ / 2  and /  2. This 

case is concluded in Theorem 4.3, requiring some small GDDs in Lemma 4.2. The 
following small GDDs will be used in Lemma 4.2.

L em m a 4.1. Let (A].A2) G {(2.1), (4, 2)}. The following GDDs exist:
(i) a GDD(2, 2; Al, 0, A2),

(ii) a GDD(2, 8; A], 6. A2) and
(iii) a GDD(8, 2; A], 6. A2).

Proof, (i) Let £ 1 =  { { x i ,x 2 ,y i} , { x i ,x 2 ,y 2}}. Then, (M 2 ,N 2, Bi) is a GDD(2,2; 
2,0, 1). Moreover, two copies of B\ forms a GDD(2,2; 4, 0,2).

(ii) Let B  — { y i , y 2}- From (i), there exists a GDD(2, 2; Al, 0, A2) on the vertex 
set M 2 บ B , namely (M2, Let Bo = { { y i , y 2 , Vk} : k G {3, 4, 5 , . . .  1 8}} be a
co llec tio n  o f tr ia n g le s . B y  T h e o re m  2 .12, we c a n  d e c o m p o se  th e  g ra p h  6 K e(Nn \ B )

in to  a  c o lle c t io n  o f t r ia n g le s  7 Ï a n d  2A2 +  10 1 -fa c to rs , s a y  FhJ a n d  F'p q w h e re
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i,p  G {1, 2}, j  G { 1 ,2 ,3 , . . . ,  À2} and q G {1, 2, 3, 4, 5}. Let T \  be a collection of 
triangles defined by

F l =  {x i +  Fi J, Up + F'pq : i,p  G {1, 2}, j  G {1, 2, 3 , . . . ,  A2}, ç G {1, 2 ,3 ,4, 5}}.

Thus, (M2, IVg, B\ บ B2 บ Tl บ -Tl) is our desired GDD.
(iii) Let A = { x i ,x 2}. From (i), there exists a GDD(2,2;Ai, O.A2) on the 

set A  บ N 2, namely (A ,N 2 ,B i ). Let B2 =  { {y i,y 2 , x k} : k G {3, 4, 5 , . . . ,  8}} 
be a collection of triangles. By Theorem 2.12, we can decompose the graph 
AiK e(M m \  A) into a collection of triangles 7Ï and 2Ai +  2(A2 -  1) 1-factors, say 
F jj and F'pq where i,p  G {1, 2}, j  G {1, 2, 3 . . . . ,  Al} and q G {1, 2, 3 , . . . ,  A2 -  1}. 
Let J7! be a collection of triangles defined by

F i = [x 1+ Fh:j} ,y p+Fpq : i,p  G {1,2}, j  G { 1 ,2 ,3 ,. . . ,  A]}, g G { 1 ,2 ,3 .. . . .  A2- l} } . 

Hence, (Mg, iV2, Bi บ B2 บ 7Î บ J 7]) is a desired GDD. □

L em m a 4.2. Let m  and ท be positive integers such that m  and ท =  2 (mod 6), 
m ^  2 and ท ^  2. There exist a GDD(m, ท; 2, 6,1) and a GDD(m, ท; 4, 6, 2).

Proof. We write rn = 6 h +  8 and ท =  6/c +  8 for nonnegative integers h. k. 
Let A = { x i ,x 2}, B  = {y i,y 2} and (Ai ,A2) G {(2,1), (4, 2)}. We consider the 
construction in the following six cases.

Case (i) 0 =  h < k. From Lemma 4.1, there exists a GDD(8, 2; A], 6, A2) on 
Mg บ B, namely (Ms, B ,B \) . Since k > 0 and A2 G {1,2}, by Theorem 2.12, we 
can decompose the graph 6AT-2(Nn \  B) into a collection of triangles T\ and 
8A2 +  12 1-factors, say FtJ and Fpq where i G {1,2, 3 , . . . ,  8}, j  G {1, 2, 3 , . . . ,  A2}, 
P G {1,2} and q G {1,2, 3 , . . . .  6}. Let F\ and F -2 be collections of triangles defined 
by

-F1 =  {Xi +  Fi j  : i G {1, 2, 3 , . . . ,  8 } , j  G {1. 2, 3 , . . .  , A2}}
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7 2 = {yp +  F'm  : p G {1, 2}, q G {1, 2, 3 , . . .  1 6}}.

Hence, (Mg, N n, B\ บ 7Î บ J-\ บ .7-2) is a desired GDD.
Case (ท) 1 — h < k. In this case we let A — { x i ,x 2 , x 3, . . .  ,x 8} and B  — 

{yi, y2}. Let B i  =  { { X k , 2/ 1 , 2/2 }  : k  £  { 9 , 1 0 , 1 1 , ,  14}} be a collection of triangles. 
For (Ai, A2) =  (2,1), we consider the graph 2/<’6(M14 \  A) as a TS(6; 2), namely 
( M 1 4  \  H, B i). For (Ai, A2) =  (4,2), by Theorem 2.12, the graph 4 K 6 (M \4 \  A) 
can be decomposed into a collection of triangles T\ and two 1-factors, say F\ and 
F2. Let J-\ be a collection of triangles defined by

F 1 =  {Vi +  Fl '■ i £ { 1 )2 }}.

Since Ai =  2A2, by Lemma 2.5, the graph AiKa(A) can be decomposed into 6Ai + 
2A2 1-factors, say Tjj and T'pq where i e {9, 1 0 ,1 1 ,..., 14}, j  G {1, 2, 3 , . . . .  Ai}, 
P  G {1,2} and q G {1, 2, 3 , . . . ,  A2}. Let F 2 and J-3 be collections of triangles 
dehned by

F 2 = {%i +  Ti,j '■ i £ { 9 ,1 0 ,1 1 ,..., 14}, j  G { 1 ,2 ,3 ,. ...Ax}}

and
F'A =  {yp +  Tpq : P  G {1, 2}, q G { 1 ,2 ,3 . . . . ,  A2}}.

