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CHAPTER I

INTRODUCTION

Recently, the stationary time series models with discrete marginal distribu-

tions attract attentions from researchers in many fields. These models are found

to be superior for count data in many applications such as the number of road

accidents [9], the number of insurance claim counts [16], the number of stock

transactions [8] and the number of submissions to animal health laboratories [5].

The model was first introduced by McKenzie [10] as the first order non-negative

integer-valued autoregressive model (INAR(1)) by applying the binomial thinning

operator introduced in Steutel and van Harn [15]. In 1988, Alzaid and Al-Osh

[3] constructed the integer-valued time series model with Poisson marginal. They

applied the model to count data time series. However, the Poisson marginal has

equidispersion. This restriction might not be suitable to non-equidispersed data

[1]. Therefore, alternative distributions have been explored in literatures such as

generalized Poisson, geometric and Poisson-Lindley distribution. The generalized

Poisson model introduced by Alzaid and Al-Osh [4] as an extension of the Pois-

son distribution of accommodate non-equidispersed data by McKenzie and et al

[13]. Recently, Poisson-Lindley first order integer-valued autoregressive model was

introduced by Mohammadpour and Shirozhan [5]. The model has the Poisson-

Lindley marginal distribution introduced in Sankaran [12]. This distribution be-

longs to a compound Poisson family which is obtained from Poisson distribution

when its parameter follows a Lindley distribution. Later in 2018, Rostami and

Roozegar [9] used the distribution to introduce the INAR(1) model with Poisson-

Lindley innovations based on the binomial and the negative binomial thinning

operators. Integer-valued autoregressive models has been applied in many appli-

cations with different discrete marginal distributions such as Poisson, geometric,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

negative binomial and Poisson-Lindley distribution. In 2015, Bhati and Qadri [7]

introduced a two-parameter generalized Poisson-Lindley distribution with param-

eter θ and β which are obtained from a mixed Poisson distribution when its mixing

parameters follow a two-parameter Lindley distribution introduced in Shanker and

Sharma [14]. This distribution is unimodal and over-dispersed. The distribution is

more flexible than the Poisson-Lindley distribution. The two-parameter general-

ized Poisson-Lindley distribution is stated as follows. A random variable X is said

to have a two-parameter generalized Poisson-Lindley distribution with parameter

θ and β , denoted as X ∼ NGPL(θ, β), if

P (X = x) =
θ2

(θ + β)(1 + θ)x+1

(
1 +

β(x+ 1)

1 + θ

)
x = 0, 1, . . . and θ, β ≥ 0.

Figure 1.1: Probability density curves of the two-parameter generalized Poisson-
Lindley distribution for different values of θ and β



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

For different values of two parameters, the probability function is evaluated

and presented in Figure 1.1. From the figure, we can see that the distribution

condenses and the right tail approaches to zero at a faster rate than the Poisson-

Lindley distribution when θ increases for any fixed β. Therefore, the distribution

is suitable for data having the right tail approaches to zero at a faster rate than

the Poisson-Lindley distribution. Such data sets are commonly found in insurance

business [7]. Therefore, the two-parameter generalized Poisson-Lindley distribu-

tion attracts attentions from many researchers. Development of the family of the

Poisson-Lindley first order integer-valued autoregressive models are presented in

Figure 1.2.

Figure 1.2: Development of the family of the Poisson-Lindley first order integer-valued
autoregressive models

In this thesis, we apply the two-parameter generalized Poisson-Lindley to

construct four new autoregressive models : (1) the first order integer-valued au-

toregressive models with a two-parameter generalized Poisson-Lindley distribution

based on the binomial thinning operator, (2) the first order integer-valued au-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

toregressive models with a two-parameter generalized Poisson-Lindley distribution

based on the negative binomial thinning operator, (3) the first order integer-valued

autoregressive model with a two-parameter generalized Poisson-Lindley innovation

based on the binomial thinning operator and (4) the first order integer-valued au-

toregressive model with a two-parameter generalized Poisson-Lindley innovation

based on the negative binomial thinning operator. The structure of these models

are presented in Figure 1.3.

Figure 1.3: The first order integer-valued autoregressive models

In Chapter 3, we construct two first order integer-valued autoregressive mod-

els with a two-parameter generalized Poisson-Lindley distributions based on two

thinning operators : (1) the binomial thinning operator, called the BNLINAR(1)

model and (2) the negative binomial thinning operator, called the NNLINAR(1)

model. The two models are discussed in Section 3.1 and Section 3.2, respectively.

In this chapter, we derive some probabilistic properties of the constructed models

such as moments and parameter estimations of the unknown parameters in the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

model by using the conditional least square estimator (CLS) and the Yule-Walker

estimator (YW). These estimators are compared via Monte Carlo simulations in

terms of their means and variances. Moreover, we discuss some possible applica-

tions of the BNLINAR(1) model and the NNLINAR(1) model for two real count

time series.

In Chapter 4, we construct two first order integer-valued autoregressive mod-

els with a two-parameter generalized Poisson-Lindley innovations based on two

thinning operators : (1) the binomial thinning operator, called the NLINARB(1)

model and (2) the negative binomial thinning operator, called the NLINARN(1)

model. The two models are discussed in Section 4.1 and Section 4.2, respectively.

