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CHAPTER 1

INTRODUCTION

Recently, the stationary time series models with discrete marginal distribu-
tions attract attentions from researchers in many fields. These models are found
to be superior for count data in many applications such as the number of road
accidents [9], the number of insurance claim counts [16], the number of stock
transactions [8] and the number of submissions to animal health laboratories [5].
The model was first introduced by McKenzie [10] as the first order non-negative
integer-valued autoregressive model (INAR(1)) by applying the binomial thinning
operator introduced in Steutel and van Harn [15]. In 1988, Alzaid and Al-Osh
[3] constructed the integer-valued time series model with Poisson marginal. They
applied the model to count data time series. However, the Poisson marginal has
equidispersion. This restriction might not be suitable to non-equidispersed data
[1]. Therefore, alternative distributions have been explored in literatures such as
generalized Poisson, geometric and Poisson-Lindley distribution. The generalized
Poisson model introduced by Alzaid and Al-Osh [4] as an extension of the Pois-
son distribution of accommodate non-equidispersed data by McKenzie and et al
[13]. Recently, Poisson-Lindley first order integer-valued autoregressive model was
introduced by Mohammadpour and Shirozhan [5]. The model has the Poisson-
Lindley marginal distribution introduced in Sankaran [12]. This distribution be-
longs to a compound Poisson family which is obtained from Poisson distribution
when its parameter follows a Lindley distribution. Later in 2018, Rostami and
Roozegar [9] used the distribution to introduce the INAR(1) model with Poisson-
Lindley innovations based on the binomial and the negative binomial thinning
operators. Integer-valued autoregressive models has been applied in many appli-

cations with different discrete marginal distributions such as Poisson, geometric,



negative binomial and Poisson-Lindley distribution. In 2015, Bhati and Qadri [7]
introduced a two-parameter generalized Poisson-Lindley distribution with param-
eter  and (8 which are obtained from a mixed Poisson distribution when its mixing
parameters follow a two-parameter Lindley distribution introduced in Shanker and
Sharma [14]. This distribution is unimodal and over-dispersed. The distribution is
more flexible than the Poisson-Lindley distribution. The two-parameter general-
ized Poisson-Lindley distribution is stated as follows. A random variable X is said
to have a two-parameter generalized Poisson-Lindley distribution with parameter

0 and 8, denoted as X ~ NGPL(0, ), if

62 Bz +1)

P X=2)= 14 ————= =0,1,... and 6,5 > 0.
(X =) (0+6)(1+9)x+1( e v=01... and 0,52
.9=0.‘05,\ﬁ=A0.l\] |9=0;05,E=A0.5 | | 9=005.5=1 |
e‘=0i1,ﬁ‘=(t).1 | | 9=6.1,é=6.5 | | 6—01.6-1
e‘=0’.‘5,/3‘=(;.1 | | 9:6.5,5:6.5 | | e=.‘0.5,'3=‘1 ’
| 6=1,8=01 | | 9=1,8=05 | | 6=1,=1 y

Figure 1.1: Probability density curves of the two-parameter generalized Poisson-
Lindley distribution for different values of 6 and



For different values of two parameters, the probability function is evaluated
and presented in Figure 1.1. From the figure, we can see that the distribution
condenses and the right tail approaches to zero at a faster rate than the Poisson-
Lindley distribution when 6 increases for any fixed . Therefore, the distribution
is suitable for data having the right tail approaches to zero at a faster rate than
the Poisson-Lindley distribution. Such data sets are commonly found in insurance
business [7]. Therefore, the two-parameter generalized Poisson-Lindley distribu-
tion attracts attentions from many researchers. Development of the family of the

Poisson-Lindley first order integer-valued autoregressive models are presented in

Figure 1.2.
Y e
Lindley Two-parameter
generalized Lindley
(D.V. Lindley, 1958) (Rama S. , Shambhu S. and Ravi S., 2013)
i ) I
UH ~ a .
. . Two-parameter generalized
Bolsseoptindisy Poisson-Lindley
oo ) g (Deepesh B., D V S Sastry and PZ Maha Qadri, 2015)
‘ Y Our work \4
Poisson-Lindley Two-parameter generalized
el i) Poisson-Lindley INAR(1)

Figure 1.2: Development of the family of the Poisson-Lindley first order integer-valued
autoregressive models

In this thesis, we apply the two-parameter generalized Poisson-Lindley to
construct four new autoregressive models : (1) the first order integer-valued au-
toregressive models with a two-parameter generalized Poisson-Lindley distribution

based on the binomial thinning operator, (2) the first order integer-valued au-



toregressive models with a two-parameter generalized Poisson-Lindley distribution
based on the negative binomial thinning operator, (3) the first order integer-valued
autoregressive model with a two-parameter generalized Poisson-Lindley innovation
based on the binomial thinning operator and (4) the first order integer-valued au-
toregressive model with a two-parameter generalized Poisson-Lindley innovation
based on the negative binomial thinning operator. The structure of these models

are presented in Figure 1.3.

with a two-parameter generalized with a two-parameter generalized

Poisson-Lindley distribution. Poisson-Lindley innovation.

" S ENGET SN

Based on Based on negative Based on Based on
binomial thinning binomial thinning binomial thinning negative binomial

operator operator operator thinning operator

BNLINAR(1) NNLINAR(1) NLINARB (1) NLINARN (1)
Section 3.1 Section 3.2 Section 4.1 Section 4.2

Figure 1.3: The first order integer-valued autoregressive models

In Chapter 3, we construct two first order integer-valued autoregressive mod-
els with a two-parameter generalized Poisson-Lindley distributions based on two
thinning operators : (1) the binomial thinning operator, called the BNLINAR(1)
model and (2) the negative binomial thinning operator, called the NNLINAR(1)
model. The two models are discussed in Section 3.1 and Section 3.2, respectively.
In this chapter, we derive some probabilistic properties of the constructed models

such as moments and parameter estimations of the unknown parameters in the



model by using the conditional least square estimator (CLS) and the Yule-Walker
estimator (YW). These estimators are compared via Monte Carlo simulations in
terms of their means and variances. Moreover, we discuss some possible applica-

tions of the BNLINAR(1) model and the NNLINAR(1) model for two real count

time series.

In Chapter 4, we construct two first order integer-valued autoregressive mod-
els with a two-parameter generalized Poisson-Lindley innovations based on two
thinning operators : (1) the binomial thinning operator, called the NLINARB(1)
model and (2) the negative binomial thinning operator, called the NLINARN(1)
model. The two models are discussed in Section 4.1 and Section 4.2, respectively.
In this chapter, we derive some probabilistic properties of the constructed models
such as moments and parameter estimations of the unknown parameters in the
model by using the conditional least square estimator and the Yule-Walker esti-
mator. These estimators are compared via Monte Carlo simulations in terms of
their means and variances. Moreover, we discuss some possible applications of the
NLINARB(1) model and the NLINARN(1) model for two real count time series.
Finally, we discuss some possible applications of the NLINARB(1) model and the
NLINARN(1) model for two real count time series. Conclusions of our study are

provided in Chapter 5.



CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, we recall some important definitions and theorems that will
be used repeatedly throughout this thesis. We start with the definitions of some

necessary distributions and their properties.
2.1 Distribution

In this part, we discuss some background knowledge in probability theory
such as distributions and moments. Since our work will cover only discrete distri-

butions, all properties will be discussed in the setting of discrete random variables.

Definition 2.1.1. Let X be a discrete random variable with space Rx and prob-
ability mass function f(-). The expectation of X, denoted as E(X), is defined
by

E(X)= ) zf(x)

TERX
Definition 2.1.2. Let X be a discrete random variable with space Rx. The

variance of X, denoetd as Var(X), is defined by

Definition 2.1.3. Let X be a discrete random variable with space Ry. The

probability generating function of X, denoted as ®x(-), is defined by

Oy (s)=E(s*)= Y s"f().

r€ERx

for s € R.



Definition 2.1.4. Let X be a discrete random variable with space Rx. The

moment generating function of X, denoted as Mx(-), is defined by

Mx(s) = E(e”) = > e f(x).

TERX
for s € R.

Definition 2.1.5. A random variable X is said to have the Bernoulli distribution

with parameter p (0 < p < 1), denoted as X ~ Ber(p), if

for x € {0,1,...}, where ¢ = 1 — p.

Theorem 2.1.1. The Bernoulli random variable X with parameter p has the

following properties

1. E(X) =p,

2. Var(X) = pq,

3. &x(s) =q+ ps,
4. Mx(s) = q + pe®.

Definition 2.1.6. A random variable X is said to have the binomial distribution

with parameters n (n € N) and p (0 < p < 1), denoted as X ~ Bi(n,p), if

for x € {0,1,...,n}, where g =1—p.



Theorem 2.1.2. The binomial random variable X with parameters n and p has

the following properties:

1. B(X) = np,

2. Var(X) = npq,

3. @x(s) = (¢ +ps)",

4. Mx(s) = (q + pe®)".
Definition 2.1.7. A random variable X is said to have the geometric distribution
with parameter p (0 < p < 1), denoted as X ~ Geo(p), if

P(X =1z) = ¢°p,

for x € {0,1,...}, where ¢ = 1 — p.

Theorem 2.1.3. The geometric random variable X with parameter p has the

following properties:

q
1. E(X)=-,
(X)

4q
2. Var(X) = el

P 1
3. Px(s) = ———, for |s] < —,
(5) = 2 for o <

4. Mx(S) =

1
P , for |s| < =,
1 —qes q

where ¢ =1 — p.



Definition 2.1.8. A random variable X is said to have the negative binomial
distribution with parameters r (r € N) and p (0 < p < 1), denoted as X ~

NB(r,p), if
r+xz—1\ ., ,
P(XZJE)Z( )qp,
T
for x € {0,1,...}, where ¢ = 1 — p.

Theorem 2.1.4. The negative binomial random variable X with parameters r

and p has the following properties

rq
1. B(X)="2
(X) p
rq
2. Var(X) = —,
(X) e
P\ 1
3. Px(s) = (1 —qs) , for |s] < 7
P, 1
4. Mx(s) = (1—qes) , for |s] < A

where g =1 — p.

Definition 2.1.9. (Bhati and Qadri [7]). A random variable X is said to have the
two-parameter generalized Poisson-Lindley distribution with parameters 8 and £,

denoted as X ~ NGPL(0, ), if

L 0? Blx+1)
PX =z) = 0+ B)(1+ )=+ (1+ 1+6 >

for x € {0,1,...} and 0, 5 > 0.

Theorem 2.1.5. (Bhati and Qadri [7]). Properties of the two-parameter gen-
eralized Poisson-Lindley random variable X with parameters g and 6 defined in

Definition 2.1.9 are as follows.

28+
]_. E(X)—m,
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2621+ 0) + 601+ 0) + pO(4 + 30
2. Var(X) = ( ) 02((5+9))2 ( )7

PP+ O—s+1)
3. Ox(s) = (ﬁ—l—&)(&—s—l—l)Q’forSER’
?(B+0—e*+1)
(B+0)(0—e +1)

4. Mx(s) = 5, for s € R.

Definition 2.1.10. Let X be a discrete random variable on space Rx. Then X

has a degenerate distribution with parameter r if X is degenerated at r. That is

1, for z=r

0, for xz#r.

Definition 2.1.11. We say that the distribution function F(-) is a generalized

mixture of the distribution functions F(-;1), F(-;2),... if

F(z) = wF(z;d),

i>1

for all x € R where wy, ws, ... are real numbers such that Z w; = 1, Z |w;| < o0
i>1 i>1
and for some index i, w; < 0.

2.2 Conditional distribution

In this part, we discuss the definitions and properties of conditional distri-

bution, conditional mean and conditional variance.

Definition 2.2.1. Let X and Y be two random variables with joint density f(z,y)
and marginals fi(x) and f2(y), respectively. The conditional probability density

function g of X, given (the event) Y = y, is defined as

~ flz,y)
g(zly) = AOR
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where fa(y) > 0. Similary, the conditional probability density function h of X,

given (the event) X = z, is defined as

f(z,y)
fi(z)

h(yle) =

where fi(x) > 0.

Definition 2.2.2. Let X and Y be discrete random variables with space Rx. The

conditional expectation of X, given that ¥ =y, is

EX|Y =y)= > afxy(zly).

rERx

Definition 2.2.3. Let X and Y be discrete random variables with space Rx. The

conditional variance of X, given that ¥ =y, is
Var(X[Y = y) = B(X*|Y = y) — (B(X]Y =y))".