Since h: +  1 > 2, by Theorem 2.12, we can decompose the graph 6 K n_2(Nn \  B ) 
into a collection of triangles T2 and 14A2 +  12 1-factors, say Ff 11 and H' where 
i  G {1, 2, 3 , . . . ,  14}, J  G {1,2, 3 , . . . ,  A2}, p  g {1, 2} and q G {1, 2, 3 , . . . ,  A2}. Let 
F,\ and J-5 be collections of triangles dehned by

T \  =  { X i  +  H hj  : i  G {1,  2, 3 , . . .  , 14},  j  G {1 ,2 ,  3 , . . . ,  A2} }

^ วิ =  {l/p +  : P  G {1, 2} ,  ç G { 1 , 2 , 3 , . . . ,  A2} } .

and

and
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Hence, (M u , N n, B\ บ F\ บ F 2 บ F 3 บ F \ บ JT บ Tl บ %) is a desired GDD.
Case (iii) 2 < h < k. In this case we let A ะ= { x 1 , x 2 , x 3, . . .  ,xg} and B  ะ= 

{yu y2}. By Lemma 4.1, there exists a GDD(8 , 2; Al, 6 , A2) on the vertex set A u  B, 
namely (A, B,  £>1). Since h > 2 and Al =  2A2, by Theorem 2.12, we can decompose 
the graph A1 K m-g (M.m \  A) into a collection of triangles T\ and 8Aj +  2 A2 1 -factors, 
say Fij and F'v q where i  G {1,  2, 3 , . . . .  8 }, j  G {1 ,  2, 3 , . . .  1 A l } ,  P  G { 1 , 2 }  and 
q G { 1 ,2 ,3 , . . . ,  A2}. Let F\ and T 2 be collections of triangles defined by

XF\1 =  {Xi + F111 : i G {1, 2 , 3 , . . . .  8 }, j  G {1, 2 , 3 , . . . .  A ! } }

and
F 2 = [yP +  F'vq : P G {1, 2}, g G { 1 ,2 ,3 . . . . ,  A2}}.

Again, by Theorem 2.12, we can decompose the graph 6/Ln_2(N n \  B ) into a 
collection of triangles 7-3 and A2?ท, +  12 1-factors, say H ij and H' where i G 

{1 ,2 ,31. . . ,  m}, j  G {1,2,3, . . . , A 2} ,  P g {1,2} and q G {1, 2, 3 , . . . ,  6}. Let F 3 

and T \  be collections of triangles defined by

F 3 =  { x t +  Hi j  : I  G {1,  2, 3 , . . . ,  m } ,  j  G {1,  2, 3 , . . . ,  A2} }

and
-^4 =  { y v +  FF'pq : P  G {1,  2} ,  q G {1 ,2 ,  3 , . . .  1 6 } } .

Thus, (Mm, AT, Hi บ 7Ï บ T2 บ F\ บ T 2 บ T 3 บ T \)  is a desired GDD.
Case (iv) h > k =  0. By Lemma 4.1, there exists a GDD(2, 8; Al, 6, A2) on the 

vertex set A u N '8, namely (A, N,8, Bi). Since h > 1 and Ai =  2A2, by Theorem 2.12, 
we can decompose the graph AliGm_2(Mm \  A) into a collection of triangles T\ 
and 2Xi + 8A2 1-factors, say F ij and Fpq where i G {1, 2}, j  G {1, 2, 3 , . . . ,  Al}, 
P G {1, 2, 3 , . . . ,  8} and q G {1, 2, 3 , . . . ,  A2}. Let T7! and JT be collections of 
triangles defined by

F I =  {Xi +  Fhj : i  G {1, 2}, j  G {1, 2, 3 , . . . ,  Ai}}
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J ~2  =  { y v +  F'pq  : p  E  {1 ,2 ,  3 , . . .  1 8 } ,  q E  {1, 2, 3 , . . . ,  A2} } .

Then, (M m, N,ร, B 1 บ 7} บ F\ บ J-2 ) is a desired GDD.
Case (v) h > k =  1. In this case we let A = {£1, £2, £3 , . . . ,  Xg} and B = 

{ y i ,y 2}- From Lemma 4.1, there exists a GDD(8 , 2; Al, 6 , A2) on the vertex set 
A u  B, namely (A ,B ,B i) .  W hen h = 2, by Theorem 2.12, we can decompose 
the graph QK12 (Nn \  B) into a collection of triangles T\ and 20A2 +  12 1-factors, 
say F jj and Fpq where i E  {1, 2, 3 , . . . ,  20}, j  E  {1, 2, 3 , . . . ,  A2} , p  G {1,2} and 
q E {1, 2, 3 , . . . ,  6 }. Let F 1 and F 2 be collections of triangles defined by

and

F ]1 =  {Xi +  Fij : i  E {1, 2, 3 , . . . ,  20}, j  E {1,2, 3 , . . . ,  A2}}

and
F2 = {yp +  F'v q : p E {1,2}, q E {1, 2, 3 , . . . ,  6}}.

Again, by Theorem 2.12, we can decompose the graph A1 A 12(Mm \  A) into a 
collection of triangles T2 and 8Ai +  2A2 1-factors, say Hr j and H'pq where i E  

{ 1 ,2 ,3 ,.. .  ,8}, j  E  {1,2,3, . ...A i} , p E  {1.2} and q E  { 1 ,2 ,3 ,- . . ,  A2}. Let F 3 

and F \ be collections of triangles defined by

=  {%i  +  H i j  : i E  { 1 , 2 , 3 , . . . , 8 } , j  E  { 1 , 2 , 3 , . . . ,  A i } }

and
F4 — {yp +  H'p q : p E {1,2}, q E {1, 2, 3 , . . .  , A2}}.

Then, (AL20, N 14 , B\ VJ F 1 yj F 2 บ F 3 yj F<x A F\ U 7 2 ) is & GDD(20,14, A1 ; 6 , A2).
Now assume h > 3. By Theorem 2.12, the graph 6 K i2 (N n \  B) can be 

decomposed into a collection of triangles 7รั and 8A2 -I-12 1-factors, say T jj and Tpq 
where i E  {1,2, 3 , . . . ,  8 }, j  E  { 1 ,2 ,3 , . . . ,  A 2}, p  E  {1,2} and q E {1, 2, 3 , . . . ,  6}. 
Let 7-5 and F q be collections of triangles defined by

5 =  {Xi  +  T j j  : i E { 1 ,  2, 3 , . . . ,  8 } , j  E { 1 ,  2,  3 , . . .  , A 2 } }
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and
TV — {Vp +  T'pq : P  G {1, 2}, q G {1, 2, 3 , . . . ,  6}}.

Since h  > 3, again by Theorem 2.12, we can decompose the graph \ i K m-s(M m\ A )  
into a collection of triangles Ta and 8Ai +  14A2 1-factors, say G i j  and G' where i G 
{ 1 ,  2 , 3 , , 8 } ,  j  G { 1 ,  2 , 3 , . . . ,  A j } ,  P G { 1 , 2 , 3 , , 1 4 }  and q £  { 1 , 2, 3 , . . . ,  A2}. 
Let T 7 and T 8 be collections of triangles dehned by

J~7 = {Xi +  G i j  : i G {1, 2, 3 , . . . ,  8 }, j  G {1, 2, 3 , . . . ,  Al}}

and
— {Up +  G'pq : P G {1,2, 3 , . . .  , 14}, q G {1,2, 3, . . . .  A2}}.

Then, (Mrr1, N 14, บ 7รี บ 7} บ T 5 บ ^6  บ TV บ Tg) is a desired GDD.
Case (vi) h > k > 2. In this case we let /I =  {xi, £2} and B  =  {?/!, y2, ใ/3, . . . ,  y8}. 