In this chapter, we derive some probabilistic properties of the constructed models

such as moments and parameter estimations of the unknown parameters in the

model by using the conditional least square estimator and the Yule-Walker esti-

mator. These estimators are compared via Monte Carlo simulations in terms of

their means and variances. Moreover, we discuss some possible applications of the

NLINARB(1) model and the NLINARN(1) model for two real count time series.

Finally, we discuss some possible applications of the NLINARB(1) model and the

NLINARN(1) model for two real count time series. Conclusions of our study are

provided in Chapter 5.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

In this chapter, we recall some important definitions and theorems that will

be used repeatedly throughout this thesis. We start with the definitions of some

necessary distributions and their properties.

2.1 Distribution

In this part, we discuss some background knowledge in probability theory

such as distributions and moments. Since our work will cover only discrete distri-

butions, all properties will be discussed in the setting of discrete random variables.

Definition 2.1.1. Let X be a discrete random variable with space RX and prob-

ability mass function f(·). The expectation of X, denoted as E(X), is defined

by

E(X) =
∑
x∈RX

xf(x).

Definition 2.1.2. Let X be a discrete random variable with space RX . The

variance of X, denoetd as V ar(X), is defined by

V ar(X) = E((X − E(X))2) = E(X2)− (E(X))2.

Definition 2.1.3. Let X be a discrete random variable with space RX . The

probability generating function of X, denoted as ΦX(·), is defined by

ΦX(s) = E(sX) =
∑
x∈RX

sxf(x).

for s ∈ R.
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Definition 2.1.4. Let X be a discrete random variable with space RX . The

moment generating function of X, denoted as MX(·), is defined by

MX(s) = E(esX) =
∑
x∈RX

esxf(x).

for s ∈ R.

Definition 2.1.5. A random variable X is said to have the Bernoulli distribution

with parameter p (0 < p < 1), denoted as X ∼ Ber(p), if

P (X = x) = pxq1−x,

for x ∈ {0, 1, . . .}, where q = 1− p.

Theorem 2.1.1. The Bernoulli random variable X with parameter p has the

following properties

1. E(X) = p,

2. V ar(X) = pq,

3. ΦX(s) = q + ps,

4. MX(s) = q + pes.

Definition 2.1.6. A random variable X is said to have the binomial distribution

with parameters n (n ∈ N) and p (0 < p < 1), denoted as X ∼ Bi(n, p), if

P (X = x) =

(
n

x

)
qn−xpx,

for x ∈ {0, 1, . . . , n}, where q = 1− p.
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Theorem 2.1.2. The binomial random variable X with parameters n and p has

the following properties:

1. E(X) = np,

2. V ar(X) = npq,

3. ΦX(s) = (q + ps)n,

4. MX(s) = (q + pes)n.

Definition 2.1.7. A random variable X is said to have the geometric distribution

with parameter p (0 < p < 1), denoted as X ∼ Geo(p), if

P (X = x) = qxp,

for x ∈ {0, 1, . . .}, where q = 1− p.

Theorem 2.1.3. The geometric random variable X with parameter p has the

following properties:

1. E(X) =
q

p
,

2. V ar(X) =
q

p2
,

3. ΦX(s) =
p

1− qs
, for |s| < 1

q
,

4. MX(s) =
p

1− qes
, for |s| < 1

q
,

where q = 1− p.
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Definition 2.1.8. A random variable X is said to have the negative binomial

distribution with parameters r (r ∈ N) and p (0 < p < 1), denoted as X ∼

NB(r, p), if

P (X = x) =

(
r + x− 1

x

)
qxpr,

for x ∈ {0, 1, . . .}, where q = 1− p.

Theorem 2.1.4. The negative binomial random variable X with parameters r

and p has the following properties

1. E(X) =
rq

p
,

2. V ar(X) =
rq

p2
,

3. ΦX(s) = (
p

1− qs
)r, for |s| < 1

q
,

4. MX(s) = (
p

1− qes
)r, for |s| < 1

q
,

where q = 1− p.

Definition 2.1.9. (Bhati and Qadri [7]). A random variable X is said to have the

two-parameter generalized Poisson-Lindley distribution with parameters θ and β,

denoted as X ∼ NGPL(θ, β), if

P (X = x) =
θ2

(θ + β)(1 + θ)x+1

(
1 +

β(x+ 1)

1 + θ

)

for x ∈ {0, 1, . . .} and θ, β > 0.

Theorem 2.1.5. (Bhati and Qadri [7]). Properties of the two-parameter gen-

eralized Poisson-Lindley random variable X with parameters β and θ defined in

Definition 2.1.9 are as follows.

1. E(X) =
2β + θ

θ(β + θ)
,
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2. V ar(X) =
2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
,

3. ΦX(s) =
θ2(β + θ − s+ 1)

(β + θ)(θ − s+ 1)2
, for s ∈ R,

4. MX(s) =
θ2(β + θ − es + 1)

(β + θ)(θ − es + 1)2
, for s ∈ R.

Definition 2.1.10. Let X be a discrete random variable on space RX . Then X

has a degenerate distribution with parameter r if X is degenerated at r. That is

P (X = x) =


1, for x = r

0, for x ̸= r.