Theorem 2.2.1. Properties of conditional expectation and conditional variance

are as follows.

1. E(alY)=aif a € R,
2. B(X) = B(E(X|Y),
3. E(X|Y)=FE(X)if X and Y are independent,

4. Var(X) = E(Var(X|Y)) + Var(E(X]|Y)).

2.3 Time series and stationary process

In this part, we state some important the concepts of time series that are

necessary such as stationarity and autocorrelation function.
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Definition 2.3.1. Time series {Z;;t € N} is a series of data points indexed in
{1,2,...}. If Z; has an integer value, the time series is called the integer-valued

time series.

Definition 2.3.2. A process {Z;;t € N} is said to be the first-order stationary if

FZt1 (Zl) = FZtlJ,-k (Zl)

any t; € N and k € Z. A process {Z;;t € N} is said to be the second-order

stationary if

FZt17Zt2 (Zlv 22) = FZt1+k,t2+k (21, Z2>

any t1,to € Nand k € Z. A process {Z;;t € N} is said to be stationary if

FthZth-ths (Zb B2 e 728) = FZt1+k7Zt2+k7~--’Zt5+k (217 LT 7Z8>

for any finite set of indices {t1,%s,...,ts} C N with s € N, and k € Z.

Definition 2.3.3. For a given real-valued process {Z;;t € N}, the mean function

of the process is

e = E(Zy).

The variance function of the process is

O—tQ == E(Zt - Iut>2.

The covariance function of the between Z;, and Z;, is

P)/(tht?) = COU(Ztu ZtQ) = E[(Ztl - Ht1)<Zt2 - ,th)]'
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The correlation function between Z;, and Z,, is

p(t t ) — COU(ZtU Ztl) _ ’V(tlat2>
b VVar(Z,)\/Var(Z,) O\ Opy

For a stationary process, the mean function and the variance function are constant.
That is g = p and 62 = o, respectively. Then, the autocovariance function, vy,

of Z; and Z;,, for any k£ € N is defined as

The corresponding autocorrelation function, py, is

pr = p(t —k,t) = p(t,t + k).

2.4 Integer-valued time series model

In this part, we give the definition of the first order integer-valued autore-
gressive model (INAR(1)). Since the integer-valued time series discussed in our
study are based on the binomial thinning operator and the negative binomial thin-
ning operator. We first discuss the definitions and properties of the two thinning

operators.

Definition 2.4.1. The binomial thinning operator, ao, is defined as
X
aoX:ZI/VZ-, ae (0,1), (2.1)
i=1

where X is a non negative integer-valued random variable and {WV;};>; is a se-
quence of independent and identically distributed random variables with Ber(«)

distribution and is independent of X.
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Theorem 2.4.1. (Steutel and van Harn [15]). The properties of the binomial

thinning operator defined in Definition 2.4.1 are as follows.

1. E(ao X)=aE(X),

2. Var(ao X) = a(l — a)E(X) + o*Var(X),
3. Ppox(s) = Px(l —a+ as) for s € R,

4. Maox(s) = Mx(1 —a+ ae®) for s € R.

Definition 2.4.2. The negative binomial thinning operator, ax, is defined as

X
axX=> "7, ac(01), (2.2)
=1

where X is a non negative integer-valued random variable and {Z;},>1 is a se-

quence of independent and identically distributed random variables with Geo(=)

distribution and is independent of X.

Theorem 2.4.2. (Ristic and Nastic [6]). The properties of the negative binomial

thinning operator defined in Definition 2.4.2 are as follows.

1. B(ax X)=aFE(X),
2. Var(ax X) = a(l — a)E(X) + o*Var(X),
3. Poux(s) =Px((1+a—as)™!) for s €RR,

4. Mpix(s) = Mx((14+ a — ae®)™t) for s € R.
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Definition 2.4.3. The first order integer-valued autoregressive model based on

the binomial thinning operator is defined as

Xt = (O Xt—l + €, (23)

where the binomial thinning «o is defined in Definition 2.4.1 and the innovation
process {€:}+>1 is a sequence of independent and identically distributed (i.i.d.)

random variables such that o o X;_; and ¢; are independent.

Definition 2.4.4. The first order integer-valued autoregressive model based on

the negative binomial thinning operator is defined as

Xt = (X * Xt—l + Et, (24)

where the negative binomial thinning asx is defined in Definition 2.4.2 and the
innovation process {; };>1 is a sequence of independent and identically distributed

(i.i.d.) random variables such that o * X;_; and ¢, are independent.

Definition 2.4.5. The integer-valued time series {X;;t € N} is said to be sta-

tionary if

Fth,XQ,...,XtS (951, Loy ... ,iUs) = FXt1+k,Xt2+k,...,th+k(%’1, Loy ... ,ﬂUs)

for any finite set of indices {t1,ts,...,ts} C N with s € N, and k € Z.

2.5 Parameter estimation

In this part, we discussion two Parameter estimations for INAR(1) model

which are the conditional least squares estimators and the Yule-Walker estimators.
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Definition 2.5.1. The conditional least squares estimators of the parameters are

obtained by minimizing the function

Qn=> (X; - B(X)|X;-1))%,

where n > 2 and E(X;|X;_1) is the conditional mean of Xj.

Definition 2.5.2. The Yule-Walker equation for INAR(1) defined as

aj(0) = 4(1)

1
ol

< S e
where J(k) = (X — X)( X — X) and X = — g X; is the sample mean.
n
t=1

S|

t=1



CHAPTER III

INAR(1) MODEL WITH THE
TWO-PARAMETER GENERALIZED

POISSON-LINDLEY DISTRIBUTION

In this chapter, we construct two first order integer-valued autoregressive
models with a two-parameter generalized Poisson-Lindley distribution based on
(1) the binomial thinning operator and (2) the negative binomial thinning opera-
tor. Moreover, probabilistic properties of the constructed models and parameter

estimation are demonstrated.

3.1 Construction of the first order integer-valued autoregressive mod-
els with the two-parameter generalized Poisson-Lindley distribu-

tion based on the binomial thinning operator (BNLINAR(1))

In this section, we construct the first order integer-valued autoregressive
models with two-parameter generalized Poisson-Lindley distribution based on the
binomial thinning operator model (BNLINAR(1)). Moreover, we investigate many
properties of the constructed model such as moments, parameter estimations and

perform some numerical studies.

Definition 3.1.1. The first order integer-valued autoregressive model with two-
parameter generalized Poisson-Lindley distribution based on the binomial thinning

operator (BNLINAR(1)) {X;}:>1 is defined as
Xt = o Xt—l + €¢, (31)

where the binomial thinning «o is defined in Definition 2.4.1, { X;};>; is a station-
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ary process with the NGPL(0, 3) distribution and {¢ };>1 is a sequence of i.i.d.

random variables such that oo X;_; and ¢; are independent.

Theorem 3.1.1. The innovation process {€;};>; has the probability generating

function

(B+60—s+1)0+a(l—s))?

051120+ 81a(l—s) (32)

D, (s) =

for s € R.

Proof. Since {X;}:>1 is a stationary process with NGPL(0,3), from Theorem

2.4.1(5),

Daox,i(5) = B(s@oX)) = by, (1 - a + as).

From (3.1) and the property that «o X; 1 and ¢, are independent for s € R,

Dy, (s) = B(s*)
= E(SaoXt,1+6t)
_ E(SQOXFlSet)
— B(stoXe)E(s%)
= Puox,_, (5)Pc,(5)

=dx, (1 — a+ as)P,(s).
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From Theorem 2.1.5(3), the innovation process {¢;};>1 has the probability gener-

ating function (pgf)

®x,(s)
Pals) = Py, (1 —a+ as)
PB+0—s+1) (B+0)(0—1+a—as+1)?
B+0)(O—s+1)2 P2B+0—-1+a—as+1)
(B+60—s+1)(0+a—as)?
@ —s+1)2(B+0+a—as)

=
Lemma 3.1.1. The generalized-imixture
a?0(0 — B) +0(0+ ) +2a(5% = 6%)] 6 6 \*
9le) = G vt (-155)
_(5+9T162—a))29i;fa(1_9i;fa)w (3:3)

is a probability mass function where 0 < o < 1,0 > 1, and > 0.

Proof. Let
o — 00 = P) +6(6 + B) + 2a(5” — 6°)
b (B+0(1—a))? ’
b Bl1=0)
+0(1—a)
a3?
and wy = —

(B+0(1—a))*



20

and let

0 0 \*
no) =15 (1 175)

g2(2) = (@ +1) (%) (1- %)

(m):ﬂ (1_M)x
93 0+ 3+« 0+B+a)

Then wy + we + w3 = 1, g1(+) is the probability mass function of Geo(Hg) g2(+)

is the probability mass function of NB(2, ; +0) and gs(-) is the probability mass

function of Geo( Bi;fa). Thus,

Zg( —w1291 +w2292 —|—w3293
=0

Following Mohammadpour and Shirozhan [5], we next show that g(x) > 0 for

x €{0,1,...} and the function g(x) can be written as

o0 = (155) 7®,

where

r(z) = w (%) I (%) (el (9 5 a) (eaf;f;)w

First, we show that (r(z))’ > 0 for z € {0,1,...}.

Since w3 < 0 and In (M) <0,
0+ 58+«

(r(@)) = w, (%)2 o (9i;f a) (eaf;flé)xln <6a—i(-15+‘4‘9)06)

> 0.

Then, (r(z)) > 0 for z € {0,1,...}.
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Moreover,

. s 0 0\’ 0+8 a(1+90) \
Jhg (=) = Jie, |wn (m)“"(v) W”““?’(mma) (9+B+a>
0 0

2
=1l —_— —_— 1
Tim oy (1 0)-1—’602 (1+8) (z+1)

+

Since 6 > 1, we can show that

0 o\’ 0+ 8
r(0) = (m) kG (m) s (m)

w1 Wo
> — + = +w,

- 2 4
and
wy | Wy _ a?0(0 — B) +0(0 + B) + 2a(5* — 6°) Bl —a)
PR 2B+ 0 —a)? TIB 0 —a)
a2
(6+6(1=a))?
(- a)(B* 44570 + BO(1 — a)(2 — a(f — 2) 4+ 30) +26°(1 — a)?)
B 41 —a+B)(B+0—ab)?
> 0.
Therefore, g(-) is a probability mass function. O

Theorem 3.1.2. The innovation sequence {¢ };>; of the BNLINAR(1) model

defined by (3.1) process has the probability mass function

where h(-) is the degenerate distribution function at zero defined in Definition

2.1.10 and g(-) is the probability mass function defined in Lemma 3.1.1.
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Proof. From Theorem 3.1.1, the generating function of ¢ is

(B+0—s+1)0+a(l —s))?

) = T 120+ B all —s))

The function can be written in terms of a weighted sum of three probability

generating functions as follows.

O.(s) =a+ (1 —a)[wiP1(s) + wePa(s) + wzPs(s)],

where the weights are

a?0(0 — B) + 0(0 + B) + 2a(5% — 6?)

e (B+01—-a))? !
B0
B+0(1—a)
a3?
and wy = —

(B+0(1=a))*

and the probability generating functions are

06 = Ty
92
Dy(s) = P
and Ds(s) = (6+9)

T Bt0+a(l—s)

respectively. We can see that wy + wq + w3 = 1. Moreover, ®(-) is the probability

0

r)> P2() is the probability generating function of

generating function of Geo(
NB(2, 1%9) and ®3(-) is the probability generating function of Geo(%). Thus,

the probability density function of € can be written as

fe(x) = ah(z) + (1 — a)g(x),
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where h(-) is the degenerate distribution function at zero and g¢(-) is the probability

mass function defined in Lemma 3.1.1. ]
Definition 3.1.2. [15] A discrete distribution with the probability generating
function ® is called self-decomposable if

O(2)=P(1 —a+az)®,(2) ;ae€(0,1).

with &, the probability generating function.

Corollary 3.1.1. The two-parameter generalized Poisson-Lindley distribution is

self-decomposable.

Proof. From Theorem 3.1.2, the mass function of € is

where g(-) is the probability mass function defined in Lemma 3.1.1 and A(-) is
the degenerate distribution function at zero. Thus, the two-parameter generalized

Poisson-Lindley distribution is self-decomposable defined in Definition 3.1.2  [J

Theorem 3.1.3. The process {X;};>1 defined in (3.1) can be rewritten as

aoX; 1, w.p. «,
Xt -

aoX; 1 +¢6, wp 1—a,

where w.p. stands for “with probability”.

