CHAPTER IV
GROUP DIVISIBLE DESIGNS
WITH mand =2 (mod 3, m 2and /2

In this chapter, we focus on the existence of GDDs with mand = 2 (mod 3),
m~2, [2 A>Aand AL> A2 We prove the sufficiency of the existence prob-
lem by constructing GDDs satisfying the necessary conditions in Theorem 1.2. The
investigation is separated into three sections for each (m, ) in {(2, 2). (2, 5), (5,5)}.

41 mand =2 (mod 6), m/ 2and /| 2

First, we construct GDDs with m and = 2 (mod 6), /2 and / 2 This
case is concluded in Theorem 4.3, requiring some small GDDs in Lemma 4.2. The
following small GDDs will be used in Lemma 4.2,

Lemma 4.1. Let (A]A2) G{(2.1), (4, 2)}. The following GDDs exist:
() aGDD(2, 2 Al,0, A2),

(i) a GDD(2, 8 A],6. A2) and

(i) a GDD(8, 2 A, 6. A2).

Proof, (i) Let £1= {{xi,x2,yi}, {xi,x2,y2}}. Then, (M2,N2,Bi) isa GDD(2,2;
2,0, 1). Moreover, two copies of B\ forms a GDD(2,2; 4, 0,2).

(ii) Let B —{yi,y2}- From (i), there exists a GDD(2, 2 Al,0, A2) on the vertex
set M2 B, namely (M2, Let Bo = {{yi,y2,Vk} :k G{3,4,5,... 18}} be a
collection of triangles. By Theorem 2.12, we can decompose the graph 6K e(Nn\B )
into a collection of triangles 71 and 2A2+ 10 1-factors, say Fh] and Fpqwhere
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ipG{L,2,jG{1,23,., A%and qG{l234H5} Let T\ be a collection of
triangles defined by

FI'={xi+FiJ,U+Fpg:i,p G{L 2}, G{L,23,..., A}, ¢ G{L 23,4, 5}}

Thus, (M2,IMy B\ B2 Tl -TI) is our desired GDD.

(i) Let A = {xi,x2}. From (i), there exists a GDD(2,2;Ai, 0.A2) on the
set A N2, namely (A,N2,Bi). Let B2 = {{yiy2,xk} : k G {3,4,5,..., 8}
be a collection of triangles. By Theorem 2.12, we can decompose the graph
AiKe(Mm\ A) into a collection of triangles Tl and 247 + 2(A2- 1) 1-factors, say
Fjj and Fpg where i,p G{1,2},j G{,23...., Altand qG{L,2,3,..., A2~ 1}.
Let J7 be a collection of triangles defined by

Fi = [xetFhy}yptFpo:ip G{1,2},j G{1,2,3,...., Al},gG{1,2,3.... A-1}}.
Hence, (Mg, iV2,Bi B2 71 J7) is a desired GDD. |

Lemma 4.2. Letm and be positive integers such that m and = 2 (mod 6),
mA™2and " 2 There exist a GDD(m, ;2 6,1) and a GDD(m, ;4,6,2).

Proof. We write m = sh+ 8 and = 6lc + 8 for nonnegative integers h. k.
Let A = {xi,x2}, B = {yi,y2} and (Ai,A2) G {(2,1), (4,2)}. We consider the
construction in the following Six cases.

Case (i) 0= h < k. From Lemma 4.1, there exists a GDD(8, 2; A],6, A2) on
Mg B, namely (Ms, B,B\). Since k > 0 and A2 G {1,2}, by Theorem 2.12, we
can decompose the graph 6AT-2(Nn\ B) into a collection of triangles T\ and
8A2+ 12 1-factors, say FtJ and Fpg where i G{1.2,3,..., 8}, ) G{,,23,..., A%},
PG{L2}and G {12 3,.... 6} Let F\ and F=be collections of triangles defined

by
Fl= {Xi+Fij:i6{,23,.,8,6{L23,. A}
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and
To={yp+Fm :pG{L2},qG{L23,.. 16}}

Hence, (Mg, Nn,B\ 71 J\ .7:2) is a desired GDD.

Case () 1 —h <k In this case we let A —{xi,x2,x3,... x8}and B —
{yi,y2}. Letsi = {{xk,41,42} :k £ {9,10,11,, 14}} be a collection of triang|es.
For (Ai, A2) = (2,1), we consider the graph 2/<G(M%\ A) as a TS(6; 2), namely
(M \ H,Bi). For (Ai, A) = (4,2), by Theorem 2.12, the graph +Ks(Mw \ A)
can be decomposed into a collection of triangles T\ and two 1-factors, say F\ and
F2. Let J-\ be a collection of triangles defined by

Fi={vit Amf {1)2}}
Since Al = 2A2, by Lemma 2.5, the graph AiKa(A) can be decomposed into 6Ai +
2A2 1-factors, say Tjj and Tpq where i e {9,10,11,..., 14}, ) G{L,23,.... Al},
p G{12} and q G{L,23,..., A2. Let F2 and J-3 be collections of triangles
dehned hy

Fo={0+Tijhi£{9,1011,.., 14} :6{1,23,.Ax}}
and
FA= {yp+ Tpg:r G {L,2},qG {1,2,3...., A2}}.