From Lemma 4.1, there is a GDD(2, 8; Al, 6 , A2) on the vertex set A  บ B, namely 
(v4, B ,B \). Since k > 2, by Theorem 2.12, we can decompose the graph 6T n_8(iVn\  
B) into a collection of triangles 7Ï and 2A2 +  48 1-factors, say Fi j and Fpq where 
i G {1,2}, j  G { 1 ,2 ,3 , . . . ,  A2}, p  g { 1 ,2 ,3 ,... ,8} and q G {1, 2,, 3 . . . ,  6}. Let F\
and T 2 be collections of triangles dehned by

T 1 = {Xi + Fij : i G {1, 2}, j  G {1, 2, 3 . . . . .  A2}}

and
T 2 =  { y p T  F p q : P G {1, 2, 3 , . . . ,  8 } , q G {1,  2, 3 , . . . ,  6 } } .

Since h > k, again by Theorem 2.12, we can decompose the graph X iK m_2 {Mm\ A )  
into a collection of triangles 7V and 2A] +  A2ท 1-factors, say Hij and H'pq where 
i e  {1,2}, j G {1, 2 , 3 , . . . ,  A l } ,  P G {1, 2 ,3 , . . .  1 ท} and q £ {1,2, 3 , . . . ,  A2}. Let 
T 3 and J-\ be collections of triangles dehned by

T 3 =  {Xi +  H i j  : i G { l ,2 } , j  G { 1 ,2 ,3 , . . . ,  Al}}
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4 = {yp +  H'p q : P G { 1 , 2 , 3 , ,  ท}, q G { 1 , 2 , 3 , ,  A2}}.

Hence, (Mm, Nn, B\ บ 7Ï บ 72 บ บ T l บ บ Jq) is a desired GDD. □

Now, we are in the position to establish all of our GDDs in this case.

T h e o rem  4.3. Let m  and ท be positive integers such that m  and ท =  2 (mod 6), 
m  ะ/ะ 2 and ทะ/ะ 2. Let Ai, Aj and A2 be nonnegative integers such that Ai > A2 

and Aj > A2. I f  A] and A'j =  0 (mod 2) and 3|(Ai +  A'j +  A2), then there exists a 
GDD(m, ท; Al, A'j, A2).

Proof. The construction is depended on the values of A2 in the following two cases.
Case (i) A2 is even. Then, 6 |(Ai +  A'j +  A2). We regard Ai,A'j and A2 as 

integers modulo 6 to determine all possible values of (Ai,A/1 ,A2). Note that a 
GDD(m, ท; Al, À'1, A2) is equivalent to a GDD(ท, 771 ; A'1, Al, A2). Thus, we have that

(Al, a;, A2) g {(0, 0, 0), (2 , 2 , 2), (4, 4, 4), (4, 0, 2), (2 , 4, 0), (0, 2,4)}.

If (Ai ,A'j,A2) g {(0 ,0 ,0), (2,2,2), (4 ,4 ,4)}, then we can apply Theorem 2.3 to 
obtain a TS(m; Al — A2), a TS(ท; \ \  — A2) and a TS(m +  ท; A2). Then, by 
Lemma 3.1, these cases are done. Now, to construct GDDs when (A1 ,A1 ,A2) G 
{(4, 0, 2), (2, 4, 0), (0, 2,4)}, we define the notation

(Ai, A'11 A2) —> (Ai +  2, Aj +  2, A2 +  2)

to denote that if a GDD(m, ท; Ai, A'l, A2) exists, then a GDD(m, ท; Ai +  2, A'l +  
2, A2 +  2) exists by applying Lemma 3.1 with a TS(m +  ท; 2), or, equivalently, a 
GDD(m, ท; 2, 2, 2). Note from condition (iv) in Theorem 1.2 that A2 ะ / 0 except 
the case when (Ai, A'1, A2) = (0, 0, 0).

Now, to construct all GDDs in each case (Ai ,A'1 ,A2) =  (ทิ, b, c), it suffices to 
construct only the smallest one. The larger GDDs in each case can be simply

and
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obtained by applying Lemma 3.1 (i) to combine the smallest GDD with a TS(m "เ- 
ท; 6a) where a e  N, which is equivalent to GDD(m, ท; 6a, 6a, 6a). The diagram

(4, 6, 2) —> (6, 8, 4) —>• (8, 10 , 6)

shows that a GDD(m, ท; 4 ,6, 2) existing from Lemma 4.2 provides the smallest 
GDDs of the remaining two cases. These values are the smallest ones because we 
have that A2 /  0, A] > A2 and A'1 > A2. This completes the proof.

Case (ii) A2 is odd. From 3|(Ai-fA/1+A2), we regard A l ,  A( and A2 as integers mod­
ulo 6. The possible values of ( A l ,  A'1, A2) are in {(2, 0,1), (4,4,1), (0,0, 3), (4,2,3), 
(0,4, 5), (2, 2, 5)}. Similar to Case (i), the following diagrams show that a GDD(m, ท; 
2, 6,1) existing from Lemma 4.2 and a GDD(m, ท; 4, 4 ,1 ) existing from Lemma 2.13
(v) yield the rest of our desired GDDs and this completes the proof.

(2, 6,1) —» (4, 8, 3) —» (6,10, 5)

( 4 , 4 , 1 )  —» ( 6 , 6 , 3 )  —» ( 8 , 8 , 5 )

□

4.2 m = 2 (mod 6), ท = 5 (mod 6) and m ะ/ะ 2
In this section, we consider GDDs when 771 7̂  2,m  =  2 (mod 6) and ท =  5 

(mod 6). The main construction is provided in Theorem 4.6. In details, we give 
a method to construct our desired GDDs from certain small GDDs, which are 
a GDD(m, ท; 3, 2 , 1 ) and a GDD(m, ท; 5, 3,1) obtained in Lemmas 4.4 and 4.5, 
respectively.

Lem m a 4.4. Let m and ท be positive integers such that m  7̂  2, m = 2 (mod 6) 
and ท =  5 (mod 6). There exists a GDD(m, ท; 3, 2 , 1 ).
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Proof. We write โท =  6 h +  8 and ท =  6 k +  5 for nonnegative integers h and 
k. Let A = { x i ,x 2} and B = {y i,2/2,2/3,2/4,2/s}- First, we let Bi = { { x \ ,x 2,y 1}, 
{ x \ ,x 2 ,y 2}, [ x \ ,x 2 ,y 3}, {x 4 ,y 4 , y5}, {x2 ,y 4 ,y 5}, { y i,y2, y4}, {^2,2/3,2/4}, {yi,y3,2/4}, 
{2/1 , Î/2 , 2/5 }, {y2- y3 , 2/5}, {yi, 2/3 , 2/5}}- Then, (A, B , Bi) is a GDD(2,5;3, 2,1). We 
consider the construction in the following four cases.