Thus, we can write the process X; as

Xt = OdOXt_l + [th, (34)
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where H; has the probability mass function g(-) defined in Lemma 3.1.1, I, is the

Bernoulli with parameter o and I; H; is independent of X, , for £ > 1.

Proof. From Theorem 3.1.2 and the process (3.1), the probability mass function

of eis

fe(x) = ah(z) + (1 — a)g(z)

where h(+) is the degenerate distribution function at zero and g(+) is the probability
mass function defined in Lemma 3.1.1. Then, the mass function of ¢ can be

rewritten as

Q, for =0
fe(z) =
(I —a)g(x), for z#0.

Let I; is the Bernoulli with parameter o and H; has the probability mass function

g(+) defined in Lemma 3.1.1. Thus, we can write X; as
Xy =aoXy 1 + LiHy,

where I, H; is independent of X;_j for £ > 1. O

Remark 3.1.1. The marginal distribution of the model (3.4) based on the bi-
nomial thinning operator can be expressed in terms of the innovation sequence
{Ith} as

Xt é Z CYj O([t,th,j),
7=0

d . . . .
where “= 7 means equal in distribution.



25

Proof. Note that

Xy =ao0X, 1+ 1,H,
=aolaoX; o+ I 1Hy 1)+ I, H;
=ao(laoX; o)+ ao(l,_1Hy 1)+ I,H,
=ao(ao(aoX; 3+ I, oHy 5)) + ao(l;_1Hy 1) + I H;

=a*oX; 3+a’ol,_yH, 9 +aol,_H,_ |+ I,H,. (3.5)

é Zaj O(It—th—j) i ]th

J=1

é Z Oé] O(-[t—th—j)a
=0
where we use (3.4) to obtain (3.5).
O
Theorem 3.1.4. The autocovariance function, v, (k > 1), of the BNLINAR(1)
model {X;};>; defined in Definition 3.1.1 is given by

vi = Cov(X, Xi—x) = oFyp, (3.6)

where g is the variance of X;.
Consequently, the autocorrelation function of order k, px, of the BNLINAR(1)

model is
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Proof. From (3.4) and the property that I, H; and X;_j are independent, for & > 1,

v = Cov( Xy, Xi—g)
=Cov(ao X, 1+ I;H;, X; )
= Cov(aoX;_ 1, Xy k) + Cov(IHy, Xy )
= aCov(Xy_1, X k)
=aCov(aoXy o+ I, 1Hy 1, X, k)
= o 'Cov(ao Xy_i, Xi_p) (3.8)

k
= a 7.

By applying (3.4) recursively to obtain (3.8). Consequently, the correlation func-

tion py can be written as

]

Remark 3.1.2. From (3.7), the autocorrelation function declines exponentially

as k converges to infinity.

3.1.1 Probabilistic properties of the BNLINAR(1) model

In this section, we investigate many conditional properties such as con-
ditional expectation and conditional variance of the constructed model. Since
{Xi}i>1 is a stationary process with the NGPL(6, $). From Theorem 2.1.5, ex-

pectation and variance of X, for the BNLINAR(1) model are given respectively
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E(Xy) = %, (3.9)
Var(X,) - 20%(1+0) + 6%(1 +0) +69(4+39)' (3.10)

(3 +0)
Theorem 3.1.5. The expectation of H; defined in (3.4) is

26 + 6

Proof. From (3.4), since {X;}+>1 is a stationary process with the NGPL(6, §) and

the fact that I, and H; are independent,

B(X;) = E(a0X,_, + I,H,)
— aE(X,_1) + E(I,) E(H,)

— aBE(X)) + E(L)E(Hy).

Then (1 — a)E(X;) = E(I)E(H;). Since E(I;) =1 — «,

E(Hy) = E(Xy).

]

Theorem 3.1.6. The expectation of H? and variance of I; H; defined in (3.4) are

02(2 +0) + B%(6 — 2 + 20) + BI(8 + 30)
0*(5 +0)? ’

1. E(H?) =

2. Var(rn) - L= CTL Lt O PR o 1O LA A0 2 50)

respectively.
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Proof. From Theorem 2.4.1(4), the stationary property of {X;};>1 and the fact

that a o X;_1 and I, H; are independent,

Var(X;) = Var(ao X,y + L,H,)
= Var(ao X, 1) + Var(IH,)
=a(l —a)BE(X,_1) +a*Var(X;_1) + Var(I,H,)
=a(l —a)E(X;_1) + *Var(X;) + E(IZH?) — (E(I.Hy))?
=a(l — a)E(X;—1) + &*Var(X;) + E(I})E(HY) — (E(L,)E(Hy))?
=a(l —a)E(X;) + ®Var(Xy) + (1 — a)E(H}) — (1 — «)*(E(H,))*.
(3.11)

From (3.9) - (3.11) and Theorem 3.1.5, we have

Var(X;) —a(l — a)E(X;) — o*Var(X,) + (1 — «)*(E(H,))?
(1-a)
02(2 + 0) + B%(6 — 2a + 20) + BO(8 + 30)

= e . (3.12)

B(17) =

Then we consider the variance of I; H; and the fact that I, and H; are independent,

Va?”([th) = EUEHE) B <E<Ith))2
= E(I})E(H?) — (E(I,)E(H,))?

= (1= a)E(H}) — (1 — o) (E(H,))*, (3.13)

we substitute F(H?) and E(H;) defined in (3.12) and Theorem 3.1.5 respectively,

we have

Var(I.Hy) = %(252(1 +a+0)+0*(1+a+0)+ B0(4+ 4a + 30)).
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Theorem 3.1.7. The (k+1)-step ahead conditional expectation of the BN LIN AR(1)

model is

E(Xik| X1 = 2) = oo + (1 — o) (%) |

for x € {0,1,2,...}.
Proof.

E(Xik|Xi1 =)
= FE(ao Xypp1+ LpuHy 1| X4y = )

=FE(ao (o Xyppoo+ Lppo1 Hippor) + LipnHypn| X1 = ),
by using (3.4) to obtain the last equality. Applying (3.4) to {X;}:>1 recursively,

E(Xt+k|Xt71 = l’)

= E(O&kJrl @) Xt,1 + ak o Ith + Oékil o It+1Ht+1 + -+ It+kHt+k|Xt71 = I‘)
k
= E(OékJrl © th1|th1 = $) + Z E(Oéh © [t+k7th+k7h‘Xt—1 = x)

h=0
k
= Ozk+15L‘ + Z OlhE(]t+k_th+k_h) (314)
h=0
1 — k+1
— of g 4 <—O‘) E(ILH,),
-«

where we use Theorem 2.4.1(3) to obtain (3.14).

Then, we substitute F(H;) defined in Theorem 3.1.5.



30

Remark 3.1.3. The conditional expectation E(X; x| X;—1 = x) converges to the
26+ 6

unconditional expectation ————— as k converges to infinity.

6(8+0)

Proof. Since 0 < a0 < 1,

28+ 0
) o T k+1 L k+1 7
ggfﬂXgHXpr—@—ggg<a r+{-a )(mﬁ+w))

28+ 0

O(8+6)
O

Theorem 3.1.8. The (k+1)-step ahead conditional variance for the BN LIN AR(1)

model is
1 — o2(k+1)
Var(Xie| X1 = 2) = "1 — o)z + %Var(Ith)
-«
N k _ k2
il )E(Ith), (3.15)

for x € {0,1,2,...}.

Proof. From (3.4),

Var( Xy k| Xi—1 = )

=Var(aoXyyp1 + Lk Hepr| Xoo1 = )

=Var(ao(aoXyip o+ Lk 1Hig1) + LiopHig| Xpo1 = )

=Var(a" o Xy + o o LH + " o L Hypy + -+ + Ly Hypi| X1 = )

(3.16)
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= Var(a" o X,_) + Z Var(a" o I Hyp| X1 = )

h=0
k
= o1 — o) r + Z Var(a" o Ik Heyy) (3.17)
h=0
_ ak-i—l k+1 )a + Z (1— ol E(Liy Hyr + o? )Va?"([t+kHt+k))

k
O[k+1(1 — O[k+1)$ + VCLT(It+kHt+k) Z Oé2h + E(It+kHt+k) Z Oéh(l — Oéh>
h=0 h=0

1 — o2(k+1) (1 _ Ozk)(a _ ak+2)

k+1 k+1
a1 —a" N+ o2 Var(I:H;) + o2

E(I,H,),

where we use (3.4) to obtain (3.16) and Theorem 2.4.1(4) to obtain (3.17). O

Remark 3.1.4. The conditional variance Var(X;. x| X;—1 = =) converges to the
28%(1+ 0) + 6%(1 + 0) + BO(4 + 30)

unconditional variance

as k converges to in-

(3 +0)°
finity.
Proof. Since 0 < a < 1,

lim Var(X; x| X;—1 = x)

k—00

. 1 — o2k+1) 1— o) (a — aF+?

= lim "1 — oMz + ?Var([th) + ( 1)<_ — )E(Ith)
. VaT(Ith) OéE([th)

1 -a2 1—a?

_26%(1+0) + 92( +6) + 504 + 39)

02(6 +0)
[

Theorem 3.1.9. The partial autocorrelation function of the BN LIN AR(1) model

at lag h is 0 where h > 1.
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Proof. For h > 1,

B(h) = Corr(Xnt1 — E(Xpa|Xo, .., Xp), X1)

2
=Corr(Xps1 —aXp+ (1 — a) (%) ,X1) by using Theorem 3.1.7
= Corr(Xps1, X1) — Corr(aXy, X1) + Corr((1 — «) (%) , X1)

_ O./h o a(ah—l)

= 0.

]

Theorem 3.1.10. The Markov process with transition probabilities of the BNLINAR(1)

model is
min(l,k) I
plk‘ — Z ( )Oém(]_ v B Oé)l_mP(_[th = k — m)

m
m=0

where the process I;H; is defined in (3.4).

Proof.

Pk = P(Xt = let—l = l)

= P(Oé o Xt,1 + [th = ]{’th1 = l)
min(l,k)

= Y PlaoXiy=m|X,y =P H =k-m|X, ;=1

m=0
min(l,k) I
= ( )am(1 — )" P(I,H, = k —m),
m=0 m

by using Definition 2.4.1 and the process I;H; is defined in (3.4). O]
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3.1.2 Estimation and inference of the BNLINAR(1) model

In this section, we consider parameter estimation methods of the unknown
parameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-
Walker estimator (YW). These estimators are compared via Monte Carlo simu-
lations in terms of their means and variances by using the statistical software R

[11].
3.1.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters a and p of the
BNLINAR(1) model are obtained by minimizing the function defined in Def-
inition 2.5.1. Let £ = 0 in the expression in Theorem 3.1.7, the conditional
expectation is

E(Xt|Xt_1) = OéXt_l + M(l — Oé),
where = E(X;). Then
Qn=) (Xi = B(Xi|X,_1))” =) (X — aX,_y — p(1 — ).

t=2 t=2

Equating the first order partial derivatives of (),, with respect to u and « to zero,

we have
a;gn lumpiams =~ n 2(X; = aXiy — i1 = @))(1 = @) =0 (3.18)
a 7 =2
a(‘)%n p=fo=a& th 2(Xe —aXy — (1 = a))(fp— X41) =0 (3.19)
From (3.18),

Y Xi—ad Xia—f(n—1)(1—a)=0. (3.20)
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By solving equation (3.20), the estimation of y can be computed as

n

Z X, — & Z X,
t=2

t=2

(n—1)(1-a)

L= (3.21)

From (3.19),

+ (=@ X (3.22)
t=2

By solving equation (3.22) and substitute fi in equation (3.21), the estimation of

a can be computed as

(n=1)Y XeaXe =) X X
t=2 t=2 t=2
n n 2 '
(n—1)> X7, - <Z XH)
t=2 t=2

deors =

From (3.21) and (3.9), we have

n n

E Xi — Qers E X1
t=2 t=2

(n — 1)(1 — OAéCLS)

26crs +0c1s fions =
= = = = LS —
Ocrs(Ocrs + Bers)

(3.23)

The conditional least squares estimator of the parameters o2 is obtained by mini-
mizing the function defined in Abdulhamid et al. [2]. First, substitute & = 0 into
(3.15),

Var(Xy|X;—1) = a(1 — )Xy + Var(I,Hy). (3.24)
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Substitute Var(I;H;) from (3.13) into (3.24), the conditional variance is
Var(X|X;-1) = a(l —a)X;_1 + (1 — a?)o* — a(l — a)p. (3.25)