Since ft+ 1> 2, by Theorem 2.12, we can decompose the graph sKn 2(Nn\ B)
into a collection of triangles T2 and 14A2+ 12 1-factors, say Ffu and H' where
i1 6{1,23,...,14}16{123,. Arg {2 andqG{L23,..., A2} Let
F\ and J-5 be collections of triangles dehned by

TV = (Xi + Hhj @i G{1,23,...,14}j G{1,2,3,..., A2}}

and
o=l PG{L,2},66G{1,2,3,.., A2}}.
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Hence, (Mu,Nn,B\ F\ F2 Fs3 F\ JT Tl %) isa desired GDD.

Case (iii) 2 < h <k Inthis case we let A = {x1,x2,x3,... xg}and B =
{yuy2}. By Lemma 4.1, there exists a GDD(s, 2; Al, 6, A2) on the vertex set Au B,
namely (A, B, £41). Since h > 2and Al = 2A2, by Theorem 2.12, we can decompose
the graph AKm-g(Mm\ A) into a collection of triangles T\ and sAj + 24 1-factors,
say Fij and Pvqwhere i G {1,23,....8}j G{1,23,..1Al},P G {1,2} and
q0G{1.2,3,.., AL Let F\ and T2 be collections of triangles defined by

W= {Xi+Fu:ic{l23, ..8}jG{L23,.. A}

and

Fo= [P+ P :PG{L2},96{123..., A}}
Again, by Theorem 2.12, we can decompose the graph 6/Ln 2(Nn\ B) into a
collection of triangles 73 and A2?, + 12 1-factors, say Hij and H' where i G
{123L..,m}, i 6{1,23,....A2%, Pg{l2} and q G {1,23,.., 6} Letrs
and T\ be collections of triangles defined by

F3= {xt+Hi, ;. G{1,23,...m},j G{1,23,.. A2}

and
-~ = {yvt |:|'.'pq 'PG{L 2},9G{1,2,3,.. 16}}.
Thus, (MM,AT,Hi 71 T2 F\ T2 Ts T\)isadesired GDD.

Case (iv) h >k = 0. By Lemma 4.1, there exists a GDD(2, 8; Al, 6, A2) on the
vertex set A uN8, namely (A, N8 Bi). Since h > Land Ai = 2A2, by Theorem 2.12,
we can decompose the graph AliGm 2(Mm\ A) into a collection of triangles T\
and 2Xi + 8A2 1-factors, say Fij and Fpq where i 6 {1,2},] 6 {1,2,3,..., Al},
PGc{,23,. 8 andq G {L23,., A} Let TA and JT be collections of
triangles defined by

Fl= 0+ Fij i 6 {124 6{1,23,.... A}}
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and
J2= {yv+t Fpg:pE{1,2,3,...18},qE {1, 23,..., A2}}.
Then, (Mm,N, Bt 7} F\ J-2)is a desired GDD.

Case (v) h >k = L In this case we let A = {EL£2,£s,..., Xg} and B =
{yi,y2}- From Lemma 4.1, there exists a GDD(s,2; Al, 6, A2) on the vertex set
Au B, namely (A,B,Bi). When h =2, by Theorem 2.12, we can decompose
the graph QKi2(Nn\ B) into a collection of triangles T\ and 20A2 + 12 1-factors,
say Fjj and Fpg where i e {1,2,3,...,20},j € {L,23,..., Ay.p G {1,2} and
qe {1,23,...,6} Let F1and F2 be collections of triangles defined by

F1= {0+ Fij 1 E{L23,..., 200j £ {12,3,..., AZ}}

and

Fo={yp+ Fvgipe {1,2}, s E{L,23,..., 6}}.
Again, by Theorem 2.12, we can decompose the graph AIA2(Mm\ A) into a
collection of triangles T2 and 8Ai + 2A2 1-factors, say Hrj and Hpg where i €
{1,23,... 8}, ] e {1,23, ...Ai}, pe {L.2} and qe {1,2,3,-.., A2}. LetFs
and F\ be collections of triangles defined by

= {wi+ Hij c1E{1,2,3,...,8},] E{1,2,3,..., Ai}}

and
Fo—{yp+ Hpg:pe {12}, ¢ E{1,2.3,.. ,A2}}.
Then, (ALb, N1, B\MF1yjF2 F3yjRxAR U72)is &GDD(20,14, A;6, A2).
Now assume h > 3. By Theorem 2.12, the graph eKi2(Nn\ B) can he
decomposed into a collection of triangles 7 and sAe-I-12 1-factors, say Tjj and Tpq
where i e {1,2,3,...,8},j  {1,2,3,... A}, p e {12} and qE {L,2,3,..., 6}
Let 75 and Fqbe collections of triangles defined by

5= {Xi+Tjj:1E{123,.. 8},j E{1,23,... A2}
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and

™V —{b+Tp:p G{L,2}¢ G{1,23,..., 6}

Since h > 3, again by Theorem 2.12, we can decompose the graph \iK m-s(Mm\A )
into a collection of triangles Taand sAi + 14A2 1-factors, say ij and G' wherei G
{1,2 /3, ,8} ] G{l, 2,3,..., Aj}, PG{ 1,2,3,,14yand g £ {1.2,3,..., A2}
Let T7 and Ts be collections of triangles dehned by

Jo={Xi+6ij 1iG{L23,....8}j G{L23,.. A}

and
—{U+ Gpg:PGc{123,.. 14}q6{123 . .. A}}

Then, (MmN, 7 7} Ts a6 TV Tg) is a desired GDD,

Case (vi) h > k> 2 Inthis case we let /l = {xi,£2}and B = {?!,y2, &,..., y8}.
From Lemma 4.1, there is a GDD(2, 8; Al, s, A2) on the vertex set A B, namely
(4, B,B\). Since k > 2 by Theorem 2.12, we can decompose the graph 6Tn_8(iVh\
B) into a collection of triangles 71 and 2A2 + 48 1-factors, say Fij and Fpq where
16{12},jc{l23,.. A}pg{l23, . 8 adqc{L2,3.., 6} LetF\
and T2 be collections of triangles dehned by

To={G+Fij:iG{L 2, G{L23.... A}
and
Toa={ypT Fpq:PG{L1,23,....,8},0G{L,23,..., 6}}.