Case (i) h+ 1 < k. By Theorem 2.12, we can decompose the graph 3Km- 2(M  
A) into a collection of triangles 7Ï and eleven 1-factors, say F j j  and Fp where 
i G {1,2}, j  6 {1,2,3} and P G {1,2, 3,4, 5}. Let F i be a collection of triangles 
defined by

-F1 =  {Xi + Fij ,yp + Fp ■ i G {1, 2}, j  G {1,2, 3},p G {1, 2, 3,4,5}}

Since 1 < h +  1 < k, again by Theorem 2.12, we can decompose the graph
2 F n_5(iVn \  B) into a collection of triangles T2 and 6/1 +  18 1-factors, say Hi and 
H'v q where i G {1, 2, 3 , . . . ,  6/1 +  8}, P G {1, 2, 3,4, 5} and q G {1,2}. Let F 2 be a 
collection of triangles defined by

J~2 = {Xi +  Hi, yp +  H'vq : i G {1, 2, 3 , . . . ,  6/1 +  8 },p G {1, 2, 3,4, 5}, q G {1,2}}.

Then, (Mm, iVn, บ T\ บ T2 บ T \ บ T2) is a desired GDD.
Case (ท) h + 1 > k, k ะ/ะ 1. By Theorem 2.12, we can decompose the graph 

3Km- 2 (M m \  A) into a collection of triangles 7Î and 6 k + 11 1-factors, say F jj 
and Fp where i  G {1,2}, j  G {1, 2,3} and P G { 1 ,2 ,3 , . . . ,  6 k +  5}. Let be a 
collection of triangles defined by

F 1 =  {Xi +  F j j ,  yp +  Fp : ï G {1, 2}, j  G {1, 2, 3},p G {1, 2, 3 , . . . ,  6 k +  5}}.

If k = 0, the construction is done here and (M m, N 5, B\ บ 7} บ J-\) is a desired 
GDD. Now assume k /  0, then k > 2. Again by Theorem 2.12, we can decompose 
the graph 2K n- 5 (N n \  B ) into a collection of triangles T2 and 12 1-factors, say
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•F2 — {Xi + Hi, yp +  Hpq : i,q G {1,2} ,p  G {1,2,3, 4, 5}}.

Hence, (Mm, iVn, Hi บ 7i บ 72 บ F l  บ J -2) is a desired GDD.
Case (iii) h +  1 =  k = 1. In this case, we let B  — {yi, y2 , 2/3 }. By Theorem 2.9, 

each copy of Kg in 3Kg(Mg) can be considered as a maximum packing of order 8 

having a 1-factor as the leave, say (Mg, Tj,C j) for j  G {1, 2, 3}. Let F\ and F-i be 
collections of triangles defined by

F 1I =  {ijj +  F3 : j  G {1, 2, 3}}

and
F '2 = {{2/1 , 2/2 , 2/3 }, {2/1 , 2/2, 2/3}}-

By Theorem 2.5, the graph 2K&(N\\ \  B) can be decomposed into 14 1-factors, 
say Hi and H'p q where i G {1, 2, 3 , . . . ,  8}, P G {1, 2, 3} and q G {1, 2}. Let be a 
collection of triangles defined by

F 3 = {Xi + Hi, yp + H'pq : i G {1,2,3, . . . ,8 } ,p G  {1,2, 3 } ,g G {1,2}}.

Hence, (Mg, N n , Tj U T 2 UT3 U B-iU บ F 3) is a desired GDD.
Case (iv) h +  1 > k =  1. In this case, we let A  =  { x i,x 2} and B  = {2/1 , 2/2, 2/3}• 

Let Hi =  {{xi,aî2 ,î/i}, {x u x 2, y2}, {x i,X 2 ,y 3}, {2/1 , 2/2, 2/3 }, {2/1 ,2/2,2/3}} be a collec­
tion of triangles. By Theorems 2.9 and 2.5, a copy of K 8 in 2Kg(Nn  -  B ) can 
be considered as a maximum packing of order 8, (M g ,7 i,£ ), having a 1-factor 
as the leave; and the other copy can be decomposed into seven 1-factors. Thus, 
there are a total of eight 1-factors, denoted by Fi and Fpq where i, q e {1,2} and 
P G {1, 2, 3}. Let T \ be a collection of triangles defined by

H % and  H '  w here i ,q  G {1,2} and P G {1,2, 3 ,4 , 5}. Let T i  be a collection of
triangles defined by

= {Xi + Fi, yp +  Fp q : i,q  G {1, 2},p G {1, 2, 3}}.
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Since h +  1 > 2, by Theorem 2.12, we can decompose the graph 3K m- 2 (Mm \  A) 
into a collection of triangles T2 and 17 1-factors, say T/jj and H'p where i G 
{1, 2}, j  G {1, 2, 3} and P G {1, 2, 3 , . . .  , 11}. Let 7-2 be a collection of triangles 
defined by

J ^2  =  {x i +  H l  v  y p  +  H'p : i G { 1 , 2 } ,  j  G {1, 2, 3},p G {1, 2, 3 , . . . , 11}}.

Thus, (M m, Nn, B\ บ 7Î บ 72 บ J-\ บ H2) is a desired GDD. □

L em m a 4.5. Let m  and ท be positive integers such that m  ^  2, m  = 2 (mod 6) 
and n = 5 (mod 6). There exists a GDD(m, ท; 5, 3,1).

Proof. We write โท =  6 h + 8 and ท =  6fc +  5 for nonnegative integers h and 
k. Let A = {x 2 , x 2} and B = {yi, y2 , 2/3 , . . . ,  y5}. First, we note th a t the set 
# 1  =  {{£1, x2, z/i} : i G {1, 2, 3, 4, 5}} forms a GDD(2, 5; 5, 0 ,1), namely {A, B, £>1). 
By Theorem 2.3, there exists a TS(5;3) on B. Thus, by Lemma 3.1, there exists a 
GDD(2, 5; 5, 3,1), namely {A, B, B2). We separate the construction in the following 
three cases.

Case (i) h +  1 > k, k 7  ̂ 1. By Theorem 2.12, we can decompose the graph 
577m_2(Mm \  A) into a collection of triangles T\ and Qk + 15 1-factors, say F jj 
and Fp where i G {1, 2}, j  G {1, 2, 3,4,5} and P G { 1 ,2 ,3 ,... 1 6 k +  5}. Let be 
a collection of triangles defined by

J7! = {x l + FK1, yp + F;> : i G {1,2}, j  G {1, 2, 3, 4, 5}, P G {1,2, 3 , . . . ,  Qk +  5}}.