To obtain 62, we follow Abdulhamid et al. [2] by minimizing the function S,

defined as

n

S = D _1(Xe = B(X|Xi1))* = Var(X) X, )

t=2

3 |l

(X —aXiy —p(l —a))? —a(l—a)X,1 — (1 —a?)o? +a(l —a)u).

t=2

Taking the first order partial derivative of S,, with respect to o2 and equating it

to zero, we get

_0S,
0= W‘cﬂz&%uzﬂ,azéz
n
= > 20Xy - aXp 1 — (1 = a)® = a(l = 4) X1 — (1 - 6)5% + a(1 — a)a)(6* - 1).
t=2
Then

D IX —aXe g — p(l = a)* = a(l— @)X, — (1-a*)5% +a(l — a)i)] =0. (3.26)
t=2

By solving the equation (3.26), the estimation of o? can be obtained as

o Sil(Xe = aXiy — (1= @) = 61— &) X1 +a(1 - a)]

A—ad)n -1 (3.27)
From (3.10) and (3.27),
28%(1 4 ) + 6>(1 + &) + B6(4 + 36)
B3+ 0y
IPC S Siol(Xe —aXe1 — a(1 - d))* —a(l — a) X1 + 6(1 - Q)i

S 1-a%)(n—1)



36

3.1.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for o, p and o? are obtained. By using

Definition 2.3.3 then the sample autocovariance function of X;

n—k
(Xt — X)(Xeqk — X), (3.28)

SRS
i

1 &
where 0 < k <nand X = — ZXt is the sample mean.
n

t=1
From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.28), the

Yule-Walker estimator of « is

D (X - X)?

t=1

Consider y = E(X;) defined in (3.9) and 02 = Var(X;) defined in (3.10) and note that

> (X —X)

52 = tzlnfl The Yule-Walker estimators of y and o2 are
. 2B+6
byw =X = ———-,
(8+0)
S — 5 202(140) + 0%(1 + &) + 50(4 4 30)
02(8 + )2 ’

respectively.

3.1.3 Simulation Results

In this section, we produce 10,000 samples from the BN LIN AR(1) model for true
parameter values in different settings (1) « =0.1,5=1,0 =1; (2) « = 0.3, = 2,0 = 2;
(3)  =0.5,8 = 3,0 = 3 of different sample sizes n = 50,100, 500, 1000, 5000 and 10000
by using the statistical software R and obtain estimators of parameters from two methods

described in Section 3.1.2. Then we compare the obtained estimators in terms of their
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means and variances. Table 3.1 shows mean and variance (in brackets) of the estimators

for different values of the parameters «, p and o2.

From Table 3.1, we observe that the estimators obtained from the two estimation
methods converge to the true parameters. In addition, increasing the sample size yields
smaller variance. The conditional least squares estimate (CLS) and the Yule-Walker
estimate (YW) are approximately the same. Considering the variance we can see that the
CLS estimators have smaller variance than the YW estimators for parameters a and p.
However, the YW has smaller variance than the CLS for the parameter 0. Considering
the mean, we can see that the CLS estimators converge to the true parameter faster

than the YW estimators for parameters o and .

3.1.4 Real data

In this section, we apply the two models with two real data sets : (1) the numbers

of Skin-lesions and (2) the numbers of Anorexias.

3.1.4.1 The numbers of Skin-lesions

The first example considers the numbers of Skin-lesions monthly from January
2003 to December 2009 from a region in New Zealand. The data was original introduced
in Aghababaei et al. [1]. Sample mean and variance are 1.43 and 3.36, respectively. The

fitted BNLINAR(1) model is

X; = 0.2365 0 X;_1 + L H,,

The predicted values of the numbers of Skin-lesions series are given by

X, = 26+ 1.4142,
(B +0)
. L 28+0
Xt :aXt,1+(1—CX)AI€7A.
(B +0)



(@.0,8,11,0%) = (0.1,1,1,1.5,3.25)

n aors flers 0tiLg Qyw fyw Oy
50 0.0838 1.4796 3.1156 0.0707 1.4730 3.1751
(0.0193) | (0.0742) | (1.3730) | (0.0193) | (0.0766) | (1.3920)

100 0.0943 1.4855 3.1740 0.0848 1.4854 3.2074
(0.0101) | (0.0372) | (0.7122) | (0.0101) | (0.0382) | (0.7310)

500 0.0982 1.4969 3.2364 0.0970 1.4964 3.2386
(0.0021) | (0.0070) | (0.1418) | (0.0021) | (0.0079) | (0.1454)

1000 0.0990 1.4998 3.2453 0.0982 1.4983 3.2455
(0.0011) | (0.0032) | (0.0723) | (0.0011) | (0.0040) | (0.0717)
5000 0.0999 1.4996 3.2493 0.0998 1.4996 3.2497
(0.0002) | (0.0007) | (0.0154) | (0.0002) | (0.0008) | (0.0144)
10000 0.0999 1.4999 3.2495 0.0999 1.4999 3.2497
(0.0001) | (0.0003) | (0.0077) | (0.0001) | (0.0004) | (0.0073)

(0,0, 8, 15,0%) = (0.3,2,2,0.75,1.1875)

n aors flcrs 0.5 Oyw fyw Oy
50 0.2649 0.7035 1.0840 0.2515 0.7018 1.1044
(0.0223) | (0.0413) | (0.2564) | (0.0218) | (0.0412) | (0.2535)

100 0.2815 0.7094 1.1120 0.2758 0.7092 1.1182
(0.0120) | (0.0214) | (0.1271) | (0.0117) | (0.0202) | (0.1228)

500 0.2956 0.7157 1.1371 0.2948 0.7143 1.1372
(0.0026) | (0.0042) | (0.0267) | (0.0026) | (0.0043) | (0.0268)

1000 0.2988 0.7270 1.1416 0.2971 0.7166 1.1430
(0.0013) | (0.0022) | (0.0136) | (0.0013) | (0.0021) | (0.0137)

5000 0.2999 0.7366 1.1435 0.2997 0.7166 1.1445
(0.0003) | (0.0004) | (0.0032) | (0.0003) | (0.0004) | (0.0027)

10000 0.3000 0.7399 1.1698 0.2999 0.7378 1.1699
(0.0000) | (0.0002) | (0.0015) | (0.0001) | (0.0002) | (0.0013)

(0,0, B, 11,07) = (0.5,3,3, 0.5,0.6944)

n acrs flcrs 0tig Qyw fyw Oy
50 0.4363 0.4396 0.5286 0.4221 0.4328 0.5801
(0.0266) | (0.0496) | (0.6079) | (0.0258) | (0.0351) | (0.1272)

100 0.4680 0.4407 0.5970 0.4604 0.4403 0.6024
(0.0130) | (0.0180) | (0.0647) | (0.0135) | (0.0184) | (0.0671)

500 0.4925 0.4453 0.6161 0.4911 0.4442 0.6166
(0.0028) | (0.0037) | (0.0140) | (0.0028) | (0.0037) | (0.0139)
1000 0.4967 0.4459 0.6207 0.4959 0.4460 0.6217
(0.0015) | (0.0018) | (0.0072) | (0.0014) | (0.0019) | (0.0072)

5000 0.4993 0.4562 0.6215 0.4992 0.4462 0.6229
(0.0003) | (0.0004) | (0.0019) | (0.0003) | (0.0004) | (0.0014)

10000 0.5000 0.4772 0.6458 0.5000 0.4729 0.6464
(0.0001) | (0.0001) | (0.0016) | (0.0001) | (0.0001) | (0.0007)
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Table 3.1: Mean and variance (in brackets) of the estimators for different values of the
parameters «, 4 and o2 for the BNLIN AR(1) model
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2

Substituting parameter estimates & = 0.2365 and é( = 1.4142.

+ |+
D>

| @
$>

X, =0.2365X,_1 +1.0797, ¢t=2,3,...,72.

The expectation and variance computed from the BNLIN AR(1) model are 1.414 and
3.356, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.
3.1.4.2 The numbers of Anorexias

The second example considers the numbers of Anorexias monthly from January
2003 to December 2009 from a region in New Zealand. Sample mean and variance are

0.82 and 2.90, respectively. The fitted BNLINAR(1) is

Xt = 0.4909 o Xt_l + Ith,

The predicted values of the numbers of Anorexias series are given by

5 26+06
X1 = —— =10.8313,
ICER)
A A 28+0
X = aX: 1—a)——.
= t1+( a)ﬁ(ﬁ—i—ﬁ)
0h 1 0
Substituting parameter estimates & = 0.4909 and ﬂ = 0.8313.
0(B+6)

X, = 0.4909X, 1 +0.4232, ¢t=2,3,...,72.

The expectation and variance computed from the BNLIN AR(1) model are 0.831 and
2.900, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.
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3.2 Construction of the first order integer-valued autoregressive models
with the two-parameter generalized Poisson-Lindley distribution based

on the negative binomial thinning operator model (NNLINAR(1))

In this section, we construct the first order integer-valued autoregressive mod-
els with two-parameter generalized Poisson-Lindley distribution based on the negative
binomial thinning operator model (NNLINAR(1)). Moreover, we investigate many prop-
erties of the constructed model such as moments, parameter estimations and perform

some numerical studies.

Definition 3.2.1. The first order integer-valued autoregressive model with two-parameter
generalized Poisson-Lindley distribution based on the negative binomial thinning oper-

ator (NNLINAR(1)) {X;}+>1 is defined as

Xt =@k Xt—l + &¢, (329)

where the negative the binomial thinning ax defined in Definition 2.4.2, {X;}¢>; is a
stationary process with the NGPL(6, ) distribution and {e;}+>1 is a sequence of i.i.d.

random variables such that o * X;_ 1 and &; are independent.
Theorem 3.2.1. The innovation process {et }+>1 has the probability generating function

(5+9_3+1)(0+040—0498+Oz—o¢s)2
O—s+1)21+a—as)(@+B+ab+aB—a(f+0+1)s)

O, (s) = (3.30)

for s € R.

Proof. Since {X;};>1 is a stationary process with the NGPL(#, (), from Theorem

2.4.2(5),

Poux(3) = BEND) = @ (1+a - as9) ™),
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From (3.29) and the property that a x X;_1 and &; are independent, for s € R,

x,(s) = B(s™)

= B(s**Xi-1ter)

= B(svXt-15)

= (N0 ()
= Dpax,_; (5)Pc,(5)

=0y, (1+a-— as)_l)q)gt(s).

From Theorem 2.1.5(3), the innovation process {e;};>1 has the probability generating

function

_ (I)Xt(s)
Oy, ((1+a—as)™h)
R2B+0—s5+1) B+ —(1+a—as) ! +1)2
(B0 —5+1)2 02(0 -1 +a—as)L+1+P)
B+0—s+1 (0+a9—a03—'1+1+a—as)2
- O—s+1)2 (I+a—as)(B+aB—afs+0+0a—abs—1+1+a—as)
B (B+0=s5+1)(0+ab —als+a—as)?
S (0-s+1)2(1+a—as)0+B+a+abl+aB—a(B+0+1)s)

q>€t (8)

O]

Theorem 3.2.2. The autocovariance function, v (k > 1), of the NN LIN AR(1) model

{Xi}+>1 defined in Definition 3.2.1 is given by

Y = Cov( Xy, Xy—k) = akfyo, (3.31)

where 7 is the variance of X;.
Consequently, the autocorrelation function of order k, p, of the NNLINAR(1) model

is

pp = a”. (3.32)

Il
Q
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Proof. From (3.29) and the property that &, and X;_j are independent, for k > 1,

Y = Cov( Xy, Xy k)
=Cov(ax Xy 1 +ep, Xy—k)
=Cov(ax Xy_1, X)) + Cov(ey, Xi—k)
= aCov(X¢—1, X¢—k)
=aCov(a* Xi—92+e1-1, X¢—k)
= o tCov(a* Xo_p, Xi_1) (3.33)

k
= a 0.

By applying (3.29) recursively to obtain (3.33). Consequently, the correlation function

pr can be written as

%k
Pr=—=a".
Y0

O]

Remark 3.2.1. From (3.32), the autocorrelation function declines exponentially as k

converges to infinity.

3.2.1 Probabilistic properties of the NNLINAR(1) model

In this section, we investigate many conditional properties such as conditional
mean and conditional variance of the constructed model. Since {X;}+>; is a stationary
process with the NGPL(#, 3). From Theorem 2.1.5, mean and variance of X; for the

NNLINAR(1) model are given respectively by

E(Xy) = ;(gj:z), (3.34)

_2B%(1+0) +6°(1+0) + BY(4 + 30)

Var(Xy) 2051072

. (3.35)
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Theorem 3.2.3. The expectation of ; defined in Definition 3.2.1 is

E(g) = (1 — a)E(Xy),

where E(X}) is defined in (3.34).