Since h > k, again by Theorem 2.12, we can decompose the graph XikKm_2{Mm\A)
into a collection of triangles Vand 2A] + A2 1-factors, say Hij and Hpq where
ie {12}, ] G{L2s,...,an, PG{L,23,.. 1 }and g £ {12,3,..., A2}, Let
T3 and J-\ be collections of triangles dehned by

To= {Xi+ Hij i 6{1.2},j G{1.2.3,.... Al}
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and
¢={yp+ Hpq:PG{1,2,3,, },qG{L,2,3,, A}

Hence, (Mm,Nn,B\ 71 7 Tl Jq) is a desired GDD, 0
Now, we are in the position to establish all of our GDDs in this case.

Theorem 4.3. Letm and be positive integers such that m and = 2 (mod 6),
m/2and | 2 Let Ai, A and A2 be nonnegative integers such that Ai > A
and Aj > A2 [T A and Aj= 0 (mod 2) and 3|(Ai + Aj+ A2), then there exists a
GDD(m, ; Al, Aj, A2).

Proof. The construction is depended on the values of Az in the following two cases.

Case (i) Ao is even. Then, e|(Ai + Aj + A2). We regard AiA and Az as
integers modulo e to determine all possible values of (Ai,Af,A2). Note that a
GDD(m, ; Al, AL A) is equivalent to a GDD( , 71 AL Al, A2). Thus, we have that

(Al a;, A2) g {(0,0,0), (2,2,2), (4, 4,4), (4,0 2), (2,4,0), (0,2,4)}.

If (Ai Aj,A2) ¢ {(0,0,0),(2,2,2), (4,4,4)}, then we can apply Theorem 2.3 to
obtain a TS(m; Al —A2), a TS( ;\\ —A2) and a TS(m + ;A2. Then, by
Lemma 3.1, these cases are done. Now, to construct GDDs when (Ar,A1,A2) G
{(4,0,2), (2,4,0), (0,2,4)}, we define the notation

(AL AuA) > (Al + 2 A+ 2 At )

to denote that if a GDD(m, ;Ai, Al A2) exists, then a GDD(m, ; Al + 2, Al +
2, Ao+ 2) exists by applying Lemma 3.1 with a TS(m + :2), or, equivalently, a
GDD(m, ;2,2 2). Note from condition (iv) in Theorem 1.2 that A> | 0 except
the case when (Ai, AL A2) = (0,0,0).

Now, to construct all GDDs in each case (Ai,A1,A2) = ( ,hc), it suffices to
construct only the smallest one. The larger GDDs in each case can be simply
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obtained by applying Lemma 3.1 (i) to combine the smallest GDD with a TS(m ™
;63) where a e N, which is equivalent to GDD(m, ;ea, 63, 6a). The diagram

(4,6,2) = (6,8,4) —(8,10,6)

shows that a GDD(m, ;4,6,2) existing from Lemma 4.2 provides the smallest
GDDs of the remaining two cases. These values are the smallest ones because we
have that A2/ 0, Al > Acand A > A2 This completes the proof.

Case (ii) Azis odd. From 3|(Ai-fAL+A2), we regard a1, A and A2as integers mod-
ulo 6. The possible values of (a1, a1, A2) are in {(2,0,1), (4,4,1), (0,0, 3), (4,2,3),
(0,4,5), (2,2,5)}. Similar to Case (i), the following diagrams show that a GDD(m, ;
2,6,1) existing from Lemma 4.2 and a GDD(m, ;4,4 ,1) existing from Lemma 2.13
(v) yield the rest of our desired GDDs and this completes the proof.

(2,6,1) - (4,8,3) - (6,10, 5)

(4,4,1) — (6,6,3) — (8,8,5)

42 m=2 (mod6), =5 (mod6)and m /2

In this section, we consider GDDs when 7L 7*2,m = 2 (mod 6) and =5
(mod 6). The main construction is provided in Theorem 4.6. In details, we give
a method to construct our desired GDDs from certain small GDDs, which are
a GDD(m, ;3,2,1) and a GDD(m, ;5,3,1) obtained in Lemmas 4.4 and 4.5,
respectively.

Lemma 4.4. Letm and be positive integers such thatm 72, m =2 (mod )
and =5 (mod e). There exists a GDD(m, ;3,2,1).
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Proof. We write = e¢h+ 8and = ek + 5 for nonnegative integers h and
k. Let A = {xix2} and B = {yi,22232/4.2s}- First, we let Bi = {{x\,x2y1},
{x\;x2,y2}, [x\,x2,y3}, {xa,ys,y5}, {x2,y4,y5} {yi,y2,y4}, {"2,213,44}, {y1,y3,44},
{on, 1,25}, {y2-y3,45}, {yi, 43,45}} Then, (A, B, Bi) is a GDD(2,5:3,2,1). We
consider the construction in the following four cases.