If k = 0, then the construction is done here and (Mm, N 5, B2 บ T\ บ F\) is a desired 
GDD. Assume that k /  0, then k >  2. Again by Theorem 2.12, we can decompose 
the graph 3Kek(Nn \  B) into a collection of triangles 72 and 17 1-factors, say 
Hi and H'p q where i G {1,2}, P G {1,2, 3, 4, 5} and q = {2,3,4}. Let F 2 be a 
collection of triangles defined by

T 2 = {x% +  ท 1, yp +  H'pq : i G {1, 2},p  G {1, 2, 3, 4, 5},q = {2, 3, 4}}.
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Hence, (Mm, iVn, ร 2 บ 7Ï บ 72 บ F\ บ F 2) is a desired GDD.
Case (ii) h +  1 > k — 1. Applying Theorem 2.12, we can decompose the graph 

5A'm_2(Mm \  A) in the same way as the previous case and obtain the collections 
of triangles 7] and F  I . W ith the same theorem, the graph 3A'6(A’n \  B) can be 
decomposed into a collection of triangles T2 and seven 1-factors, say Fiti and Fji2 
where i G {1.2} and j  G {1, 2, 3, 4, 5}. Let F 2 be a collection of triangles defined 
by

F 2 = {Xi +  Fj i, 2/j +  FJt2 : i G {1, 2}, j  G {1,2, 3,4, 5}}.

By Theorem 2.7, the graph 3K 5 (B) can be decomposed into six 2-factors, say 
Cq, Cj , Cg, . . . ,  C\\. Let c  be a collection of triangles defined by

c  =  {yi + Ci : i G { 6 ,7 ,8 ,...,1 1 } } .

Hence, (M m, N u , B\ บ T\ บ Ft บ F\ บ F\ บ C) is a desired GDD.
Case (iii) h +  1 < k. Since h +  1 > 1, by Theorem 2.12, we can decompose the 

graph 5K m- 2 (M m \  A) into a collection of triangles 7Î and 15 1-factors, say FhJ 
and Fp where i G {1,2} and j ,p  G {1, 2, 3, 4, 5}. Let F\ be a collection of triangles 
defined by

F\ =  {Xi +  F ij,y p +  F'p : i G {1, 2}, j, P G {1, 2, 3,4, 5}}.

Since 1 < h + 1 < k, again by Theorem 2.12, we can decompose the graph 
3Ksk(Nn \  B) into a collection of triangles Tt and 6h +  23 1-factors, say Hi and 
H'pq where i G {1, 2, 3 , . . .  1 ah + 8}, P G {1,2, 3, 4, 5} and q G {2, 3, 4}. Let F 2 be 
a collection of triangles defined by

F 2 = {Xi + Hi,yp + Hp q : i G {1, 2, 3 , . . . ,  6 h +  8}, P G {1, 2, 3, 4, 5}, q G {2, 3, 4}}.

Hence, (Mm, N n , ไร>2 บ 7Î บ T 2 บ F l บ F 2 ) is a desired GDD. □
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T h e o rem  4.6. Let rn and ท be positive integers such that m  ^  2, m  =  2 (mod 6) 
and ท = 5 (mod 6). Let A). A'j and A2 be nonnegative integers such that Al > A2 
and A'1 >  A2. I f  A] =  A2 (mod 2) and 3|(Ai +  A'j +  A2), f/ien t/ie re  ex is ts  a 
GDD(m, ท; Al, A'j, A2).

Proof. From the assumption, we regard Ai, A'j and A2 as integers modulo 6 and 
determine all possible values of (A], A'j, A2). We display all 36 cases in Table 4.1. 
Note from condition (iv) in Theorem 1.2 th a t A2 7̂  0 except the cases when 
{rn, ท) G {(0,0), (0,3)}.

(Aj. A'j ) a2
(0,0) (0,3) (2,1) (2,4) (4,2) (4,5) 0
(1.1) (1,4) (3,2) (3,5) (5,0) (5,3) Ï
(0,1) (0,4) (2,2) (2,5) (4,0) (4,3) 2
(1.2) (1,5) (3,0) (3,3) (5,1) (5,4) 3
(6,2) (0.5) (2,0) (2,3) (4,1) (4,4) 4
(1,0) (1,3) (3,1) (3,4) (5,2) (5,5) 5

Table 4.1: All possible values of (Aj. A'j. A2)

It is easy to see th at GDDs with ( A j , A ' j . A 2 ) G { ( k ,k ,k ) , ( k ,k  + 3 ,k) : k G 

{0,1,2, 3, 4, 5}} exist by applying Theorem 2.3 and Lemma 3.1. For other 24 cases, 
we use the right arrow

(Ai, A'j, A2) (Ai +  1, A'j +  1, A2 +  1)

to denote that if a GDD(m, ท; Aj, A'j, A2) exists, then a GDD(m, 'ท; Aj +1, A'j +1. A2 + 
1) exists by applying Lemma 3.1 with a TS(ไท +  ฑ; 1), which is equivalent to a 
GDD(n?., ท; 1,1,1); and use the down arrow
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(A1; Aj, A2)

n

(Ai, Aj +  3, A2)

to denote that if a GDD (m, ท; Al, A'1. A2) exists, then a GDD(m, ท; A:. Aj +  3. A2) 
exists by applying Lemma 3.1 with a TS(ท; 3), or, equivalently, a GDD(m, ท; 0, 3, 0).

Now, to construct all GDDs in each case (Ai,A'1,A2) =  (ทิ, 6, c), it suffices to 
construct only the smallest one. The larger GDDs in each case can be simply 
obtained by applying Lemma 3.1 (i) to combine the smallest GDD with a TS(m +  
ท; 6a) where a e N, which is equivalent to GDD(m, ท; 6a, 6a, 6a). The following 
diagram shows that a GDD(m, ท; 3, 2,1) existing from Lemma 4.4 provides some 
of those smallest GDDs. These values are the smallest ones because we have that 
A2 0, Al T A2 and Aj ^ A2.

(3, 2,1) =►  (4,3, 2) =* (5,4,3) => (6,5,4) =» (7, 6, 5) =* (8, 7, 6)

4 If ff ff f( 4

(3, 5,1) => (4, 6, 2) => (5, 7, 3) =►  (6, 8,4) ะ* (7, 9, 5) ะ* (8,10, 6)

Moreover, two copies of a GDD(m, ท; 3, 2,1) form a GDD(m, ท; 6, 4, 2). The fol­
lowing diagram shows that a GDD(m, ท; 6, 4, 2) provides some of those smallest 
GDDs.

(6, 4, 2) ะ* (7, 5, 3) ะ* (8, 6, 4) ะ* (9, 7, 5) ะ* (10, 8, 6)

K K ff  ̂ fl

(6, 7, 2) ะ* (7, 8, 3) ะ* (8, 9,4) ะ* (9,10, 5) ะ* (10,11, 6)
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Lastly, the following diagram shows that a GDD(m, ท; 5, 3,1) existing from Lemma 4.5 
yields a GDD(m, ท; 5, 6,1).

(5.3.1)

4
(5.6.1)

Therefore, all of our smallest GDDs for the remaining 24 cases are obtained. Thus, 
our construction is completed. □

4.3 m  and ท =  5 (mod 6)
In this section, we consider the existence of GDDs when m  and ท =  5 (mod 6). 

The main proof is shown in Theorem 4.9. Similar to the previous section, most of 
our desired GDDs in this case can be obtained from one case of them, which is 
a GDD(m, ท; 3, 4, 2). Lemma 4.7 gives a construction of such GDD when m = ท 
while Lemma 4.8 shows the cases when m 7  ̂ท.