Proof. From (3.29), since {X;}+>1 is a stationary process with the NGPL(#, 5),

E(X:)=E(a*xXi—1+¢e)

3 OéE(Xt) + E(Et).

Then E(g) = (1 — a)E(Xy). O

Theorem 3.2.4. The variance of &; defined in (3.29) is

Var(ey) = (1 = o®)Var(X;) — a(1 + a)E(Xy),

where E(X;) and Var(X;) are defined in (3.34) and (3.35), respectively.

Proof. From (3.29), since {X;};>1 is a stationary process with the NGPL(6, 3),

Var(Xy) = Var(ax Xi—1 + &)
=Var(ax X;—1) + Var(e)

=a(l+)B(Xi_1) + a*Var(Xi_1) + Var(s).

Then, (1 —a?)Var(X;) = a(l +a)E(Xy) + Var(e).

Consequently, Var(e;) = (1 —a?)Var(X;) — a(l + a)E(Xy). O
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Theorem 3.2.5. The (k+ 1)-step ahead conditional expectation of the NNLINAR(1)

model is

E(Xp4] Xi—1 = 2) = oMo+ (1 - of ) (W) 7

(B +0)

for x € {0,1,2,...}.

Proof.

E(Xik| Xim1 =) = E(a*x Xppp—1 + epqp| Xem1 = 2)

= E(a* (a*x Xigp—2 +€14k—1) + €14k Xi—1 = ),
by using (3.29) to obtain the last equality. Applying (3.29) to {X¢}+>1 recursively,

E(Xyk| Xio1 =2) = E(o/“’H « X1+ ke +F T xeg + o+ Epyk| Xi—1 = o)

k
=B« XX 1 =2)+ Y E(o" s e | Xi1 =)
h=0
k
=a*"e+> o "Elerin) (3.36)
h=0
k+1

11—«
« x+< N >E(5t)

_ktl kg1 [ 28+0
="z + (1 a+)<—0(ﬂ+0)>’

where we use Theorem 2.4.2(3) to obtain (3.36). O

Remark 3.2.2. The conditional expectation F(X;x|Xi—1 = x) converges to the un-

28+6

conditional expectation ———— as k converges to infinity.

6(8+0)
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Proof. Since 0 < a < 1,

2840

) . T k-+1 _ k+1 a7

Jim E(Xppx] Xim1 = @) = lim. (a z+(1=a™) (6(6 + 9)))
2846

0(B+06)

O]

Theorem 3.2.6. The (k + 1)-step ahead conditional variance for the NNLINAR(1)

model is

1 — 2(k+1)
Var(Xesr Xio1 = @) =" (1 4@ e + ————Var(e)
a(l = aF)(1 = oFth)
T o E(gy), (3.37)

for x € {0,1,2,...}.
Proof. From (3.29),

VCLT(Xt+k|Xt_1 = $)

= Var(a* Xiyip—1 + etk Xe—1 = )

=Var(a* (a* Xiipo+erir-1) + ek Xio1 = ) (3.38)

= Var(akH S Xy o a® e, oL Etq1 + o+ ek Xio1 = )

k
= Var(a"« X, 1) + Z Var(a s ep | X1 = )
h=0

k
= o1+ M + Z Var(a" xeiip_n) (3.39)
h=0

k
=M 1+ Nz + ) (o"(1+ oM E(erinn) + ™ Var(erinn))
h=0

k k
= "1+ F Yz + Var(ey) Z o + E(er) Z a"(1-a")
h=0 h=0
1 2(k+1) 1 k 1— k+1
— (14 aF g O‘72Var(st) + ol —a)(1—a )E(&“t)a

11—« 1—a?
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where we use (3.29) to obtain (3.38) and Theorem 2.4.2(4) to obtain (3.39). O

Remark 3.2.3. The conditional variance Var(X; x| X¢—1 = =) converges to the uncon-
26%(1+6) + 6%(1 + 0) + BO(4 + 30)
02(8 +0)?

ditional variance as k converges to infinity.

Proof. Since 0 < o < 1,

lim Var(Xy x| Xe—1 = )
k—o00

1 — a2(k+1) a(l _ ak)(l _ ak—H)
1 k+1 k+1
= klirgo a1+ a )+ 1 Var(ey) + T E(et)
~ Var(er)  aFE(g)
 1—a? 1—a2
_2B%(1+6) 4+ 60*(1+6) + B6(4 + 30)
N 6%2(8 + 0)? \

O]

Theorem 3.2.7. The Markov process with transition probabilities of the NNLIN AR(1)

model is

p,k:i<l+m_l)( . )l( « )mP(st:k:—m)I(l#0)+P(gt:k)1(l:0),

m 1+« 1+«
m=0

(3.40)

where the process ¢; is defined in (3.29).

Proof.

pi = P(Xy = k| Xi—1=1)

= P(a * Xt—l + &= k|Xt_1 = l)

k
> PlaxX;y =m|X;y =1)P(e; = k —m)I(l £ 0) + P(e; = k)I(l = 0)

<z+m—1>< 1 >l< a >mP(et_k—m)I(z¢0)+P(st_k)1(l—0)-
0

3
I
o

o

m 1+« 1+«

m=
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3.2.2 Estimation and inference of the NNLINAR(1) model

In this section, we consider parameter estimation methods of the unknown pa-
rameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker
estimator (YW). These estimators are compared via Monte Carlo simulations in terms

of their means and variances by using the statistical software R [11].
3.2.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters o and p of the NNLINAR(1)
model are obtained by minimizing the function defined in Definition 2.5.1. Let £ =0 in

the expression in Theorem 3.2.5, the conditional expectation is
E(Xt‘Xt_l) =aX; 1+ M(l — Oé),

where 4 = E(X;). Then
Qn=> (X; — B(Xy|X; 1))> = D _(Xi — aX; 1 — p(l — a))”.

t=2 t=2

Equating the first order partial derivatives of @, with respect to p and « to zero, then

Q. ags A L

o ‘M:ﬁ,a:& = ;2 2(Xy —aXy1 — (1l —a)(1—a)=0. (3.41)

Q. 2 A o -

oG \m=h.a=& — - 2(Xy —aXp—1 —p(l— &) (o — Xe—1) = 0. (3.42)
From (3.41),

Y Xi—a) Xpq—jpn—1)(1-a)=0. (3.43)
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By solving the equation (3.43), the estimation of p can be computed as

Y Xi—a) X
fi = t:2(n — 1)(;:_2 A (3.44)

From (3.42)

3

n n n
0=paY X —aipy Xpq—fp2(1-a)n-1)-> X X, +a)y X7,
t=2 t=2 t=2

t=2

3

+1-a)a> X, (3.45)

By solving equation (3.45) and substitute /i in equation (3.44), the estimation of o can

be computed as

n n n
(n—1) ZXt—lXt RN ZXt ZXt—l
t—2 t—2 =2
03t ()
=2 =2

From (3.42) and (3.34), we have

&:

n n
> Xi—aders Y Xea
t=2 t=2

(n—1)(1 - acwLs)

28c1s +0crs S —
= HCLS =

0crs(Bcrs + BoLs)

The conditional least squares estimator of parameter o2 is obtained by minimizing the

function defined in Abdulhamid et al. [2]. First, substitute k£ = 0 into (3.37),

Var(Xy|Xi—1) = a(l — @) Xi—1 + Var(e). (3.46)

Substitute Var(e;) from Theorem 3.2.4 in (3.46), the conditional variance is

Var(Xe|Xi-1) = a(1+a) X1 + (1 — a?)o? — a(l + a)p. (3.47)
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To obtain 62, we follow Abdulhamid et al. [2] by minimizing the function S,, defined as

S =Y _[(Xi = B(Xe|Xe-1))? = Var(Xy| Xy 1))
t=2

3

=) [(Xy—aXi 1 —p(l—a)?—a(l+a)Xi 1 — (1 —a?)o? + a1l + a)u)?.
t=2

Taking the first order partial derivative of S,, with respect to o? and equating it to zero,

we get,

0= %

2 ‘ 02=62 pu=f,0=&
do K

= 2((X, - aX, 1 — (1 — 4)? — a(1 + &)X — (1 - 6%)6” + &(1 + &)j)(6” - 1).
t=2

Then

En:[(xt —aXi -l — @) —a(l+a) X, — (1 —a*)62 +a(1+a)a] =0. (3.48)
t=2

By solving the equation (3.48), the estimation of 0 can be obtained as

2 _ L[ — aXy 1 — 41— 6))* = 6(1 +6) X, 1 + a(1+ &)] (3.49)

From (3.35) and (3.49)

28%(1 4 60) + 62(1 + ) + 36(4 + 36)
62(f + 6)2
_ bol(Xe — X1 — (1 — &))% — &1+ @) Xio1 + &(1 + )]
(1-a2)(n—1) '
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3.2.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for o, p and o? are obtained. By using

Definition 2.3.3, the sample autocovariance function of X;

n—k
(Xt — X)(Xeqk — X), (3.50)

1

SRS
i

1 &
where 0 < k <nand X = — ZXt is the sample mean.
n

t=1
From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.50), the

Yule-Walker estimator of « is

¥) i(Xt - X)?

t=1

Consider p = E(X;) defined in (3.34) and 0% = Var(X;) defined in (3.35) and note that

D (X - X)?

S2 = t:lT The Yule-Walker estimators of y and o2 are
_ 2B+
pyw =X = ———,
0B+ 6
- o 28%(140)+0%(1 +0) + 50(4 + 30)
olyw =S = B TER ;
02(5 +0)?
respectively.

3.2.3 Real data

In this section, we apply the two models with two real data sets : (1) the numbers

of Skin-lesions and (2) the numbers of Anorexias.
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3.2.3.1 The numbers of Skin-lesions

The first example considers the numbers of Skin-lesions monthly from January
2003 to December 2009 from a region in New Zealand. The data was originally intro-
duced in Aghababaei et al. [1]. Sample mean and variance are 1.43 and 3.36, respectively.

The fitted NNLINAR(1) model is

X =0.2365 % X¢_1 + &4,

The predicted values of the numbers of Skin-lesions series are given by

Xp= 2540 49
0(5+0)

7 /L L 26+6
Xt = OéXtﬁl 'y (1 A Oé)ﬁiA

0(8+0)

L : \ 28+ 6

Substituting parameter estimates & = 0.2365 and —— = 1.4142.

(8 +0)

X, =0.2365X,_ 1 +1.0797, ¢t=2,3,...,72.

The expectation and variance computed from the NNLIN AR(1) model are 1.4142 and
3.356, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.
3.2.3.2 The numbers of Anorexias

The second example considers the numbers of Anorexias monthly from January
2003 to December 2009 from a region in New Zealand. The data was original introduced
in Aghababaei et al. [1]. Sample mean and variance are 0.82 and 2.90, respectively. The
fitted NNLINAR(1) is

X, = 0.4909 % X;_1 + &4,
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The predicted values of the numbers of Anorexias series are given by

A 28+46
X1 = —— =0.8313,
ICE))
. . 28+6
Xy =aX, 1—8)———.
Pt )
L . R 28+ 0
Substituting parameter estimates & = 0.4909 and ——— = 0.8313.
0(B+6)

X; = 0.4909X,_1 +0.4232, t=2,3,...,72.

The expectation and variance computed from the NNLINAR(1) model are 0.831 and
2.900, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.



CHAPTER IV

INAR(1) MODEL WITH A
TWO-PARAMETER GENERALIZED

POISSON-LINDLEY INNOVATION

In this chapter, we construct two first order integer-valued autoregressive models
with a two-parameter generalized Poisson-Lindley innovation based on (1) the binomial
thinning operator and (2) the negative binomial thinning operator. Moreover, proba-

bilistic properties of the constructed models and parameter estimation are demonstrated.

4.1 Construction of the first order integer-valued autoregressive model with
a two-parameter generalized Poisson-Lindley innovation based on the

binomial thinning operator (NLINARB(1))

In this section, we construct the first order integer-valued autoregressive model
with two-parameter generalized Poisson-Lindley innovation based on the binomial thin-
ning operator model (NLINARB(1)). Moreover, we investigate many properties of
the constructed model such as expectations, parameter estimations and perform some

numerical studies.