Case (i) h+ 1< k. By Theorem 2.12, we can decompose the graph 3Km-2(M
A) into a collection of triangles 7I and eleven 1-factors, say rjj and Fp where
i G{1,2},j 6 {1,2,3} and PG{1,2,3,4, 5}. Let Fi be a collection of triangles
defined by

Fr= {6 +Fij,yp+ Fori G{L 2j G{1.2,3},p G{L 2, 3.45}}

Since 1< h+ 1 <k again by Theorem 2.12, we can decompose thegraph
2Fn_5Gvn\ B) into a collection of triangles T2 and e/ + 18 1-factors, say Hi and
Hvqwhere i G{1,2,3,..., a1+ 8},P {1,234, 5} and q G{1,2}. Let F2he a
collection of triangles defined by

Jo= {Xi+H, oy +Ha:i G{L23,.. en+s}p G{L 2345 qG{L2).

Then, (Mm,ivh, T\ T2 T\ T2)is a desired GDD.

Case () h+ 1>kk /1L By Theorem 212, we can decompose the graph
3Km-2(Mm\ A) into a collection of triangles 71 and sk + 11 1-factors, say Fjj
and Fp where i G {1,2},j G{1,2,3} and P G{1,2,3,..., sk + 5}. Let bea
collection of triangles defined by

Fo={Xi+Frjj,yptFp:T1G{L2},] G{L,23}pG{L23,.. 6k+5}}

If k = 0, the construction is done here and (Mm,N5,B\ 7} J-\) is a desired
GDD. Now assume k / 0, then k > 2. Again by Theorem 2.12, we can decompose
the graph 2Kn-s(Nn\ B) into a collection of triangles T2 and 12 1-factors, say
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H%nd H' wherei,q G {1,2} and P G {1,2,3,4,5} Let Ti be a collection of
triangles defined by

oFo —{Xi + Hi,yp+ Hpg :1,q G{1,2},p G{1,2,3,4,5}}.

Hence, (Mm,iVh,Hi 71 72 FI J-2) is a desired GDD.

Case (i) h+ 1=k =L In this case, we let B —{yi, y2,43}. By Theorem 2.9,
each copy of Kg in 3Kg(Mg) can be considered as a maximum packing of order s
having a 1-factor as the leave, say (Mg, Tj,Cj) forj G{1,2 3}. Let F\ and F-i be
collections of triangles defined by

Fi={ij+Fs:j G{L230

and

Fo= {11,283}, {11, 22,03}
By Theorem 2.5, the graph 2K&(NW \ B) can be decomposed into 14 1-factors,
say Hi and Hpqwhere i G{1,2.3,...,8},PG{,2 3} and G {1,2}. Let hea
collection of triangles defined by

Fs={Xi+Hiyp+Hpg:1G{123 ...8},pG {1.2,3},9G{L2}}.

Hence, (Mg, Nn,Tj UT2UTs UB-iU  F3) is a desired GDD.

Case (iv) h+ 1>k =1 Inthis case, we let A = {xi,x2} and B = {d1, 42, 23}»
Let Hi = {{xi,ai2,ili}, {xu x2,y2}, {xi,X2,y3}, {oh, 42,43}, {d1,2/2,43}} be a collec-
tion of triangles. By Theorems 2.9 and 2.5, a copy of Ks in 2Kg(Nn - B) can
be considered as a maximum packing of order 8, (Mg,71,£), having a 1-factor
as the leave; and the other copy can be decomposed into seven 1-factors. Thus,
there are a total of eight 1-factors, denoted by H and Fpg where i, g e {1,2} and
PG{L 23} Let T\ be a collection of triangles defined by

= {Xi+F,yp+ Fpg:ig G{L,2}p G{L 2 3}}.
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Since h+ 1> 2, by Theorem 2.12, we can decompose the graph 3Km-2(Mm\ A)
into a collection of triangles T2 and 17 1-factors, say T/jj and Hp where i G
{1,2},) G{L, 23} and PG {L,23,... ,11}. Let 72 he a collection of triangles
defined by

o= {Xi+wivyptHp:1G{12},j G{,23}pG{L 23, . 11}}
Thus, (Mm,Nn.B\ 71 72 J\ H2) is a desired GDD.

Lemma 4.5. Letm and be positive integers such thatm » 2, m = 2 (mod 6)
and n =5 (mod 6). There exists a GDD(m, :5,3,1).

Proof. We writte = sh+8and = 6fc+ 5 for nonnegative integers h and
k. Let A = {x2,x2} and B = {yi, y2,43,..., y5}. First, we note that the set
1= {{ELx2, 2} ;1 G {1, 2, 3,4,5}} forms a GDD(2, 5;5,0,1), namely {A, B, £1).
By Theorem 2.3, there exists a TS(5;3) on B. Thus, by Lemma 3.1, there exists a
GDD(2,5;5,3,1), namely {A, B, B2). We separate the construction in the following
three cases.

Case (i) h+ 1>k k 7* L By Theorem 2.12, we can decompose the graph
57Tm 2(Mm\ A) into a collection of triangles T\ and Qk + 15 1-factors, say Fjj
and Fp where i1 G{1,2},j G{1,23,45} and PG {1,2,3,... Ik + 5}, Let  he
a collection of triangles defined by

= {x14 FKLyp+ F>i 6 {1,2},] G{L2345,PG{12,3,..., Ok+ 5},

If k = 0, then the construction is done here and (Mm,N5,B2 T\ F\) is a desired
GDD. Assume that k / 0, then k > 2. Again by Theorem 2.12, we can decompose
the graph 3Kek(Nn\ B) into a collection of triangles 72 and 17 1-factors, say
Hi and Hpgwhere i G {1,2}, PG {1,2,3,4,5} and q = {2,3,4}. Let F2be a
collection of triangles defined by

T2={x% Lyp+ Hpq:i G{L2}p G{L2345}0= {234
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Hence, (Mm,ih, 2 7l 72 F\ F2)is a desired GDD.