Definition 2.1.11. We say that the distribution function F (·) is a generalized

mixture of the distribution functions F (· ; 1), F (· ; 2), . . . if

F (x) =
∑
i≥1

wiF (x; i),

for all x ∈ R where w1, w2, . . . are real numbers such that
∑
i≥1

wi = 1,
∑
i≥1

|wi| < ∞

and for some index i, wi < 0.

2.2 Conditional distribution

In this part, we discuss the definitions and properties of conditional distri-

bution, conditional mean and conditional variance.

Definition 2.2.1. Let X and Y be two random variables with joint density f(x, y)

and marginals f1(x) and f2(y), respectively. The conditional probability density

function g of X, given (the event) Y = y, is defined as

g(x|y) = f(x, y)

f2(y)
,
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where f2(y) > 0. Similary, the conditional probability density function h of X,

given (the event) X = x, is defined as

h(y|x) = f(x, y)

f1(x)
,

where f1(x) > 0.

Definition 2.2.2. Let X and Y be discrete random variables with space RX . The

conditional expectation of X, given that Y = y, is

E(X|Y = y) =
∑
x∈RX

xfX|Y (x|y).

Definition 2.2.3. Let X and Y be discrete random variables with space RX . The

conditional variance of X, given that Y = y, is

V ar(X|Y = y) = E(X2|Y = y)− (E(X|Y = y))2 .

Theorem 2.2.1. Properties of conditional expectation and conditional variance

are as follows.

1. E(a|Y ) = a if a ∈ R,

2. E(X) = E(E(X|Y )),

3. E(X|Y ) = E(X) if X and Y are independent,

4. V ar(X) = E(V ar(X|Y )) + V ar(E(X|Y )).

2.3 Time series and stationary process

In this part, we state some important the concepts of time series that are

necessary such as stationarity and autocorrelation function.
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Definition 2.3.1. Time series {Zt; t ∈ N} is a series of data points indexed in

{1, 2, . . .}. If Zt has an integer value, the time series is called the integer-valued

time series.

Definition 2.3.2. A process {Zt; t ∈ N} is said to be the first-order stationary if

FZt1
(z1) = FZt1+k

(z1)

any t1 ∈ N and k ∈ Z. A process {Zt; t ∈ N} is said to be the second-order

stationary if

FZt1 ,Zt2
(z1, z2) = FZt1+k,t2+k

(z1, z2)

any t1, t2 ∈ N and k ∈ Z. A process {Zt; t ∈ N} is said to be stationary if

FZt1 ,Zt2 ,...,Zts
(z1, z2, . . . , zs) = FZt1+k,Zt2+k,...,Zts+k

(z1, z2, . . . , zs)

for any finite set of indices {t1, t2, . . . , ts} ⊂ N with s ∈ N, and k ∈ Z.

Definition 2.3.3. For a given real-valued process {Zt; t ∈ N}, the mean function

of the process is

µt = E(Zt).

The variance function of the process is

σ2
t = E(Zt − µt)

2.

The covariance function of the between Zt1 and Zt2 is

γ(t1, t2) = Cov(Zt1 , Zt2) = E[(Zt1 − µt1)(Zt2 − µt2)].
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The correlation function between Zt1 and Zt2 is

ρ(t1, t2) =
Cov(Zt1 , Zt1)√

V ar(Zt1)
√
V ar(Zt2)

=
γ(t1, t2)

σt1σt2

.

For a stationary process, the mean function and the variance function are constant.

That is µt = µ and σ2
t = σ, respectively. Then, the autocovariance function, γk,

of Zt and Zt+k for any k ∈ N is defined as

γk = γ(t− k, t) = γ(t, t+ k).

The corresponding autocorrelation function, ρk, is

ρk = ρ(t− k, t) = ρ(t, t+ k).

2.4 Integer-valued time series model

In this part, we give the definition of the first order integer-valued autore-

gressive model (INAR(1)). Since the integer-valued time series discussed in our

study are based on the binomial thinning operator and the negative binomial thin-

ning operator. We first discuss the definitions and properties of the two thinning

operators.

Definition 2.4.1. The binomial thinning operator, α◦, is defined as

α oX =
X∑
i=1

Wi, α ∈ (0, 1), (2.1)

where X is a non negative integer-valued random variable and {Wi}i≥1 is a se-

quence of independent and identically distributed random variables with Ber(α)

distribution and is independent of X.
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Theorem 2.4.1. (Steutel and van Harn [15]). The properties of the binomial

thinning operator defined in Definition 2.4.1 are as follows.

1. E(α ◦X) = αE(X),

2. V ar(α ◦X) = α(1− α)E(X) + α2V ar(X),

3. Φα◦X(s) = ΦX(1− α + αs) for s ∈ R,

4. Mα◦X(s) = MX(1− α + αes) for s ∈ R.

Definition 2.4.2. The negative binomial thinning operator, α∗, is defined as

α ∗X =
X∑
i=1

Zi, α ∈ (0, 1), (2.2)

where X is a non negative integer-valued random variable and {Zi}i≥1 is a se-

quence of independent and identically distributed random variables with Geo( 1
1+α

)

distribution and is independent of X.

Theorem 2.4.2. (Ristic and Nastic [6]). The properties of the negative binomial

thinning operator defined in Definition 2.4.2 are as follows.