Lem m a 4.7. Let ท be a positive integer such that ท = 5 (mod 6). There exists a 
GDD(ท, ท; 3, 4, 2).

Proof. We write ทะ= 6k +  5 for a nonnegative integer k. The construction is 
separated in the following four cases.

Case (i) k =  0. By Theorem 2.7, the graph 4K 5(N5) can be decomposed into 
eight 2-factors, say Cl, C2 , C 3 , C\ and C 5 , and three cycles, namely (3/12/22/32/42/5) , 
(2/12/32/52/22/4) and (2/12/32/52/22/4) • The graph obtained from the union of these 3 cycles 
can be decomposed into a collection of triangles T  as follows:

T  =  { { 2/ 1 5 2/3,2/4 }, { 2/2 ,2/4,2/5 }, { 2/ 1 ,2/3,2/5 }, { 2/ 1 ,2/2,2/4},  { 2/2 ,2/3,2/5 }}-
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Moreover, let c  be a collection of triangles defined by

C = {xi + Ci l i e  { 1 , 2 ,3 ,4 ,5}}.

We note that (Ms, N 5, T u c )  is a GDD(5, 5; 0, 4, 2). Moreover, the graph 3K 5(M 5) 
can be considered as a TS(5; 3), namely (Ms, B). Thus, (Ms, N 5, T  บ c  บ B) is a 
GDD(5, 5; 3, 4, 2).

Case (ii) k = 1 . Let A  =  {xi, £2, £3 }. By Theorem 2.5, the graph 3K s(M n  \  A) 
can be decomposed into 21 1-factors, say Fi, F2, F jj and Fp where i , j  G {1, 2, 3} 
and {2, 3, 4 , . . . ,  11}. Let F i be a collection of triangles defined by

F 1 =  {x2 +  F jj, yp +  Fp, 2/1 +  F l ,2/1 +  F2 : i , j  G {1,2 ,3},P G {2, 3 ,4 . . . . ,  1 1 }}.

Besides, two copies of K w in the graph AKio(Nn  \  {2/1 }) can be considered as 
a TS(10; 2), namely (N n  \  (y i} ,F i). For the other two copies, by Theorem 2.5, 
we can decompose 2/\io(W i \  {2/1 }) into 18 1-factors, say Hi, H'j and HP)q where 
i G {4, 5, 6 , . . . ,  11}, j  G {1, 2,3, 4}, P G {1, 2, 3} and q G {1, 2}. Let F 2 and F 3 be 
collections of triangles defined by

F 2 = {xi + H t, Xp + Hp q : i G {4, 5, 6 , . . .  , 11}, P G {1, 2, 3}, q G {1,2}}

and
F 3 =  {2/1 +  H) : j  G {1, 2, 3, 4}}.

Lastly, we let B2 = { { x i ,x 2 ,y i} , {x 2 ,x 5 ,y l }, { x i,£3 , 2/1 }, {x 1 , x 2 , x 3}, { x ^ x 2, x 3}} 
be a collection of triangles on A u  {2/1 }- Hence, (M il, N n , F i บ F 2 บ J- 3 บ B\ บ £>2) 
is a desired GDD.

Case (iii) k  =  2. N ote th a t  the  g raph  3 K i7( M \7) can be considered as a
TS(17;3), nam ely (M \ 1 , B ). By Theorem  2.7, the graph 4 ^ 1 7 ( ^ 17) can be decom­
posed into  32 2 -factors, say C l, c 2, c 3, . . . ,  C l7 and  15 cycles, nam ely 3 copies
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of cycle in {(2/12/22/3 - - - V u ) ,  (2/12/82/15 - - - V u ) ,  (2/12/92/17 • • • 2/1 1)} and 2 copies of each 
cycle in {(2/12/32/5 • ■ -  yn), (ymy7 • • -  2/16), (2/12/62/11 ■■■yu)}-

Let c  be a collection of triangles defined by c =  { X i  +  Ci  : i G {1, 2, 3 , . . . ,  17}}. 
Besides, the graph obtained by the union of those specified 15 cycles can be 
decomposed into a collection of triangles T  as follows:

T  = {{2/1 , 2/2 , 2/9}, {2/2 , 2/3 , 2/10}, {2/3 , 2/4, 2/1 1 }, • • ■ , {2/17 , 2/1 ,2/8},
{2/1 , 2/2, 2/9}, {2/2 , 2/3 , 2/10}, {2/3 , 2/4, 2/1 1 }, , {2/17 , 2/1 , 2/3},
{2/1 ,3/2,2/9}, {2/2, 2/3 , 2/10}, {2/3 , 2/4, 2/1 1 }, ■ • •, {2/17 , 2/1 ,2/8},
{2/1 , 2/3, 2/6}, {2/2, 2/4, 2/7}, {2/3 , 2/5, 2/8}, ■ • • , {2/17 , 2/2 , 2/5},
{2/1 ,2/3, ye}, {y2,y4,y7},{y3,y5,ys}, • • •, {yi7,y2,ys}}- 

Hence, (M17, iVi7 , B บ c  บ T ) is a desired GDD.
Case (iv) k >  3. In this case, we let A  =  {xi,  £ 2 , £ 3 , X4 , x 5} and B =  

{2/1 , 2/2 , 2/3 , Î/4 , 2/5}- From Case (i), there exists a GDD(5, 5; 3, 4, 2) on / l u l l ,  
namely (H, By Theorem 2.12, the graph 3I\Qk(Mn \  A) can be decomposed
into a collection of triangles 7Ï and 6k +  25 1-factors, say F' and FPtq where 
i G {1, 2, 3 , . . . ,  6k} and p,q  6  {1, 2, 3, 4, 5}. Let F\ be a collection of triangles 
defined by

F 1 =  {y, +  F}, yp +  Fp,9 : i 6 { 1 ,2 ,... ,6fc},p,g G {1, 2, 3, 4, 5}}.

Again, by Theorem 2.12, we can decompose the graph AK6k(N n \  L?) into a 
collection of triangles 72 and 6k +  30 1-factors, say Hi , 7 /s , and H' where 
i  G {1, 2, 3 , . . . ,  6 /1 } ,  ร, P  G { 1 , 2, 3, 4, 5}, t G {2, 3 }  and g G {4, 5, 6 , 7} . Let T 2 and 
7-3 be collectiona of triangles defined by

■ F2 — {%i  +  Hi, x s +  Hst : i  G {1 ,2 ,3 ,  . . . , 6 /1 } , ร G { 1 , 2 , 3 , 4 , 5 } , /  G { 2 , 3 } }

and
Fs =  {yp +  H'v q : P G {1, 2, 3, 4, 5} ,  q G {4, 5, 6 , 7 } } .
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L em m a 4.8. Let m  and ท be positive integers such that m  and ท =  5 (mod 6). 
Then, there exists a GDD(m, ท; 3, 4, 2).