Case (i) h+ 1>k —1 Applying Theorem 2.12, we can decompose the graph
5Am 2(Mm\ A) in the same way as the previous case and obtain the collections
of triangles 7] and F1. With the same theorem, the graph 3A'6(Ah \ B) can be
decomposed into a collection of triangles T2 and seven 1-factors, say Fiti and Fji2
where 1 G{1.2} and | G{L 2 3,4,5}. Let F2 be a collection of triangles defined
by

Fo={Xi+Fi, 2+ Fie:iG{L 2},] G{1,2,34,5}}
By Theorem 2.7, the graph 3Ks(B) can be decomposed into six 2-factors, say
Cq,Cj,Cg,..., C\. Let ¢ be a collection of triangles defined by

c={yi+C:iG{678..11}}.

Hence, (Mm,Nu,B\ T Ft F\ F\ C)isa desired GDD.

Case (iii) h+ 1<k Since h+ 1> 1 by Theorem 2.12, we can decompose the
graph 5Km-2(Mm\ A) into a collection of triangles 71 and 15 1-factors, say FhJ
and Fp where i G{1,2} and j,p G {1,2,3,4,5}. Let F\ be a collection of triangles
defined by

F\ = {Xi+ Fij.yp+ Fo:i G{L2},j, P G{L 234, 5}

Since 1 < h+ 1<k again by Theorem 2.12, we can decompose the graph
3Ksk(Nn\ B) into a collection of triangles Tt and 6h + 23 1-factors, say Hi and
Hpg where i G{1,2,3... 1ah+8}, PG {12,3,4,5} and q G{2,3.4}. Let F2 he
a collection of triangles defined by

Fo= {Xi +Hiyp+Hpq:i G{1,23,...,sh+8},P G{1, 23,45}, q G{2, 3 4}}.

Hence, (MmNn, 2 71 T2 FI| F2)isa desired GDD. O
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Theorem 4.6. Letrn and  be positive integers such thatm » 2, m = 2 (mod 6)
and =5 (mod 6). Let A).Aj and A2 be nonnegative integers such that Al > A2
and A > A If A = A (mod 2) and 3|(Ai + Aj + A2), flien tliere exists a
GDD(m, ; Al, Aj, A).

Proof. From the assumption, we regard Ai, Aj and A2 as integers modulo 6 and
determine all possible values of (A], Aj, A2). We display all 36 cases in Table 4.1.
Note from condition (iv) in Theorem 1.2 that A2 7* 0 except the cases when

{m, ) {(0,0), (0,3)}.

o =~ w o -_—O

(L3) By B4 6
Table 4.1 All possible values o

= N R P o o o

(Al Al )

It is easy to see that GDDs with (aj.aj.a2) 6 {(k,k.k),(k.k +3k) 1k c
{0,1,2,3,4,5}} exist by applying Theorem 2.3 and Lemma 3.1. For other 24 cases,
we use the right arrow

(AL A A (A+ LA+ LA+ )

to denote that ifa GDD(m, ; A, Aj, A2) exists, then a GDD(m, ' ; A +1, Aj+1. A2+
1) exists by applying Lemma 3.1 with a TS( + ; 1), which is equivalent to a
GDD(n?, :1,1,1); and use the down arrow
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(AL A}, A2)
n
(A, A+ 3 A)

to denote that if a GDD(m, ;Al, AL A2) exists, then a GDD(m, ;A. A + 3. A)
exists by applying Lemma 3.1 with a TS( ; 3), or, equivalently, a GDD(m, ;0, 3, 0).
Now, to construct all GDDs in each case (AI,A'LA2) = (,6,c¢), it suffices to
construct only the smallest one. The larger GDDs in each case can be simply
obtained by applying Lemma 3.1 (i) to combine the smallest GDD with a TS(m +
;6a) where a e N, which is equivalent to GDD(m, ; 6a, 6a, 6a). The following
diagram shows that a GDD(m, ;3,2,1) existing from Lemma 4.4 provides some

of those smallest GDDs. These values are the smallest ones because we have that
A OATAandA " A

(3,21) 3 (43,2 =*(543) = (6,54) =» (1,6,5) =* (8,7, 6)
4 If ff ff f( 4
(3,51) > (462 =>(57233 (684) *(7,95 *(8,10,6)
Moreover, two copies of a GDD(m, ;3,2,1) form a GDD(m, ;6,4,2). The fol-
lowing diagram shows that a GDD(m, ;6, 4, 2) provides some of those smallest

GDDs.
(6,42 *(7,53 *(864) *(975 *(10,86)

K K ff N fl
6,72 * (7,83 *(894) *(910,5 *(10,11, 6)
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Lastly, the following diagram shows that a GDD(m, ; 5, 3,1) existing from Lemma 4.5
yields a GDD(m, ;5,6,1).
(5.3.1)

4
(5.6.1)

Therefore, all of our smallest GDDs for the remaining 24 cases are obtained. Thus,
our construction is completed. I

43 mand =5 (mod 6)

In this section, we consider the existence of GDDs when m and = 5 (mod 6).
The main proof is shown in Theorem 4.9. Similar to the previous section, most of
our desired GDDs in this case can be obtained from one case of them, which is
a GDD(m, ;3,4,2). Lemma 4.7 gives a construction of such GDD when m =
while Lemma 4.8 shows the cases when m 7

Lemma 4.7. Let e apositive integer such that =5 (mod 6). There exists a
GDD( , ;34,2

Proof. We write = 6k + 5 for a nonnegative integer k. The construction is
separated in the following four cases.