1. E(α ∗X) = αE(X),

2. V ar(α ∗X) = α(1− α)E(X) + α2V ar(X),

3. Φα∗X(s) = ΦX((1 + α− αs)−1) for s ∈ R,

4. Mα∗X(s) = MX((1 + α− αes)−1) for s ∈ R.
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Definition 2.4.3. The first order integer-valued autoregressive model based on

the binomial thinning operator is defined as

Xt = α ◦Xt−1 + ϵt, (2.3)

where the binomial thinning α◦ is defined in Definition 2.4.1 and the innovation

process {ϵt}t≥1 is a sequence of independent and identically distributed (i.i.d.)

random variables such that α ◦Xt−1 and ϵt are independent.

Definition 2.4.4. The first order integer-valued autoregressive model based on

the negative binomial thinning operator is defined as

Xt = α ∗Xt−1 + εt, (2.4)

where the negative binomial thinning α∗ is defined in Definition 2.4.2 and the

innovation process {εt}t≥1 is a sequence of independent and identically distributed

(i.i.d.) random variables such that α ∗Xt−1 and εt are independent.

Definition 2.4.5. The integer-valued time series {Xt; t ∈ N} is said to be sta-

tionary if

FXt1 ,Xt2 ,...,Xts
(x1, x2, . . . , xs) = FXt1+k,Xt2+k,...,Xts+k

(x1, x2, . . . , xs)

for any finite set of indices {t1, t2, . . . , ts} ⊂ N with s ∈ N, and k ∈ Z.

2.5 Parameter estimation

In this part, we discussion two Parameter estimations for INAR(1) model

which are the conditional least squares estimators and the Yule-Walker estimators.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

Definition 2.5.1. The conditional least squares estimators of the parameters are

obtained by minimizing the function

Qn =
n∑

t=2

(Xt − E(Xt|Xt−1))
2,

where n ≥ 2 and E(Xt|Xt−1) is the conditional mean of Xt.

Definition 2.5.2. The Yule-Walker equation for INAR(1) defined as

αγ̂(0) = γ̂(1)

where γ̂(k) =
1

n

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄) and X̄ =
1

n

n∑
t=1

Xt is the sample mean.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

INAR(1) MODEL WITH THE

TWO-PARAMETER GENERALIZED

POISSON-LINDLEY DISTRIBUTION

In this chapter, we construct two first order integer-valued autoregressive

models with a two-parameter generalized Poisson-Lindley distribution based on

(1) the binomial thinning operator and (2) the negative binomial thinning opera-

tor. Moreover, probabilistic properties of the constructed models and parameter

estimation are demonstrated.

3.1 Construction of the first order integer-valued autoregressive mod-

els with the two-parameter generalized Poisson-Lindley distribu-

tion based on the binomial thinning operator (BNLINAR(1))

In this section, we construct the first order integer-valued autoregressive

models with two-parameter generalized Poisson-Lindley distribution based on the

binomial thinning operator model (BNLINAR(1)). Moreover, we investigate many

properties of the constructed model such as moments, parameter estimations and

perform some numerical studies.

Definition 3.1.1. The first order integer-valued autoregressive model with two-

parameter generalized Poisson-Lindley distribution based on the binomial thinning

operator (BNLINAR(1)) {Xt}t≥1 is defined as

Xt = α ◦Xt−1 + ϵt, (3.1)

where the binomial thinning α◦ is defined in Definition 2.4.1, {Xt}t≥1 is a station-
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ary process with the NGPL(θ, β) distribution and {ϵt}t≥1 is a sequence of i.i.d.

random variables such that α ◦Xt−1 and ϵt are independent.

Theorem 3.1.1. The innovation process {ϵt}t≥1 has the probability generating

function

Φϵt(s) =
(β + θ − s+ 1)(θ + α(1− s))2

(θ − s+ 1)2(θ + β + α(1− s))
, (3.2)

for s ∈ R.

Proof. Since {Xt}t≥1 is a stationary process with NGPL(θ, β), from Theorem

2.4.1(5),

Φα◦Xt−1(s) = E(s(α oXt−1)) = ΦXt(1− α + αs).

From (3.1) and the property that α oXt−1 and ϵt are independent for s ∈ R,

ΦXt(s) = E(sXt)

= E(sα oXt−1+ϵt)

= E(sα oXt−1sϵt)

= E(s(α oXt−1))E(sϵt)

= Φα◦Xt−1(s)Φϵt(s)

= ΦXt(1− α+ αs)Φϵt(s).
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From Theorem 2.1.5(3), the innovation process {ϵt}t≥1 has the probability gener-

ating function (pgf)

Φϵt(s) =
ΦXt(s)

ΦXt(1− α + αs)

=
θ2(β + θ − s+ 1)

(β + θ)(θ − s+ 1)2

˙(β + θ)(θ − 1 + α− αs+ 1)2

θ2(β + θ − 1 + α− αs+ 1)

=
(β + θ − s+ 1)(θ + α− αs)2

(θ − s+ 1)2(β + θ + α− αs)
.

Lemma 3.1.1. The generalized mixture

g(x) =

[
α2θ(θ − β) + θ(θ + β) + 2α(β2 − θ2)

(β + θ(1− α))2

]
θ

1 + θ

(
1− θ

1 + θ

)x

+
β(1− α)

β + θ(1− α)
(x+ 1)

(
θ

1 + θ

)2(
1− θ

1 + θ

)x

− αβ2

(β + θ(1− α))2
θ + β

θ + β + α

(
1− θ + β

θ + β + α

)x

(3.3)

is a probability mass function where 0 < α < 1, θ ≥ 1, and β > 0.