Proof. We write m  = 6 h + 5 and ท =  6fc +  5 for nonnegative integers h and 
k. Let A  =  {xi, £ 2, £3 , £4, £5} and 5  ะ= {ใ/ l}2/2 , 2/3 , 2/4 , 2/5}- First, we note that 
from the proof of Case (i) in Lemma 4.7, there exist a GDD(5, 5; 0, 4, 2) and a 
GDD(5, 5; 3,4, 2) on A  บ B, namely (A ,B ,B i)  and ( A ,B ,B 2), respectively. The 
construction of our desired GDD is separated in the following 7 cases.

Case (i) 2 < h < k or h — 0 and k > 2. By Theorem 2.12, we can decompose 
the graph 4K 6k(N n \  B ) into a collection of triangles 7Î and 12h +  30 1-factors, 
say Hij and H'pq where i G {1, 2, 3 , . . . ,  6/1 +  5}, j  G {1, 2}, P G {1, 2, 3, 4, 5} and 
q G {3, 4, 5, 6 }. Let J7! and J-2 be collections of triangles defined by

•F]1 =  {Xi +  Hi j  : i G {1, 2, 3 , . . . ,  6 h +  5}, j  G {1,2}}

and
— {yp +  Hpq : P G {1, 2, 3,4, 5}, q G {3, 4, 5, 6 }}.

If h =  0, then the proof is done here and (M m, Nn, B 2 บ 7Ï บ T \  บ J-2) is a desired 
GDD. Now, assume that h > 2. Again by Theorem 2.12, the graph 3Keh(Mm \  A) 
can be decomposed into a collection of triangles 72 and 25 1 -factors, say Fij and 
Fp q where i,p  G {1, 2, 3, 4, 5}, j  G {1, 2, 3} and q G {4, 5}. Let T 3 be a collection 
of triangles defined by

พ3 =  {aù +  Pi +  F'pq : z,p G {1, 2, 3, 4, 5}, j  G {1,2, 3}, g G {4,5}}.

Thus, (Mm, N n, ร 2 บ 7Î บ 72 บ T7! บ F 2 บ Tà) is a desired GDD.

Hence, (M m , Nn, B \ บ 71 บ 7 2  U J i  บ 7 2 บ ^ 3 ) is a desired GDD. □

Case (ii) 1 =  h < k. By Theorem  2.7, th e  graph  3K 5 (A)  can be decom posed
into six 2 -factors, say Ce, C 7 , C s , . . . ,  C\ \ .  Let c  be a collection of triangles defined
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by
c =  {Xi + Ci : i  G {6, 7 ,8 , . . . ,  11}}.

By Theorem 2.12, we can decompose the graph 3A'6(M n \  A) into a collection 
of triangles T\ and 15 1-factors, say Fi and Fp̂ q where i,p  G {1,2, 3, 4, 5} and 
q G {2, 3}. Let F\ be a collection of triangles defined by

F\ =  {Xi + Ft,yp +  Fp,9 : i,p  G {1,2, 3, 4, 5}, g G {2,3}}.

Again, by Theorem 2.12, we can decompose the graph 4;K6fc(N n \  B) into a 
collection of triangles T2 and 12h + 30 1-factors, say Hij and H'pq where i G 

{1, 2, 3 , . . . ,  6 h +  5}, j  G {1,2}, pG  {1, 2, 3, 4, 5} and q G {3, 4, 5, 6}. Let T 2 and 
7-3 be collections of triangles defined by

— {Xi +  Hi j : i G {1, 2 ,3 , . . ., 6 h + 5}, j  G {1,2}}

and
= {yp +  H'pq : P  G {1,2, 3, 4, 5}, q G {3, 4, 5, 6}}.

Thus, (M u, Nn, Bi U c  U Tl D T2 U Fi u  F 2 บ JS) is a desired GDD.
Case (iii) h =  0 and k = 1. By Theorem 2.7, the graph 3/v5(M5) can be 

decomposed into six 2-factors, say c 6, c 7, Cg,. . .  1 C 11 Let c  be a collection of 
triangles defined by

b- =  {Vi F Ci : i G {6, 7, 8 , . . . ,  11}}.

By Theorem 2.5, we can decompose the graph 4 /\6(All \  B) into 20 1-factors, say 
Fij where i G {1, 2, 3, 4, 5} and j  G {1, 2, 3, 4}. Let F\ be a collection of triangles 
defined by

Ai =  {y 1 + Fij : i G {1,2,3 ,4 ,5}, j  G {1,2,3,4}}.

Hence, (M5, A ll, Hi บ c  บ F l)  is a desired GDD.
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Case (iv) h > k > 2 or h > 2  and k =  0. By Theorem 2.12, we can decompose 
the graph 3K 6I1(M m \  A) into a collection of triangles T\ and 1 2 k +  25 1 -factors, 
say Hij and H'pq where i G {1,2,3 ,4,5}, j  G {3,4,5}, P G {1, 2 ,3 , . . . ,  6 k + 5} and 
q G {1,2}. Let Al and J-2  be collections of triangles defined by

T x  =  { X i  +  H i j  : i  G {1, 2, 3,4, 5}, j  G {3,4,5}}

and
•A2 =  {yp +  Hpq : P G {1, 2, 3 , . . .  1 6k +  5} , q G {1, 2}} .

If k =  0 , then the proof is done here and (Mm, iVn, B'2 บ T\ บ J-\ บ A2) is a desired 
GDD. Now, assume that k > 2. Again by Theorem 2.12, the graph 4K6k(Nn \  B ) 
can be decomposed into a collection of triangles T2 and 30 1-factors, say F jj and 
Fp where i ,p  G {1,2, 3,4, 5}, j  G {1, 2} and q G {3, 4, 5, 6}. Let Tz be a collection 
of triangles defined by

•A3 =  {x i + Fld ,y p + F ^  : i , p e  {1, 2, 3, 4, 5}, j  G {1,2}, g G {3,4, 5, 6 }}.

Hence, (Mm, AT, บ 7Ï บ 72 บ Al บ ^ 2  บ A3) is a desired GDD.
Case (v) h > 3 and k = 1. By Theorem 2.7, the graph 3K 5 (A) can be 

decomposed into six 2-factors, say c 6, cv, C s,. . . ,  Cu Let c  be a collection of 
triangles defined by

C = {yi + C i - . i e {  6 ,7 ,8 ,...,1 1 } } .

By Theorem 2.5, we can decompose the graph 4/v6(Aii \  B) into 20 1-factors, say 
F jj where i G {1, 2, 3, 4, 5} and j  G {1,2, 3, 4}. Let F\ be a collection of triangles 
defined by

•A1 =  {y, +  Am- : i G {1, 2,3, 4, 5}, j  G {1, 2, 3, 4}}.