Case (i) k = 0. By Theorem 2.7, the graph 4K5(N5) can be decomposed into
eight 2-factors, say Cl, C2,c.,C\ and ¢, and three cycles, namely (3/z/z/ds),
(112 2=d24) and (d12/=/=dzda)e The graph obtained from the union of these 3 cycles
can be decomposed into a collection of triangles T as follows:

T = [{415234a), {42,214,d5), {d1 203,45}, {4+ 212,da}, {4,213 d5}}-



48
Moreover, let ¢ be a collection of triangles defined by
C={xi+Cilie {1,2,3,45}}.

We note that (Ms,N5,Tuc) isa GDD(5,5;0,4,2). Moreover, the graph 3K5(M5)
can be considered as a TS(5; 3), namely (Ms, B). Thus, (Ms,N5T ¢ B)isa
GDD(5, 5,3, 4, 2).

Case (ii) k = 1. Let A = {xi,£2,£3}. By Theorem 2.5, the graph 3Ks(Mn\ A)
can be decomposed into 21 1-factors, say Fi, F2,Fjj and Fp where i,j ¢ {1, 2, 3}
and  {2,3,4,..., 11}. Let Fi be a collection of triangles defined by

Fi={x2t+ Fjj,ypt Fpe + Flnt F2:i,j 6 {1,23}Pc {23,4...., 11}}

Besides, two copies of Kw in the graph AKio(Nn \ {d1}) can be considered as
a TS(10; 2), namely (Nn '\ (yi},Fi). For the other two copies, by Theorem 25,
we can decompose 2/\io(Wi \ {4:}) into 18 1-factors, say Hi, Hj and HPg where
1 G{456,.., 11}, ] G{1,2,3,4}, PG{L,2 3} and q G {1, 2}. Let F2and F3 be
collections of triangles defined by

F2={xi + Ht,Xo+ Hpq:ic {4,56,. 11},PG{L 23}, qG {12}

and
Fa={m+H):jc{l234}}

Lastly, we let B2 = {{xix2,yi}, {x2,xs5,yI}, {xi,£3,41}, {x1,x2,x3}, {x*x2,x3}}
be a collection of triangles on Au {21} Hence, (Mil, Nn,Fi F2 Js B\ £)
i a desired GDD.

Case (i) k = 2. Note that the graph 3Ki7(M\7) can be considered as a
TS(17;3), namely (M\1,B). By Theorem 2.7, the graph «" 17(*17) can be decom-
posed into 32 2-factors, say Cl,c2,¢3,..., Clz and 15 cycles, namely 3 copies
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of cycle in {(delz---Vu), (Fi2leens ---V i), (didenz *¢#711)} and 2 copies of each

cycle in {(4i2/z5 .- yn), (ymy7 ... 216), (4126211 mmmrywi}-
Let c be a collection of triangles defined by ¢ = (xi+ Ci ;16 {L,23,..., 17}}.

Besides, the graph obtained by the union of those specified 15 cycles can be
decomposed into a collection of triangles T as follows;
T = {{d1,42,49}, {d2, 83,210}, {43, 44,411}, **1,{d17,41 28},

{11,42, 40}, {d2,43, 210}, {d3, 24, 411}, {di7,41,43},

{11 32,49}, {d2, 45,210}, {d3, 44,411}, 100, {d17,41 28},

{1, 23 26}, {d2, 24, 27}, {d3,25, 28}, v oo {d17,42, 75},

{$1.23 ye}, {y2y4yT3{y3,yo.ys}, o+, {yil.y2,ys}}-
Hence, (M17,iViz,B ¢ T) is a desired GDD.

Case (iv) k > 3. In this case, we let A = {xi, £2,£:,X,x5} and B =
{d1,42,93, 1,45} From Case (i), there exists a GDD(5,5:3,4,2) on /lull,
namely (H, By Theorem 2.12, the graph 31\Qk(Mn\ A) can be decomposed
into a collection of triangles 71 and 6k + 25 1-factors, say F' and FPa where
16 {1,23,..., 6kl and p,g « {L 23 4,5} Let F\ be a collection of triangles
defined hy

Fr={y + Fhyp+ Fp9:i6 {1.2,... 6fc}p,g G{L, 234 5}

Again, by Theorem 2.12, we can decompose the graph AKsk(Nn\ L?) into a
collection of triangles 72 and 6k + 30 1-factors, say Hi, 7/s, and H' where
i1 6{1,2,3,...,6N}, ,»G{1,2345},tG{23}and gG{4 54,7} LetT2and
7-3 be collectiona of triangles defined by

'R — i+ Hixs+ Hst:iG{1,2,3,....6}, G{1,2,3,4,5},/ G{2,3})

and
Fs = {yp+ HvQ:P G{1,2345},0G {4, 55,7}
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Hence, (Mm,Nn,B\ 71 72UJi 72 *3)isa desired GDD. I

Lemma 4.8. Letm and be positive integers such thatm and = 5 (mod 6).
Then, there exists a GDD(m, ;3,4,2).