Proof. Let

w1 =
α2θ(θ − β) + θ(θ + β) + 2α(β2 − θ2)

(β + θ(1− α))2
,

w2 =
β(1− α)

β + θ(1− α)
,

and w3 = − αβ2

(β + θ(1− α))2
,
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and let

g1(x) =
θ

1 + θ

(
1− θ

1 + θ

)x

,

g2(x) = (x+ 1)

(
θ

1 + θ

)2(
1− θ

1 + θ

)x

,

g3(x) =
θ + β

θ + β + α

(
1− θ + β

θ + β + α

)x

.

Then w1 + w2 + w3 = 1, g1(·) is the probability mass function of Geo( θ
1+θ

), g2(·)

is the probability mass function of NB(2, θ
1+θ

) and g3(·) is the probability mass

function of Geo( θ+β
β+θ+α

). Thus,

∞∑
x=0

g(x) = w1

∞∑
x=0

g1(x) + w2

∞∑
x=0

g2(x) + w3

∞∑
x=0

g3(x) = 1.

Following Mohammadpour and Shirozhan [5], we next show that g(x) ≥ 0 for

x ∈ {0, 1, . . .} and the function g(x) can be written as

g(x) =

(
1

1 + θ

)x

r(x),

where

r(x) = w1

(
θ

1 + θ

)
+ w2

(
θ

1 + θ

)2

(x+ 1) + w3

(
θ + β

θ + β + α

)(
α(1 + θ)

θ + β + α

)x

.

First, we show that (r(x))′ > 0 for x ∈ {0, 1, . . .}.

Since w3 < 0 and ln
(

α(1 + θ)

θ + β + α

)
< 0,

(r(x))′ = w2

(
θ

1 + θ

)2

+ w3

(
θ + β

θ + β + α

)(
α(1 + θ)

θ + β + α

)x

ln
(

α(1 + θ)

θ + β + α

)
> 0.

Then, (r(x))′ > 0 for x ∈ {0, 1, . . .}.
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Moreover,

lim
x→∞

r(x) = lim
x→∞

[
w1

(
θ

1 + θ

)
+ w2

(
θ

1 + θ

)2

(x+ 1) + w3

(
θ + β

θ + β + α

)(
α(1 + θ)

θ + β + α

)x
]

= lim
x→∞

[
w1

(
θ

1 + θ

)
+ w2

(
θ

1 + θ

)2

(x+ 1)

]

= +∞.

Since θ ≥ 1, we can show that

r(0) = w1

(
θ

1 + θ

)
+ w2

(
θ

1 + θ

)2

+ w3

(
θ + β

θ + β + α

)
≥ w1

2
+

w2

4
+ w3,

and

w1

2
+

w2

4
+ w3 =

α2θ(θ − β) + θ(θ + β) + 2α(β2 − θ2)

2(β + θ(1− α))2
+

β(1− α)

4(β + θ(1− α))

− αβ2

(β + θ(1− α))2

=
(1− α)(β3 + 4β2θ + βθ(1− α)(2− α(θ − 2) + 3θ) + 2θ2(1− α)2)

4(1− α + β)(β + θ − αθ)2

≥ 0.

Therefore, g(·) is a probability mass function.

Theorem 3.1.2. The innovation sequence {ϵt}t≥1 of the BNLINAR(1) model

defined by (3.1) process has the probability mass function

fϵ(x) = αh(x) + (1− α)g(x),

where h(·) is the degenerate distribution function at zero defined in Definition

2.1.10 and g(·) is the probability mass function defined in Lemma 3.1.1.
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Proof. From Theorem 3.1.1, the generating function of ϵ is

Φϵ(s) =
(β + θ − s+ 1)(θ + α(1− s))2

(θ − s+ 1)2(θ + β + α(1− s))
.

The function can be written in terms of a weighted sum of three probability

generating functions as follows.

Φϵ(s) = α + (1− α) [w1Φ1(s) + w2Φ2(s) + w3Φ3(s)] ,

where the weights are

w1 =
α2θ(θ − β) + θ(θ + β) + 2α(β2 − θ2)

(β + θ(1− α))2
,

w2 =
β(1− α)

β + θ(1− α)
,

and w3 = − αβ2

(β + θ(1− α))2
,

and the probability generating functions are

Φ1(s) =
θ

1 + θ − s
,

Φ2(s) =
θ2

(1 + θ − s)2
,

and Φ3(s) =
(β + θ)

β + θ + α(1− s)
,

respectively. We can see that w1+w2+w3 = 1. Moreover, Φ1(·) is the probability

generating function of Geo( θ
1+θ

), Φ2(·) is the probability generating function of

NB(2, θ
1+θ

) and Φ3(·) is the probability generating function of Geo( θ+β
β+θ+α

). Thus,

the probability density function of ϵ can be written as

fϵ(x) = αh(x) + (1− α)g(x),
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where h(·) is the degenerate distribution function at zero and g(·) is the probability

mass function defined in Lemma 3.1.1.