Definition 4.1.1. The first order integer-valued autoregressive model with two-parameter
generalized Poisson-Lindley innovation based on the binomial thinning operator (NLI-

NARB(1)) {X;}+>1 is defined as

Xy =aoXi_ 1+ ¢, (4.1)
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where the binomial thinning «o is defined in Definition 2.4.1 and {e}+>1 is a stationary
process with the NGPL(0, §) defined in Definition 2.1.9 such that o o X;_; and €; are

independent.

Theorem 4.1.1. The autocovariance function, v, (k > 1), of the NLIN ARB(1) model

{Xi}+>1 defined in Definition 4.1.1 is given by

Yk = Cov( Xy, Xy—i) = akfyo. (4.2)

where g is the variance of X;.
Consequently, the autocorrelation function of order k, pg, of the NLINARB(1) model

is

pr = o, (4.3)

Y

Proof. From (4.1) and the property that ¢ and X;_; are independent, for k > 1,

Vi = Cov( Xy, X¢—)
=Cov(ao Xy_1 + €, X4 k)
=Cov(ao Xy_1,X;_1) + Cov(er, Xi—)
= aCov(X¢—1, X¢—k)
=aCov(ao X9+ €1, Xt—f)
=" 1Cov(avo Xo_p, Xy—p) (4.4)

k
= @ 0.

By applying (4.1) recursively to obtain (4.4). Consequently, the correlation function py

can be written as

Vi
pp = — =a".
Y0
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Remark 4.1.1. From (4.3), the autocorrelation function declines exponentially as k

converges to infinity.

4.1.1 Probabilistic properties of the NLINARB(1) model

In this section, we investigate many conditional properties such as conditional

expectation and conditional variance of the constructed model. Since {e }+>1 is a sta-

tionary process with the NGPL(0, 3). From Theorem 2.1.5, expectation and variance

of ¢ for the NLINARB(1) model are given respectively by

2846
E(e) = m,
Var(e) = 282(1 4+ 0) + 6%(1 +6) + B0(4 + 39).

02(8 +0)?
Theorem 4.1.2. The expectation of X; defined in (4.1) is

28+ 6
(B+0)(1—a)

E(X:) = 7

Proof. From (4.1), since {€}+>1 is a stationary process with the NGPL(0, 5),

E(Xi)=E(aoXi_1 + &)

= aE(Xt) Er E(Et).

Then, (1—a)E(X:) = E(e).
E(er) 28 +0

Therefore, FE(X;) = o 05 +0)(1—a)

Theorem 4.1.3. The variance of X; defined in (4.1) is

02(1 + o+ af) +2B%(1 + 0 + af) + BO(4 + 3(1 + )b)

Var(X;) = (1= a2)02(3 + 0)
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Proof. From (4.1), since {€}+>1 is a stationary process with the NGPL(0, 5),

Var(X;) = Var(ao Xi—1 + €)
=Var(ao Xy_1)+ Var(e)
=a(l—a)E(Xi—1) + ®Var(X_1) + Var(e)

= a(l — a)B(X;) + ®Var(Xy) + Var(e).

Then (1—a®)Var(Xy) = a(l —a)E(X;) + Var(e)
Consequently, Var(x,) = 24 a)g (i(gg Var(e)
aE(G(tl) j;ﬁr(et) (4.7)
By using (4.5)-(4.7), we have
Var(X,) = 0?(1 +a + af) + ?fi(la—;)z;(uﬂai)e;ﬁe(zl +3(1+ a)f) .
O

Theorem 4.1.4. The (k + 1)-step ahead conditional expectation of the NLINARB(1)

model is
1—aFh /2846
E(Xpon| Xt = 2) = ab*1g 4 &
el =0 =ae e T oy o v
forz=0,1,2,....
Proof.

E(Xi x| X1 =2) = E(ao Xy 1 + &4k Xi—1 = 2)

= FE(ao(aoXiyp—o+ €h—1) + €k Xim1 = @),
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by using (4.1) to obtain the last equality. Applying (4.1) to {X¢}+>1 recursively,

E(XtJrk‘Xt_l = x) = E(akH oX; 1+ af o € + o 1o €41+ -+ EtJrk‘Xt_l = x)

k
=B o X, 1| Xi 1 =2)+ ) E(0"oeypp| X1 =)
h=0
k
= oo+ o "E(erinn) (4.8)
h=0
_ k+1
= oMz + <1la> E(e), (4.9)
—

where we use Theorem 2.4.2(3) to obtain (4.8).

Substitute E(e;) in (4.9), then

AL (1—aFt!) /2840
E(XpprlXe-1 = 2) = oo + (1-a) (9(5 + 9)> '

O]

Remark 4.1.2. The conditional expectation F(X; x| X;—1 = x) converges to the un-
26+46
(B+0)(1-a)

conditional expectation 7 as k converges to infinity.

Proof. Since 0 < a < 1,

1 — k! 2 4]
ggfﬂXHHXhlzx)ZJE;Qﬁﬂm+«(1fa))(ﬂgi@))

2840
0B+ 0)(1—a)
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Theorem 4.1.5. The (k + 1)-step ahead conditional variance for the NLINARB(1)

model is

1 o20k+1)
1—a?
(1-— ak)(a — ak+2)
1—a?

Var(Xeg| Xeo1 = x) = o*H 1 — oz + Var(e)

E(e), (4.10)

for x ={0,1,2,...}.

Proof.
Var( X k| Xi—1 = x)
=Var(ao Xiyp—1+ ekl Xe-1 = 1)
=Var(ao(aoXyp o+ ern—1) + el Xeo1 = )
= Var(ak+1 oX; 14+afoe+aF 1o €41+ + i Xim1 = ) (4.11)
k
= Var(o/’”‘l oXy—1)+ Z Var(ah o€ip|Xi—1 =)
h=0
k
= o1 - oY+ Z Var(a®oep)
h=0
k
=M1 — o Yz + Z(ah(l — aMerin + PMVar(en) (4.12)
h=0
k k
= o1 — "z + Var(e) Z "+ E(e) Z (1 —aM)
h=0 h=0
1— 042(k+1) 1—a®)(a = aFt?
= "1 — oz + an’r‘(q) + ( 1)(_ 2 )E(et),
where we use (4.1) to obtain (4.11) and Theorem 2.4.1(4) to obtain (4.12). O

Remark 4.1.3. The conditional variance Var(X; | X;—1 = x) converges to the uncon-
0?(1+ a+af) +26%(1 + 0 + af) + B0(4 + 3(1 + a)0)
(1—a?)0%(6 +0)?

ditional variance as k converges

to infinity.
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Proof. Since 0 < a < 1,

lim Var(Xy x| Xi—1 = )

k—o0

— dim | oFH (1 — oF e + 1 —a? (1 -a*)(a—a**?)
k—ro0 1—a?

~ Var(e) | aBE(e)

e T

C0P(1+a+ad) +26%(1+ 0+ ab) + B0(4+ 3(1 + @)b)

- (1—a?)62(8 +0) '

O

Theorem 4.1.6. The Markov process with transition probabilities of the NLINARB(1)

model is

min(l,k) I
pr= >, <m> a™(1—a)""P(ep =k —m),
m=0

where the process ¢; is defined in (4.1).

Proof.

pi = P(Xy = k[ Xi—1=1)

= P(O[ ¢] thl + €t = 1{3|th1 = l)
min(l,k)
= Z P(Oé o Xt,1 = m’Xt,1 = l)P(Et =k - ’fTL|Xt71 = l)
m=0
min(l,k)
= Z P(a o Xt—l = m]Xt_l = l)P(Et =k - m)
m=0
min(l,k)

S (7;) a™(1 — a) P (e, = k — m),

m=0

by using Definition 2.4.1 and the process ¢; is defined in (4.1). O
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4.1.2 Estimation and inference of the NLINARB(1) model

In this section, we consider parameter estimation methods of the unknown pa-
rameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker
estimator (YW). These estimators are compared via Monte Carlo simulations in terms

of their means and variances by using the statistical software R [11].
4.1.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters o and p of the NLIN ARB(1)
model are obtained by minimizing the function defined in Definition 2.5.1. Let £ = 0 in

the expression in Theorem 4.1.4, the conditional expectation is
E(Xt‘Xt_l) =aX; 1+ M(l — Oé),

where 4 = E(X;). Then
Qn=> (X; — B(Xy|X; 1))> = D _(Xy — aX; 1 — p(l — a))”.

t=2 t=2

Equating the first order partial derivatives of @, with respect to p and « to zero, then

Q. ags A L

o ‘M:ﬁ,a:& == ;2 2(Xy —aXy 1 — (1l —a)(1l—a) =0, (4.13)

Q. 2 A o -

& 'p=ia=a T 2 2(Xt —aXi 1 — /.L(l — a))(,u — thl) = 0. (414)
From (4.13),

Y Xi—a) Xpq—jpn—1)(1-a)=0. (4.15)
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By solving equation (4.15), the estimation of 1 can be computed as

Y Xi—a) X
i = t:2(n — 1)(;:_2 R (4.16)

From (4.14),

n n
Xpa—pPAl-&)n-1)-> XiaXi+ay X7,

t=2 t=2
+(1-a)p) X, 1. (4.17)

By solving equation (4.17) and substitute /i in equation (4.16), the estimation of o can

be computed as

n n n
(n—1) ZXt—lXt RN ZXt ZXt—l
t—2 t—2 =2
03t ()
=2 =2

From (3.21) and Theorem 4.1.2, we have

&:

n n
> Xi—ders Y Xia
t=2 t=2

(n—1)(1 - acLs)

26cLs +0crs

Ocrs(Ocrs + Bons)(1 — écrs)

=TicLs =

The conditional least squares estimator of the parameter o2 is obtained by minimizing

the function defined in Abdulhamid et al. [2]. First, substitute & = 0 into (4.10).

Var( Xy Xi—1) = a(l — o) Xi—1 + Var(e). (4.18)

Substitute Var(e;) from (4.6) into (4.18), the conditional variance is

Var(Xy|Xi—1) = a(l —a)Xi—1 + (1 — a?)o? — a(l — a)p. (4.19)
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To obtain 62, we follow Abdulhamid et al. [2] by minimizing the function S,, defined as

S =Y _[(Xi = B(Xe|Xe-1))? = Var(Xy| Xy 1))
t=2

3

=) [(Xi—aX; 1 —pl—-a)?—a(l—a)X, 1 —(1—a?)o? +a(l —a)u?
t=2

Taking the first order partial derivative of S,, with respect to o? and equating it to zero,

we get,

0= %

2 ‘ 02=62 pu=f,0=&
do K

= 2[(X, - aX; 1 — il = 4))? — a1 — &)X — (1 - 6%)6” + &(1 — &)j)(6” - 1).
t=2

Then

M I(X —aX 1 — p(1 - &) = a(l - @)X, 1 — (1—6%)6° + 6(1 — a)a) = 0. (4.20)
t=2

By solving the equation (4.20), the estimation of 0 can be obtained as

52 — Soro[(Xi —aXy — p(1 = @)* —a(l — @)Xy 1 + a1 — @) _ (4.21)

From Theorem 4.1.3, and (4.21),

02(1 + &+ 60) + 262(1 4 0 + ab) + BO(4 + 3(1 4 a)6)
(1—a2)82(8 + )
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4.1.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for o, p and o? are obtained. By using

Definition 2.3.3 then the sample autocovariance function of X;

k
(Xt — X)(Xppr — X), (4.22)

n

SRS
i

o1&
where 0 < k <nand X = — ZXt is the sample mean.

n
t=1
From the Yule-Walker equation defined in Definition 2.5.2 and equation (4.22), the

Yule-Walker estimator of « is

Consider y = E(X;) defined in Theorem 4.1.2 and 0? = Var(X;) defined in (4.6) and

> (X - X)

t=1

note that S? = . The Yule-Walker estimators of ; and o2 are

n—1
. 26+ 6

fyw =X = — a < (4.23)
0B+0)(1—a)

. 42 A 2 ) 30 V0

2o — 57 — 02(1+a +ab) + 28 (1+0+ Al) + 59(44—3(1—1—04)9)’ (4.24)

(1= a2)02(B +6)?
respectively.