Proof. We write m = ¢h+5and = 6fc+ 5 for nonnegative integers h and
k. Let A = {xi,£2,£3,£4,£5} and 5 = {/I}d2,43,44,45} First, we note that
from the proof of Case (i) in Lemma 4.7, there exist a GDD(5, 5,0, 4,2) and a
GDD(5,5;3,4,2) on A B, namely (A,B,Bi) and (A,B,B2), respectively. The
construction of our desired GDD is separated in the following 7 cases.

Case (i) 2< h<korh—0andk > 2 By Theorem 2.12, we can decompose
the graph 4K6k(Nn\ B) into a collection of triangles 71 and 12h + 30 1-factors,
say Hij and Hpg where i G{1,2,3,..., 611+ 5}, G{L,2}, P G{L, 2 3 4,5} and
G {3 4,56} LetJ7 and J-2 be collections of triangles defined by

= {Xi+H;:i6{1,23,..,sh+5}j G{L2}}

and
—{yp+ Hpg :PG{L,2,34,5},qG{3455+}}

Ifh =0, then the proof is done here and (Mm,Nn,B2 7l T\ J-2) is a desired
GDD. Now, assume that h > 2. Again by Theorem 2.12, the graph 3Keh(Mm\ A)
can be decomposed into a collection of triangles 72 and 25 1-factors, say Fij and
Foqwhere i,p G{L,23,4,5},] G{L 23} and q G {4,5}. Let T3 be a collection
of triangles defined by

s={at P+ Ppg:zpG{L 2345} G{12 3},9G{45}}.

Thus, (Mm,Nn, 2 71 72 T8 F2 Ta)isa desired GDD.
Case (i) 1 = h <k By Theorem 2.7, the graph 3Ks(A) can he decomposed
into six 2-factors, say Ce, C7,Cs, ..., C\\. Let ¢ be a collection of triangles defined
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by

c= {Xi+Ci:iG{57.38,. 1

By Theorem 2.12, we can decompose the graph 3A'6(Mn \ A) into a collection
of triangles T\ and 15 1-factors, say Fi and Ry where i,p G {1,2, 34,5} and
046G {2 3}. Let F\ be a collection of triangles defined by

F\ = {Xi + Ft,yp+ Fpo:i,p 6 {1,2,3,4,5}, 9 G {2,3}}.

Again, by Theorem 2.12, we can decompose the graph 4;KsfNn\ B) into a
collection of triangles T. and 12h + 30 1-factors, say Hij and Hipq where i G
{1,2,3,...,6h+ 5}, 6 {1,2}, pG {1,2,3,4,5} and q G {3,4,5,6}. Let T2 and
7-3 be collections of triangles defined by

—{Xi+Hij:ic{l23,.,6h+5}jc{L2}}

and
={yp+ Hpg:p G{12,3,4,5},qG{34506}}

Thus, (Mu, Nn,Bi Uc Um D2UFi uF2 JS) is a desired GDD.

Case (iii) h = 0 and k = L By Theorem 2.7, the graph 3/vs(M5) can be
decomposed into six 2-factors, say ¢6,¢7,Cg,... 1Cu Let ¢ be a collection of
triangles defined by

b= {iFCi:iG{678,.., 1}

By Theorem 2.5, we can decompose the graph 4/\6(All \ B) into 20 1-factors, say
Fij where i G{1,2 34,5} and j G{1,2 3 4}. Let F\ be a collection of triangles
defined by

Ai = {yi+Fij :16{1.2,34,5},j G{1,2,34}}.

Hence, (M5 All,Hi ¢ Fl) is a desired GDD.
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Case (iv) h >k >2orh>2 and k = 0. By Theorem 2.12, we can decompose
the graph 3Ksk(Mm\ A) into a collection of triangles T\ and 12k + 25 1-factors,
say Hij and Hpq where i G{1,2,3,4,5},j G{3,45},PG{L,2,3,..., 6k +5} and
q6 {12} Let Al and J-2 be collections of triangles defined by

Tx = (xi + Hij :i G{L,234,5}] G{34,5}}

and
o = {yp+ Hpq:PG{1,2,3,... 16k+ 5}, 046G {1,2}}.

If k = o, then the proof is done here and (Mm,ivh,B2 T\ J\  A2) is a desired
GDD. Now, assume that k > 2 Again by Theorem 2.12, the graph 4K6k(Nn\ B)
can be decomposed into a collection of triangles T2 and 30 1-factors, say Fjj and
Fo wherei,p 6 {1,2,34,5}, ) 6 {L,2} and q 6 {34,506} Let Tz be a collection
of triangles defined by

o= {xi+Fldyp+F" :i,pe {1,2345}) 6 {12}, 96 {34,5+}}

Hence, (Mm,AT, 71 72 Al ~2 As)isa desired GDD.

Case (v) h > 3 and k = 1L By Theorem 2.7, the graph 3Ks(A) can be
decomposed into six 2-factors, say ¢6,cv, Cs,..., Cu Let ¢ be a collection of
triangles defined by

C={yi+Ci-.ie{6,7,8,...,11}}.