Definition 3.1.2. [15] A discrete distribution with the probability generating

function Φ is called self-decomposable if

Φ(z) = Φ(1− α + αz)Φα(z) ;α ∈ (0, 1).

with Φα the probability generating function.

Corollary 3.1.1. The two-parameter generalized Poisson-Lindley distribution is

self-decomposable.

Proof. From Theorem 3.1.2, the mass function of ϵ is

fϵ(x) = αh(x) + (1− α)g(x)

where g(·) is the probability mass function defined in Lemma 3.1.1 and h(·) is

the degenerate distribution function at zero. Thus, the two-parameter generalized

Poisson-Lindley distribution is self-decomposable defined in Definition 3.1.2

Theorem 3.1.3. The process {Xt}t≥1 defined in (3.1) can be rewritten as

Xt =


α oXt−1, w.p. α,

α oXt−1 + ϵt, w.p. 1− α,

where w.p. stands for “with probability”.

Thus, we can write the process Xt as

Xt = α oXt−1 + ItHt, (3.4)
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where Ht has the probability mass function g(·) defined in Lemma 3.1.1, It is the

Bernoulli with parameter α and ItHt is independent of Xt−k for k ≥ 1.

Proof. From Theorem 3.1.2 and the process (3.1), the probability mass function

of ϵ is

fϵ(x) = αh(x) + (1− α)g(x)

where h(·) is the degenerate distribution function at zero and g(·) is the probability

mass function defined in Lemma 3.1.1. Then, the mass function of ϵ can be

rewritten as

fϵ(x) =


α, for x = 0

(1− α)g(x), for x ̸= 0.

Let It is the Bernoulli with parameter α and Ht has the probability mass function

g(·) defined in Lemma 3.1.1. Thus, we can write Xt as

Xt = α oXt−1 + ItHt,

where ItHt is independent of Xt−k for k ≥ 1.

Remark 3.1.1. The marginal distribution of the model (3.4) based on the bi-

nomial thinning operator can be expressed in terms of the innovation sequence

{ItHt} as

Xt
d
=

∞∑
j=0

αj o(It−jHt−j),

where “ d
= ” means equal in distribution.
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Proof. Note that

Xt = α oXt−1 + ItHt

= α o(α oXt−2 + It−1Ht−1) + ItHt

= α o(α oXt−2) + α o(It−1Ht−1) + ItHt

= α o(α o(α oXt−3 + It−2Ht−2)) + α o(It−1Ht−1) + ItHt

= α3 oXt−3 + α2 o It−2Ht−2 + α o It−1Ht−1 + ItHt. (3.5)

d
=

∞∑
j=1

αj o(It−jHt−j) + ItHt

d
=

∞∑
j=0

αj o(It−jHt−j),

where we use (3.4) to obtain (3.5).

Theorem 3.1.4. The autocovariance function, γk (k ≥ 1), of the BNLINAR(1)

model {Xt}t≥1 defined in Definition 3.1.1 is given by

γk = Cov(Xt, Xt−k) = αkγ0, (3.6)

where γ0 is the variance of Xt.

Consequently, the autocorrelation function of order k, ρk, of the BNLINAR(1)

model is

ρk = αk. (3.7)
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Proof. From (3.4) and the property that ItHt and Xt−k are independent, for k ≥ 1,

γk = Cov(Xt, Xt−k)

= Cov(α oXt−1 + ItHt, Xt−k)

= Cov(α oXt−1, Xt−k) + Cov(ItHt, Xt−k)

= αCov(Xt−1, Xt−k)

= αCov(α oXt−2 + It−1Ht−1, Xt−k)

= αk−1Cov(α oXt−k, Xt−k) (3.8)

= αkγ0.

By applying (3.4) recursively to obtain (3.8). Consequently, the correlation func-

tion ρk can be written as

ρk =
γk
γ0

= αk.

Remark 3.1.2. From (3.7), the autocorrelation function declines exponentially

as k converges to infinity.

3.1.1 Probabilistic properties of the BNLINAR(1) model

In this section, we investigate many conditional properties such as con-

ditional expectation and conditional variance of the constructed model. Since

{Xt}t≥1 is a stationary process with the NGPL(θ, β). From Theorem 2.1.5, ex-

pectation and variance of Xt for the BNLINAR(1) model are given respectively
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E(Xt) =
2β + θ

θ(β + θ)
, (3.9)

V ar(Xt) =
2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
. (3.10)

Theorem 3.1.5. The expectation of Ht defined in (3.4) is

E(Ht) = E(Xt) =
2β + θ

θ(β + θ)
.

Proof. From (3.4), since {Xt}t≥1 is a stationary process with the NGPL(θ, β) and

the fact that It and Ht are independent,

E(Xt) = E(α oXt−1 + ItHt)

= αE(Xt−1) + E(It)E(Ht)

= αE(Xt) + E(It)E(Ht).

Then (1− α)E(Xt) = E(It)E(Ht). Since E(It) = 1− α,

E(Ht) = E(Xt).