By Theorem 2.12, we can decompose the graph 3A'6/i(Mm \  A) into a collection of 
triangles 7{ and 37 1-factors, say Hi ĵ and Hpq where i G {1, 2, 3, 4, 5}, j  G {3, 4, 5},
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p £  { 1 ,2 ,3 , . . .  ,11} and q  G {1,2}. Let J -2 and F z  be collections of triangles defined 

by
F 2 =  { X i  +  H i j  : i  G {1,2, 3,4, 5}, j  G {3,4,5}}

and
F z  =  { y p 3 - H ' p q  : p e  { 1 ,2 ,3 , . . . ,  ท }, 9 G {1,2}}.

Therefore, (M m, N u ,  B ]  บ c บ T l  บ F l  บ F 2 บ F z )  is a desired GDD.
Case (vi) h  —  2 and k  —  1. Note th a t the graph 3A'i7(M i 7) can be considered 

as a  T S(17 ;3), nam ely ( M n , B z ) .  By Theorem  2.7, the  g raph  4 K u ( N n )  can be 
decomposed into 20 2-factors, say c \ , c 2 , C z , . . . ,  C n  and the three cycles, namely

(yi 2̂2/32/42/5̂ 62/72/8̂ 92/1๐2/11 ), (ï/iî/4!/7!/ioï/2Îfeï/8Î/iiî/3Î/6Îfe) and (2/1 2/32/ร2/7?/92/112/22/4 2/62/s2/io)- 
Let c be a collection of triangles defined by

c = {Xi + Cl :zG  { 1 ,2 ,3 ,...,1 7 } } .

Besides, the graph obtained from the union of above specified three cycles can be 
decomposed into a collection of triangles T  as follows:

T  =  {{2/6,2/7,2/9}, {2/7, 2/8, 2/10 }• {2/8,2/9,2/1 1 }’ {2/9, 2/10, 2/1 }, {2/10, 2/1 1 , 2/2},
{2/1 1 , 2/1 , 2/3}, {2/1 , 2/2, 2/4}, {222, 2/3, 2/5}, {2/3 , 2/4, 2/6}, {2/4, 2/5, 2/7}, {2/5, 2/6, 2/8}}• 

Hence, (M 17, N \ i , B z  U C u T )  is a desired GDD.
Case (vii) h  =  1 and  k  =  0. By Theorem  2.7, th e  graph 3 K 5 ( A )  can be 

decom posed into  six 2-factors, say C e ,  c 7, C s , . . . ,  C \ \ .  Let c be a  collection of 
triangles defined by

C  =  { x i  +  C i - . i  G {6, 7, 8 , . . . ,  11}}.

By Theorem  2.5, we can decom pose the  graph  3 K e ( M u  \  H) into  15 1-factors, 
say F r and F p q  where i , p  E  {1, 2, 3, 4, 5} and q  G {2, 3}. Let J 7! be a collection of 
triangles defined by

F 1 = { x t + F i ,  y p + F p tq : i , p  G {1, 2, 3, 4, 5}, q  G {2, 3}}.



54

Hence, (Mil, N 5, B\ บ c u J i )  is a desired GDD. □

T h e o rem  4.9. Let m  and ท be positive integers such that m  and ท = 5 (mod 6). 
Let Ai, A'j and A2 be nonnegative integers such that Al > A2 and A'j > A2. I f  X-2 =  0 
(mod 2) and A] +  A'j +  A2 =  0 (mod 3). then there exists a GDD(m. ท; Al, A'j. A2).

Proof. We regard Ai, A'1 and A2 as integers modulo 6 and examine the necessary 
conditions to see all possible values of (Ai, A'j, A2). We display them in Table 4.2.

A2 (M  ^ 1 )
0 (0,0) (0,3) (1,2) (1,5) (2,4) (4,5)

(3,3) (3,0) (2,1) (5,1) (4,2) (5,4)
2 (0-1) (0,4) (1,3) (2,2) (2,5) (3,4)

(1,0) (4,0) (3,1) (5,5) (5,2) (4,3)
4 (ร, 2) (0,5) (1,1) (1,4) (2,3) (3,5)

(2,0) (5,0) (4,4) (4,1) (3,2) (5,3)

Table 4.1l: All possible values of (A:. A'j A2)

Note from condition (iv) in Theorem 1.2 th a t A2 7  ̂ 0 except the cases when 
(Ai, A'j) e {(0, 0), (0, 3), (3, 0), (3, 3)}. Since Ao is even, we observe that if Ai-Ao =  0 
or 3 (mod 6) and A'j — A2 =  0 or 3 (mod 6), then we can obtain our desired GDDs 
by applying Lemma 3.1 to combine a TS(m +  ท; A2)1 a TS(m; Aj -  A2) and a 
TS(ท; A'j -  A2), which exist from Theorem 2.3. Thus, the following cases are done:

(i) Aj, A'j =  0 or 3 (mod 6), A2 =  0 (mod 6),
(ii) Ai, A'j =  2 or 5 (mod 6), A2 =  2 (mod 6) and

(iii) Ai, A'j =  1 or 4 (mod 6). A2 = 4 (mod 6).
For the remaining of our desired GDDs, it suffices to construct only the smallest 

values of possible (Aj. A'j, A2) in each case because the larger ones in each case can
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be simply obtained by applying Lemma 3.1 (i) to combine the smallest GDD with 
a TS(m +  ท; 6a) where a G N, which is equivalent to GDD(m, ท; 6a, 6a, 6a). We 
use the curve arrow

(Ai, A), A2) (Ai +  2, Aj -f- 2, A2 +  2)

to denote that if a GDD(m, ท; Al, A'1, A2) exists, then a GDD(m, ท; Al +  2,Aj +  
2, A2 +  2) exists by applying Lemma 3.1 with a TS(m +  ท; 2), or, equivalently, a 
GDD(m, ท; 2, 2, 2). Also, we use the down arrow

(Ai, A'j, A2)

(Ai, Aj +  3, A2)

to denote that if a GDD(m, ท; Al, Aj, A2) exists, then a GDD(m, ท; Al; Aj +  3, A2) 
exists. Lastly, we use the long right arrow

(Ai, A'1, A2) = >  (Ai +  3, A1; A2)

to denote that if a GDD(m, ท; Al, Aj, A2) exists, then a GDD(m, ท; A] + 3 , Aj, A2) ex­
ists by applying Lemma 3.1 with a TS(m; 3), or, equivalently, a GDD(m, ท; 3, 0, 0).

Therefore, the following diagram shows that a GDD(m, ท; 3, 4, 2) obtained from 
Lemma 4.8 yields all of the smallest GDDs for the remaining cases. These values 
are the smallest ones because we have that A2 7̂  0. Ai > A2 and Aj > A2. This 
completes the proof.

(3,4,2) = =>(6,4,2) (5,6,4) ==>(8,6,4) (7,8,6) = * (1 0 , 8 , 6 )

If

(3,7,2) = => (6,7,2) (5,9,4) = =>(8,9,4) (7,11,6) = > • ( 1 0 . 1 1 , 6 )

□
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