By Theorem 2.5, we can decompose the graph 4/v6(Aii \ B) into 20 1-factors, say
Fjj where i 6 {1,2,3,4,5} and j 6 {1,2,3,4}. Let F\ be a collection of triangles
defined by

A= {y,+ An:iG{L 23,45} G{L 23 4}}

By Theorem 2.12, we can decompose the graph 3A'/i(Mm\ A) into a collection of
triangles 7{ and 37 1-factors, say H’y and Hpqwhere i G {1,2,3,4,5},j G {3,4,5},
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pE {1,2,3,.. 11} and . G{L,2}. Let.-2and . be collections of triangles defined
by

ro= i taij o G{1,2,34,5}; G{3,45}}
and

Fz = {yp3-Hpgipe {1,2,3,..., },9G{L2}}.
Therefore, (MmNu, 8] C 711 FI F2 Fz) isa desired GDD.

Case (vi) » — 2 and « - 1 Note that the graph 3A'7(Mi7) can be considered

as a TS(17;3), namely (mn.8z). By Theorem 2.7, the graph «« v (v a ) Can be
decomposed into 20 2-factors, say ¢ \,c2,cz,..., ¢ n and the three cycles, namely

(Y2425 6T2I8 /1 2111), (il 7 ioil2ieif8ifiiI3Tl6TTe) and (4123 ATASRAIZIA 2I62ls2lio)
Let C be a collection of triangles defined by

c={X+0 126G {1,23,..17}}.

Besides, the graph obtained from the union of above specified three cycles can be
decomposed into a collection of triangles « as follows:

= {{d6,2/7,40}, {7,4s, 20} {48,219,411}' {49, 410,41}, {d10,411, 42},

{d11,41,43}, {d1, 42,44}, {z2,43,15}, {ds, 24 26}, {d4, 25, 47}, {ds, 26, 28}}»

Hence, (MI7,n1i 8 UCUT) is a desired GDD.

Case (vii) » = land « - 0. By Theorem 2.7, the graph s« scs) can be
decomposed into six 2-factors, say ce, 07,(:5,..., c\. Let C be a collection of
triangles defined by

c=(xi+cii G{6,7,8,.., 1}}

By Theorem 2.5, we can decompose the graph s« e(m v \ H) into 15 1-factors,
say Frand rpq Where i p e {1,2,3,4,5} and  G{2,3}. Let J7 be a collection of
triangles defined by

P 1= {xt+Fi,yp+Fptq Cilp G{1,2,3,4,5},q G{2,3}}
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Hence, (Mil, N5,B\ ¢ uJi) is a desired GDD. I

Theorem 4.9. Letm and be positive integers such that m and =5 (mod 6).
Let Al, Aj and A2 ke nonnegative integers such that Al > A2 and Aj > A2 1f X2= 0
(mod 2) and A + Aj+ A2= 0 (mod 3). then there exists a GDD(m. ; Al Aj. A2).

Proof. We regard Ai, ALand A2 as integers modulo 6 and examine the necessary
conditions to see all possible values of (Ai, Aj,A2). We display them in Table 4.2.

Ao (M 1)
0 (00) (03) (12 (15 (24) (45)
(33) (30) (1) (1) (42 (54)
2 (0) (04) (13) (220 (5 (34)
(L0) @0) @31 (55 (2 (43)
4 (.2 (05 @1 (@14 (3 (39
(200 G0) (44 @1 (32 (53)

Table 411 All possible values of (A. A f)

Note from condition (iv) in Theorem 1.2 that A2 7 0 except the cases when
(Ai, A)) € {(0,0), (03), (3,0), (3,3)}. Since Avis even, we observe that if Ai-Ao = 0
or 3 (mod 6) and Aj —A2=0or 3 (mod 6), then we can obtain our desired GDDs
by applying Lemma 3.1 to combine a TS(m + ;A2)1a TS(m; A - A2) and a
TS( ; Aj - A2), which exist from Theorem 2.3. Thus, the following cases are done:

() Aj,Aj=00r3 (mod6),A2=0 (mod 6),
(i) Ai,Aj=20r5 (mod 6),A2= 2 (mod 6) and
(i) Ai,Aj=1or4 (mod 6). A2=4 (mod 6).

For the remaining of our desired GDDs, it suffices to construct only the smallest

values of possible (Aj. Aj, A2) in each case hecause the larger ones in each case can
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be simply obtained by applying Lemma 3.1 (i) to combine the smallest GDD with
a TS(m + ;6a) where a GN, which is equivalent to GDD(m, ;6a, 6a, 6a). We
use the curve arrow

AR (Ah—f— 2 M+ )

to denote that if a GDD(m, ;Al, AL A2) exists, then a GDD(m, ;Al + 2A] +
2, M+ 2) exists by applying Lemma 3.1 with a TS(m + ;2), or, equivalently, a
GDD(m, ;2 2,2). Also, we use the down arrow

(AI, A}, A2)

(ALA +3 )
to denote that if a GDD(m, ; Al, Aj, A2) exists, then a GDD(m, ;Al: A + 3, A2)
exists. Lastly, we use the long right arrow
(A, ALA2) => (A + 3 AL A

to denote that if a GDD(m, ; Al, Aj, A2) exists, then a GDD(m, ; Al +3, A}, A?) ex-
ists by applying Lemma 3.1 with a TS(m; 3), or, equivalently, a GDD(m, ;3,0,0).

Therefore, the following diagram shows that a GDD(m, ; 3,4, 2) obtained from
Lemma 4.8 yields all of the smallest GDDs for the remaining cases. These values
are the smallest ones because we have that A2 7*0. Al > A2 and A > A2 This
completes the proof.

(3,4.2) ==>(642)  (56.4) ==>(8.6,4)  (1,8,6) =* (10,8,6)
If
(3,7.2) ==>(6,7.2) (59,4) ==>(894) (7,11,6) =>+(10.11,6)
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