Theorem 3.1.6. The expectation of H2
t and variance of ItHt defined in (3.4) are

1. E(H2
t ) =

θ2(2 + θ) + β2(6− 2α+ 2θ) + βθ(8 + 3θ)

θ2(β + θ)2
,

2. V ar(ItHt) =
(1− α)(2β2(1 + α + θ) + θ2(1 + α + θ) + βθ(4 + 4α + 3θ))

θ2(β + θ)2
,

respectively.
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Proof. From Theorem 2.4.1(4), the stationary property of {Xt}t≥1 and the fact

that α ◦Xt−1 and ItHt are independent,

V ar(Xt) = V ar(α oXt−1 + ItHt)

= V ar(α ◦Xt−1) + V ar(ItHt)

= α(1− α)E(Xt−1) + α2V ar(Xt−1) + V ar(ItHt)

= α(1− α)E(Xt−1) + α2V ar(Xt) + E(I2t H
2
t )− (E(ItHt))

2

= α(1− α)E(Xt−1) + α2V ar(Xt) + E(I2t )E(H2
t )− (E(It)E(Ht))

2

= α(1− α)E(Xt) + α2V ar(Xt) + (1− α)E(H2
t )− (1− α)2(E(Ht))

2.

(3.11)

From (3.9) – (3.11) and Theorem 3.1.5, we have

E(H2
t ) =

V ar(Xt)− α(1− α)E(Xt)− α2V ar(Xt) + (1− α)2(E(Ht))
2

(1− α)

=
θ2(2 + θ) + β2(6− 2α + 2θ) + βθ(8 + 3θ)

θ2(β + θ)2
. (3.12)

Then we consider the variance of ItHt and the fact that It and Ht are independent,

V ar(ItHt) = E(I2t H
2
t )− (E(ItHt))

2

= E(I2t )E(H2
t )− (E(It)E(Ht))

2

= (1− α)E(H2
t )− (1− α)2(E(Ht))

2, (3.13)

we substitute E(H2
t ) and E(Ht) defined in (3.12) and Theorem 3.1.5 respectively,

we have

V ar(ItHt) =
(1− α)

θ2(β + θ)2
(2β2(1 + α + θ) + θ2(1 + α + θ) + βθ(4 + 4α + 3θ)).
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Theorem 3.1.7. The (k+1)-step ahead conditional expectation of the BNLINAR(1)

model is

E(Xt+k|Xt−1 = x) = αk+1x+ (1− αk+1)

(
2β + θ

θ(β + θ)

)
,

for x ∈ {0, 1, 2, . . .}.

Proof.

E(Xt+k|Xt−1 = x)

= E(α ◦Xt+k−1 + It+kHt+k|Xt−1 = x)

= E(α ◦ (α ◦Xt+k−2 + It+k−1Ht+k−1) + It+kHt+k|Xt−1 = x),

by using (3.4) to obtain the last equality. Applying (3.4) to {Xt}t≥1 recursively,

E(Xt+k|Xt−1 = x)

= E(αk+1 ◦Xt−1 + αk ◦ ItHt + αk−1 ◦ It+1Ht+1 + · · ·+ It+kHt+k|Xt−1 = x)

= E(αk+1 ◦Xt−1|Xt−1 = x) +
k∑

h=0

E(αh ◦ It+k−hHt+k−h|Xt−1 = x)

= αk+1x+
k∑

h=0

αhE(It+k−hHt+k−h) (3.14)

= αk+1x+

(
1− αk+1

1− α

)
E(ItHt),

where we use Theorem 2.4.1(3) to obtain (3.14).

Then, we substitute E(Ht) defined in Theorem 3.1.5.

E(Xt+k|Xt−1 = x) = αk+1x+ (1− αk+1)

(
2β + θ

θ(β + θ)

)
.
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Remark 3.1.3. The conditional expectation E(Xt+k|Xt−1 = x) converges to the

unconditional expectation 2β + θ

θ(β + θ)
as k converges to infinity.

Proof. Since 0 < α < 1,

lim
k→∞

E(Xt+k|Xt−1 = x) = lim
k→∞

(
αk+1x+ (1− αk+1)

(
2β + θ

θ(β + θ)

))
=

2β + θ

θ(β + θ)
.

Theorem 3.1.8. The (k+1)-step ahead conditional variance for the BNLINAR(1)

model is

V ar(Xt+k|Xt−1 = x) = αk+1(1− αk+1)x+
1− α2(k+1)

1− α2
V ar(ItHt)

+
(1− αk)(α− αk+2)

1− α2
E(ItHt), (3.15)

for x ∈ {0, 1, 2, . . .}.

Proof. From (3.4),

V ar(Xt+k|Xt−1 = x)

= V ar(α ◦Xt+k−1 + It+kHt+k|Xt−1 = x)

= V ar(α ◦ (α ◦Xt+k−2 + It+k−1Ht+k−1) + It+kHt+k|Xt−1 = x)

= V ar(αk+1 ◦Xt−1 + αk ◦ ItHt + αk−1 ◦ It+1Ht+1 + · · ·+ It+kHt+k|Xt−1 = x)

(3.16)
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= V ar(αk+1 ◦Xt−1) +
k∑

h=0

V ar(αh ◦ It+kHt+k|Xt−1 = x)

= αk+1(1− αk+1)x+
k∑

h=0

V ar(αh ◦ It+kHt+k) (3.17)

= αk+1(1− αk+1)x+
k∑

h=0

(αh(1− αh)E(It+kHt+k + α2h)V ar(It+kHt+k))

= αk+1(1− αk+1)x+ V ar(It+kHt+k)
k∑

h=0

α2h + E(It+kHt+k)
k∑

h=0

αh(1− αh)

= αk+1(1− αk+1)x+
1− α2(k+1)

1− α2
V ar(ItHt) +

(1− αk)(α− αk+2)

1− α2
E(ItHt),

where we use (3.4) to obtain (3.16) and Theorem 2.4.1(4) to obtain (3.17).