4.1.3 Simulation Results

In this section, we produce 1,000 samples from the NLINARB(1) model for true
parameter values in different settings (1) o = 0.1,5 = 0.1,0 = 0.5; (2) a = 04,5 =
0.3, =0.8; (3) « =0.7,5 = 0.5,0 = 1.5 of different sample sizes n = 50, 500, 1000 by
using the statistical software R and obtain estimators of parameters from two methods

described in Section 4.1.2. Then we compare the obtained estimators in terms of their



(.0, 5, 11,0%) = (0.1,0.5,0.1,2.593, 7.8938)
n acrs ficrs 0tLs Qyw fyw Oy
50 0.1020 3.6138 10.8499 0.0766 3.6150 11.0341
(0.0181) | (0.2874) | (14.2088) | (0.0184) | (0.2812) | (14.5398)
500 0.0936 2.5714 7.7373 0.0970 2.5917 7.8660
(0.0095) | (0.0866) | (4.0705) | (0.0021) | (0.0191) | (0.9042)
1000 0.0996 2.5879 7.8122 0.0987 2.5880 7.8200
(0.0010) | (0.0092) | (0.4615) | (0.0010) | (0.0092) | (0.4609)
(@0, 3, 11,0%) = (0.4,0.8,0.3,2.6515, 5.3879)
n acrs flcrs 0tLs Qyw fyw Oy
50 0.3736 2.5851 5.0868 0.3473 2.5694 5.1007
(0.0177) | (0.2519) | (4.4710) | (0.0186) | (0.2433) | (4.3824)
500 0.3837 2.6319 5.2851 0.3945 2.6467 5.3759
(0.0098) | (0.1300) | (2.2662) | (0.0021) | (0.0244) | (0.4151)
1000 0.4005 2.6563 5.3936 0.3993 2.6554 5.3944
(0.0010) | (0.0127) | (0.2171) | (0.0010) | (0.0126) | (0.2166)
(@,0, B, 1,0%) = (0.7,1.5,0.5, 2.7778, £.0305)
n acrs flors 02Ls Oy fyw 6w
50 0.6542 2.7112 3.6773 0.6219 2.6145 3.5899
(0.0109) | (0.4355) | (2.9730) | (0.01225) | (0.3861) | (2.7554)
500 0.6781 2.7625 3.9581 0.6932 2.7633 4.0039
(0.0063) | (0.2360) | (1.9262) | (0.0012) | (0.0458) | (0.3713)
1000 0.6979 2.7783 4.0228 0.6966 2.7779 4.0291
(0.0006) | (0.0245) | (0.1877) | (0.0006) | (0.0243) | (0.1872)
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Table 4.1: Mean and variance (in brackets) of the estimators for different values of the
parameters «, pu and o2 for the NLIN ARB(1) model

means and variances. Table 4.1 shows mean and variance (in brackets) of the estimators

for different values of the parameters «, p and o2.

From Table 4.1, we observe that the estimators obtained from the two estima-

tion methods converge to the true parameters. In addition, increasing the sample size

yields smaller variance. The conditional least squares estimate (CLS) and the Yule-

Walker estimate (YW) are approximately the same. Considering the variance, we can

see that the CLS estimators have smaller variance than YW estimators for the param-

eter . However, the YW has smaller variance than CLS for the parameters y and o2.

Then, considering the mean, we can see that the YW estimators converge to the true

parameters faster than the CLS estimators for the parameters o and .
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4.1.4 Real data

In this section, we apply the two models with two real data sets : (1) the in-
cidents of acute febrile mucocutaneous lymph node syndrome and (2) the numbers of

earthquakes per year magnitude 7.0 or greater (1900-1998).

4.1.4.1 The incidents of acute febrile mucocutaneous lymph node syndrome

(MCLS)

The first example considers the data give weekly counts of the incidents of acute
febrile mucocutaneous lymph node syndrome (MCLS) in Totori-prefecture, Japan, dur-
ing 1982. Sample mean and variance are 1.711 and 3.111, respectively. The fitted
NLINARB(1) model is

Xt =0.5241 0 Xt—l -+ €t,

The predicted values of the numbers of MCLS series are given by

2 28+ 46
X1 = — ﬁAJr — = 1.6843,
0(6+0)(1—a)
) 5 26 +6
Xt = d t—1 + = é—’_ .
0(B+6)
L ) X 28+ 0
Substituting parameter estimates & = 0.5241 and ———— = 0.8016

0(B+6)

X, =0.5241X,_1 +0.8016, t=2,3,...,52.

The expectation and variance computed from the NLINARB(1) model are 1.684 and
3.111, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.
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4.1.4.2 The number of earthquakes per year magnitude 7.0 or greater (1900-

1998).

The second example considers the numbers of earthquakes per year magnitude 7.0
or greater (1900-1998). Sample mean and variance are 20.02 and 52.75, respectively.

The fitted NLINARB(1) model is

X; =0.5434 0 Xy 1 + €,

The predicted values of the number of earthquakes per year magnitude 7.0 or greater

series are given by

3 28+ 6
X = — 5A+ — = 20.1283,
(B+6)1 —a)
/ / 26846
= 0Xi 1+ AﬁA—i_A )

0(B+0)

L . J 28+ 0
Substituting parameter estimates & = 0.5434 and ———— = 9.1906

0(B+6)

X; = 0.5434X,_1 +9.1906, t=2,3,...,99.

The expectation and variance computed from the NLINARB(1) model are 20.128 and
52.755, respectively. We can see that the model can capture the sample mean and

variance of the data set. Therefore, the model is reasonable to this data set.
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4.2 Construction of the first order integer-valued autoregressive model with
a two-parameter generalized Poisson-Lindley innovation based on the

negative binomial thinning operator (NLINARN(1))

In this section, we construct the first order integer-valued autoregressive model
with two-parameter generalized Poisson-Lindley innovation based on the negative bino-
mial thinning operator model (NLINARN((1)). Moreover, we investigate many proper-
ties of the constructed model such as means, parameter estimations and perform some

numerical studies.

Definition 4.2.1. The first order integer-valued autoregressive model with two-parameter
generalized Poisson-Lindley innovation based on the negative binomial thinning operator

(NLINARN(1)) {X¢}+>1 is defined as

Xt =@k Xt—l + &¢, (425)

where the negative binomial thinning ax defined in Definition 2.4.2 and {e:}:>1 is a
stationary process with the NGPL(0, 8) defined in Definition 2.1.9 such that o * X;_1

and &; are independent.

Theorem 4.2.1. The autocovariance function, v (k > 1), of the NLIN ARN (1) model

{Xi}+>1 defined in Definition 4.2.1 is given by

Y = Cov( Xy, Xy—k) = akfyo, (4.26)

where g is the variance of X;.
Consequently, the autocorrelation function of order k, p, of the NLINARN (1) model

is

pr = o, (4.27)
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Proof. From (4.25) and the property that e, and X;_j are independent, for k > 1,

Y = Cov( Xy, Xy k)
=Cov(ax Xy 1 +ep, Xy—k)
=Cov(ax Xy_1, X)) + Cov(ey, Xi—k)
= aCov(X¢—1, X¢—k)
=aCov(a* Xi—92+e1-1, X¢—k)
= o tCov(a* Xo_p, Xi_1) (4.28)

k
= a 0.

By applying (4.25) recursively to obtain (4.28). Consequently, the correlation function

pr can be written as

%k
Pr=—=a".
Y0

O]

Remark 4.2.1. From (4.27), the autocorrelation function declines exponentially as k

converges to infinity.

4.2.1 Probabilistic properties of the NLINARN(1) model

In this section, we investigate many conditional properties such as conditional
expectation and conditional variance of the constructed model. Since {e;}¢>; is a sta-
tionary process with the NGPL(0, 3). From Theorem 2.1.5, expectation and variance

of &; for the NLINARN (1) model are given respectively by

E(er) = 02(212)’ (4.29)
Var(e) = 26%(1+0) + 6%(1 + 0) +56(4+39). (4.30)

0%2(8 + 0)?
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Theorem 4.2.2. The expectation of X; defined in (4.25) is

28+ 0
(B+0)(1—a)

BE(X;) = 7

Proof. From (4.25), since {&;}4>1 is a stationary process with the NGPL(6, 3),

E(X:)=E(a*xXi1+¢e)

= OéE(Xt) + E(Et).

Then (1—a)E(X;) = E(g),

Therefore, E(X;) = 1E(_€2 = 408 ii;le_ a)’ -

Theorem 4.2.3. The variance of X; defined in (4.25) is

2824+ 0%)(1 — a+ 0+ a?0) + B0(4 — 4a + 30 + 3a20)
(a —1)2(1 + «)02(B + 0)?

Var(Xy) = (

Proof. From (4.25), since {e;}+>1 is a stationary process with the NGPL(6, 3),

Var(Xy) = Var(ax Xi—1 + &)
=Var(a* Xi—1) + Var(e)
=a(l+a)B(Xi_1) + o*Var(X;_1) + Var(e)

=a(l + a)B(Xy) + o*Var(Xy) + Var(e).

Then, (1—a®)Var(Xy) = a(l +a)E(X;) + Var(s).
Consequently, Var(Xy) = all+ a)(El(i(ZQ—; Var(st)‘ (4.31)

By using Theorem 4.2.2, (4.30) and (4.31), we have

(282 +0%)(1 — a + 0 + a20) + B0(4 — 4a + 30 + 3a20)

Var(X:) = (@ 12(1 + a)02(3 + 0)?
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Theorem 4.2.4. The (k+ 1)-step ahead conditional expectation of the NLINARN (1)

model is
1_ak+l) 25_1_‘9
i =ay=eet Ty \aeve)
forx=0,1,2,....
Proof.

E(Xik| Xim1 =) = E(a*x Xppp—1 + epqp| Xem1 = 2)

= E(a* (a*x Xigp—2 +€14k—1) + €14k Xi—1 = ),

by using (4.25) to obtain the last equality. Applying (4.25) to {X¢}+>1 recursively,

E(Xyk| Xio1 =2) = E(o/“’H « X1+ ke +F T xeg + o+ Epyk| Xi—1 = o)

k
=B« XX 1 =2)+ Y E(o" s e | Xi1 =)
h=0

k

=a*"e+> o "Elerin) (4.32)
h=0

- k+1

=aoftlz + (%) E(ey), (4.33)
—

where we use Theorem 2.4.2(3) to obtain (4.32).

Substitute E(e) in (4.33), then

o g, (=aFhy s 2849

O]

Remark 4.2.2. The conditional expectation F(X x| Xi—1 = ) converges to the un-
26+ 46
(B+6)(1—a)

conditional expectation 7 as k converges to infinity.
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Proof. Since 0 < a < 1,

_ktl
khj& BE(Xyyk|Xi1=2) = klggo (O‘ka + (1(1 _aa) ) (92(2 i z))>

28490
S 0B+O)(1—a)

O]

Theorem 4.2.5. The (k + 1)-step ahead conditional variance for the NLINARN (1)

model is
1 — o20k+1)
Var(Xer|Xe = 2) =o' (14 e e + ————Var(e)
-«
a(l = aF)(1 = oFth)
T o E(gy), (4.34)

forx=0,1,2,....
Proof.

VCLT(Xt+k|Xt_1 = $)

= Var(a* Xiyip—1 + etk Xe—1 = )

=Var(a* (a* Xiipo+erir-1) + ek Xio1 = ) (4.35)

= Var(akH S Xy o a® e, oL Etq1 + o+ ek Xio1 = )

k
= Var(a"« X, 1) + Z Var(a s ep | X1 = )
h=0

k
= o1+ M + Z Var(a" xeiip_n) (4.36)
h=0

k
=M 1+ Nz + ) (o"(1+ oM E(erinn) + ™ Var(erinn))
h=0

k k
= "1+ F Yz + Var(ey) Z o + E(er) Z a"(1-a")
h=0 h=0
1 2(k+1) 1 k 1— k+1
— (14 aF g O‘72Var(st) + ol —a)(1—a )E(&“t)a

11—« 1—a?
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where we use (4.25) to obtain (4.35) and Theorem 2.4.2(4) to obtain (4.36). O

Remark 4.2.3. The conditional variance Var(X; | X;—1 = x) converges to the uncon-
02(1+a+ af) +28%(1 + 0 + ad) + BO(4 + 3(1 + a)b)
(1 —a?)62(8 +0)

ditional variance as k converges

to infinity.

Proof. Since 0 < a0 < 1,

lim Var(X x| Xe—1 = )

k—o0
1— 2(k+1) 1— k 1— k+1
= klgigo oaF (1 4 o 4 1?—062‘/&1"(6,5) + o Oi >_< 3 a )E(st)
~ Var(er)  aBE(e)
C1-a?  1-a?

21+ a+ad) + 2821+ 0 + af) + BO(4 + 3(1 + a)b)
a (1= a?)6?(B +6)> '

O]

Theorem 4.2.6. The Markov process with transition probabilities of the NLINARN (1)

model is
i l+m—1 1 : a ot

Pk = Z < " ) <1+a> <1+a> plet =k —m)I(l #0) + p(e; = k)I(1 = 0),
m=0

where the process €; is defined in (4.25).

Proof.

pi = P(Xy = k| X1 =1)

=PlaxXi—1+e =k|X—1 =1)

k
Y PlaxX, g =m|X;y =1)P(ey = k —m)I(1 #0) + P(ey = k)I(I = 0)

m

o

<z+m—1>< 1 >l< a >mP(5t:k:—m)I(l#O)JrP(st:k)I(lzo).
0

N

m 1+« 1+«

m=

O
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4.2.2 Estimation and inference of the NLINARN(1) model

In this section, we consider parameter estimation methods of the unknown pa-
rameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker
estimator (YW). These estimators are compared via Monte Carlo simulations in terms

of their means and variances by using the statistical software R [11].
4.2.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters o and p of the NLINARN (1)
model are obtained by minimizing the function defined in Definition 2.5.1. Let £ =0 in

the expression in Theorem 4.2.4, the conditional expectation is
E(Xt‘Xt_l) =aX; 1+ M(l — Oé),

where 4 = E(X;). Then
Qn=> (X; — B(Xy|X; 1))> = D _(Xi — aX; 1 — p(l — a))”.

t=2 t=2

Equating the first order partial derivatives of @,, with respect to u and « to zero, we

then
IQn - . A . .
0 ipaca = — tz:; 2X; — aXiq — (1 — @)1 — &) =0, (4.37)
9Qn RS A X AP _
Be lumfio—d = 2 2(Xy —aXi—1 — (1l — &) (o — X4—1) =0. (4.38)
From (4.37),

Y Xi—a) Xpq—jpn—1)(1-a)=0. (4.39)
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By solving the equation (4.39), the estimation of p can be computed as

Y Xi—a) X
i = t:2(n 5 (f:_z R (4.40)

From (4.38),

n n
Xpa—pPAl-&)n-1)-> XiaXi+ay X7,

t=2 t=2
+(1-a)p) X, 1. (4.41)

By solving equation (4.41) and substitute /i in equation (4.40), the estimation of o can

be computed as

n n n
(n—1) ZXt—lXt RN ZXt ZXt—l
t—2 t—2 =2
03t ()
=2 =2

From (4.40) and Theorem 4.2.2, we have

&:

n n
> Xi—ders Y Xia
t=2 t=2

(n—1)(1 - acLs)

26cLs +0crs

Ocrs(Ocrs + Bons)(1 — écrs)

=TicLs =

The conditional least squares estimator of the parameters o2 is obtained by minimizing

the function defined in Abdulhamid et al. [2]. Frist, substitute & = 0 into (4.34),

Var(X¢Xi—1) = a(l — @) Xy—1 + Var(e). (4.42)

Substitute Var(e;) from (4.30) in (4.42), the conditional variance is

Var(XeXi-1) = a(1+a)X;_1 + (1 — a?)o? — a(l + a)p. (4.43)
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To obtain 62, we follow Abdulhamid et al. [2] by minimizing the function S,, defined as

S =Y _[(Xi = B(Xe|Xe-1))? = Var(Xy| Xy 1))
t=2

3

=) [(Xy—aXi 1 —p(l—a)?—a(l+a)Xi 1 — (1 —a?)o? + a1l + a)u)?.
t=2

Taking the first order partial derivative of S,, with respect to o? and equating it to zero,

we get,

0= %

2 ‘ 02=62 pu=f,0=&
do K

= 2((X, - aX, 1 — (1 — 4)? — a(1 + &)X — (1 - 6%)6” + &(1 + &)j)(6” - 1).
t=2

Then

En:[(xt —aXi -l — @) —a(l+a) X — (1— a2+ a(1+a)a] =0. (4.44)
t=2

By solving the equation (4.44), the estimation of 0 can be obtained as

52 — Sorol(Xy —aXy 1 — a1 —a))? —a(l+a) X1 +a(1+a)j) _ (4.45)

From Theorem 4.2.3 , and (4.45)

(282 4+ 62)(1 — & + 0 + 420) + BO(4 — 46 + 30 + 33:20)

(& —1)2(1 +a)82(3 + )2
_ g2 LK —aXe1 — (1 = @) — 4(1+ @)Xy + 61 + @)
S (1-a?)(n—1) '

o
=
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4.2.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for o, p and o? are obtained. By using

Definition 2.3.3 then the sample autocovariance function of X;

n—k
(Xt — X)(Xpr, — X), (4.46)

SRS
i

1 &
where 0 < k <nand X = — ZXt is the sample mean.
n

t=1
From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.28), the

Yule-Walker estimator of « is

D (X - X)?

t=1

Consider u = E(X;) defined in Theorem 4.2.2 and o2 = Var(X;) defined in (4.30) and

n

> (X - X)?
t=1

note that S? = . The Yule-Walker estimators of ; and o2 are

n—1
_ 26 + 6
B g . ... :
w 03+ 0)(1—a)
. o (282 +62)(1 — &+ 0 + a20) + BO(4 — 46 + 36 + 3a20)
oty =57 = ISER & ;
(@ —1)2(1+a)0%(5 +0)>

respectively.

4.2.3 Simulation Results

In this section, we produce 1,000 samples from the NLINARN (1) model for true
parameter values in different settings (1) o = 0.1,5 = 0.1,0 = 0.5; (2) a« = 04,5 =
0.3, =0.8; (3) « =0.7,5 = 0.5,0 = 1.5 of different sample sizes n = 50, 500, 1000 by
using the statistical software R and obtain estimators of parameters from two methods

described in Section 4.2.2. Then we compare the obtained estimators in terms of their



(@,0, 8, 1,0%) = (0.1,0.5,0.1,2.5926, 7.9199)
n aors flers 0tLs Qyw iy w Oy
50 0.0957 3.6178 10.7572 0.0706 3.6174 10.9366
(0.0191) | (0.2886) | (12.4924) | (0.0193) | (0.2801) | (12.7226)
500 0.0951 2.5492 7.6828 0.0966 2.5825 7.8631
(0.0091) | (0.0934) | (4.4768) | (0.0021) | (0.0172) | (0.9130)
1000 0.0994 2.5891 7.8796 0.0986 2.5900 7.8860
(0.0011) | (0.0096) | (0.4493) | (0.0011) | (0.0095) | (0.4493)
(.0, 5. 11,0%) = (0.4,0.8,0.3, 2.6515, 6.3980)
n acrs flcrs 0tLs Qyw oy w Oy
50 0.3677 2.6110 6.0872 0.3442 2.6207 6.1152
(0.0181) | (0.2011) | (6.0744) | (0.0186) | (0.2770) | (5.7594)
500 0.3805 2.6275 6.2051 0.3956 2.6407 6.3318
(0.0120) | (0.1519) | (3.0989) | (0.0025) | (0.0301) | (0.6778)
1000 0.3980 2.6495 6.3937 0.3970 2.6499 6.3952
(0.0011) | (0.0157) | (0.3335) | (0.0011) | (0.0157) | (0.3324)
(.0, 8, 11,0%) = (0.7, 1.5,0.5, 2.7778, 9.3682)
n Qcrs flcLs 02Ls Qyw fyw 55w
50 0.6050 2.6025 8.8744 0.5815 2.6038 8.8838
(0.0201) | (1.1181) | (181.3861) | (0.0204) | (0.8418) | (28.7368)
500 0.6485 2.7759 8.9004 0.6854 27777 9.1168
(0.0102) | (0.5445) | (23.3691) | (0.00219) | (0.1003) | (4.3118)
1000 0.6922 2.7698 9.2245 0.6912 2.7699 9.2890
(0.0011) | (0.0444) | (2.1964) | (0.0011) | (0.0439) | (2.1828)

7

Table 4.2: Mean and variance (in brackets) of the estimators for different values of the
parameters «, pu and o2 for the NLINARN (1) model

means and variances. Table 4.2 shows mean and variance (in brackets) of the estimators

for different values of the parameters «, p and o2.

From Table 4.2, we observe that the estimators obtained from the two estimation

methods converge to the true parameters. In addition, increasing the sample size yields

smaller variance. The conditional least squares estimate (CLS) and the Yule-Walker

estimate (YW) are approximately the same. Considering the variance, we can see that

the CLS estimators have smaller variance than the YW estimators for the parameter

«. However, the YW has smaller variance than the CLS for the parameters ¢ and pu.

Then, considering the mean, we can see that the YW estimators converge to the true

parameters faster than the CLS estimators for the parameters o and .
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4.2.4 Real data

In this section, we apply the two models with two real data sets : (1) the in-
cidents of acute febrile mucocutaneous lymph node syndrome and (2) the numbers of

earthquakes per year magnitude 7.0 or greater (1900-1998).

4.2.4.1 The incidents of acute febrile mucocutaneous lymph node syndrome

(MCLS)

The first example considers the data give weekly counts of the incidents of acute
febrile mucocutaneous lymph node syndrome (MCLS) in Totori-prefecture, Japan, dur-
ing 1982. Sample mean and variance are 1.711 and 3.111, respectively. The fitted
NLINARN (1) model is

X =0.5241 % Xy 1 + &4,

The predicted values of the numbers of MCLS series are given by

2 28+ 46
X1 = — ﬁAJr — = 1.6843,
0(6+0)(1—a)
) 5 26 +6
Xt = d t—1 + = é—’_ .
0(B+6)
L ) X 28+ 0
Substituting parameter estimates & = 0.5241 and ———— = 0.8016

0(B+6)

X, =0.5241X,_1 +0.8016, t=2,3,...,52.

The expectation and variance computed from the NLINARN (1) model are 1.684 and
3.111, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.



79

4.2.4.2 The number of earthquakes per year magnitude 7.0 or greater (1900-

1998).

The second example considers the numbers of earthquakes per year magnitude 7.0
or greater (1900-1998). Sample mean and variance are 20.02 and 52.75, respectively.

The fitted NLINARN (1) model is

X; = 0.5434 x Xy 1 + &,

The predicted values of the numbers of earthquakes per year magnitude 7.0 or greater

series are given by

3 28+ 6
X = — ﬂjb — = 20.1283,
(B+0)1—a)
/ / 26846

= 0Xi 1+ AﬁA—i_A )

0(B+0)
L . J 28+ 0

Substituting parameter estimates & = 0.5434 and ———— = 9.1906

0(B+6)

X; = 0.5434X,_1 +9.1906, t=2,3,...,99.

The expectation and variance computed from the NLINARN (1) model are 20.128 and
52.755, respectively. We can see that the model can capture the sample mean and

variance of the data set. Therefore, the model is reasonable to this data set.



CHAPTER V

CONCLUSIONS

In this work, we apply the new generalized Poisson-Lindley distribution to con-

struct four new autoregressive model. The first model is the first order integer-valued au-

toregressive model with a two-parameter generalized Poisson-Lindley distribution based

on the binomial thinning operator. The second model is the first order integer-valued au-

toregressive model with a two-parameter generalized Poisson-Lindley distribution based

on the negative binomial thinning operator. The third model is the first order integer-

valued autoregressive model with a two-parameter generalized Poisson-Lindley inno-

vation based on the binomial thinning operator. The fourth model is the first order

integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley

innovation based on the negative binomial thinning operator. A summary of models

discussed in this thesis is given below.

INAR(1) with a two-parameter generalized

Poisson-Lindley distribution.

INAR(1) with a two-parameter generalized

Poisson-Lindley innovation.

Assume {X,} is a stationary process with 1 r Assume {e,} is a stationary process with 1

| NGPL(#, ) distribution

- - -_— e s s -

Based on Based on negative

binomial thinning

binomial thinning

operator operator

Xt = aOXt_l + € Xt =qa* Xt—l + E

BNLINAR(1) NNLINAR(1)

Section 3.1 Section 3.2

Based on Based on negative
binomial thinning binomial thinning

operator operator

Xt = (IOXL»_]_ + €t Xt =Qax Xt—l + Et

NLINARB (1) NLINARN (1)

Section 4.1 Section 4.2
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For each of these models from diagram, we have derived the probability mass
function of the innovation and also some many properties of these models such as au-
tocorrelation functions, multi-step ahead conditional expectation, variance and partial
autocorrelation function. Moreover, we discussed estimations of the unknown param-
eters of the models by using the conditional least squares estimator (CLS) and the
Yule-Walker estimator (YW). The estimators are compared via Monte Carlo simula-
tions in terms of their means and variances. Applications of the models for real count

time series were also discussed.
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