Remark 3.1.4. The conditional variance V ar(Xt+k|Xt−1 = x) converges to the

unconditional variance 2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
as k converges to in-

finity.

Proof. Since 0 < α < 1,

lim
k→∞

V ar(Xt+k|Xt−1 = x)

= lim
k→∞

[
αk+1(1− αk+1)x+

1− α2(k+1)

1− α2
V ar(ItHt) +

(1− αk)(α− αk+2)

1− α2
E(ItHt)

]
=

V ar(ItHt)

1− α2
+

αE(ItHt)

1− α2

=
2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
.

Theorem 3.1.9. The partial autocorrelation function of the BNLINAR(1) model

at lag h is 0 where h > 1.
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Proof. For h > 1,

β(h) = Corr(Xh+1 − E(Xh+1|X2, . . . , Xh), X1)

= Corr(Xh+1 − αXh + (1− α)

(
2β + θ

θ(β + θ)

)
, X1) by using Theorem 3.1.7

= Corr(Xh+1, X1)− Corr(αXh, X1) + Corr((1− α)

(
2β + θ

θ(β + θ)

)
, X1)

= αh − α(αh−1)

= 0.

Theorem 3.1.10. The Markov process with transition probabilities of the BNLINAR(1)

model is

plk =

min(l,k)∑
m=0

(
l

m

)
αm(1− α)l−mP (ItHt = k −m)

where the process ItHt is defined in (3.4).

Proof.

plk = P (Xt = k|Xt−1 = l)

= P (α ◦Xt−1 + ItHt = k|Xt−1 = l)

=

min(l,k)∑
m=0

P (α ◦Xt−1 = m|Xt−1 = l)P (ItHt = k −m|Xt−1 = l)

=

min(l,k)∑
m=0

P (α ◦Xt−1 = m|Xt−1 = l)P (ItHt = k −m)

=

min(l,k)∑
m=0

(
l

m

)
αm(1− α)l−mP (ItHt = k −m),

by using Definition 2.4.1 and the process ItHt is defined in (3.4).
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3.1.2 Estimation and inference of the BNLINAR(1) model

In this section, we consider parameter estimation methods of the unknown

parameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-

Walker estimator (YW). These estimators are compared via Monte Carlo simu-

lations in terms of their means and variances by using the statistical software R

[11].

3.1.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters α and µ of the

BNLINAR(1) model are obtained by minimizing the function defined in Def-

inition 2.5.1. Let k = 0 in the expression in Theorem 3.1.7, the conditional

expectation is

E(Xt|Xt−1) = αXt−1 + µ(1− α),

where µ = E(Xt). Then

Qn =
n∑

t=2

(Xt − E(Xt|Xt−1))
2 =

n∑
t=2

(Xt − αXt−1 − µ(1− α))2.

Equating the first order partial derivatives of Qn with respect to µ and α to zero,

we have

∂Qn

∂µ

∣∣
µ=µ̂,α=α̂

= −
n∑

t=2

2(Xt − α̂Xt−1 − µ̂(1− α̂))(1− α̂) = 0. (3.18)

∂Qn

∂α̂

∣∣
µ=µ̂,α=α̂

=
n∑

t=2

2(Xt − α̂Xt−1 − µ̂(1− α̂))(µ̂−Xt−1) = 0. (3.19)

From (3.18),

n∑
t=2

Xt − α̂
n∑

t=2

Xt−1 − µ̂(n− 1)(1− α̂) = 0. (3.20)
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By solving equation (3.20), the estimation of µ can be computed as

µ̂ =

n∑
t=2

Xt − α̂
n∑

t=2

Xt−1

(n− 1)(1− α̂)
. (3.21)

From (3.19),

0 = µ̂

n∑
t=2

Xt − α̂µ̂

n∑
t=2

Xt−1 − µ̂2(1− α̂)(n− 1)−
n∑

t=2

Xt−1Xt + α̂

n∑
t=2

X2
t−1

+ (1− α̂)µ̂
n∑

t=2

Xt−1. (3.22)

By solving equation (3.22) and substitute µ̂ in equation (3.21), the estimation of

α can be computed as

α̂CLS =

(n− 1)
n∑

t=2

Xt−1Xt −
n∑

t=2

Xt

n∑
t=2

Xt−1

(n− 1)
n∑

t=2

X2
t−1 −

(
n∑

t=2

Xt−1

)2 .

From (3.21) and (3.9), we have

2β̂CLS + θ̂CLS

θ̂CLS(θ̂CLS + β̂CLS)
= µ̂CLS =

n∑
t=2

Xt − α̂CLS

n∑
t=2

Xt−1

(n− 1)(1− α̂CLS)
. (3.23)

The conditional least squares estimator of the parameters σ2 is obtained by mini-

mizing the function defined in Abdulhamid et al. [2]. First, substitute k = 0 into

(3.15),

V ar(Xt|Xt−1) = α(1− α)Xt−1 + V ar(ItHt). (3.24)
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Substitute V ar(ItHt) from (3.13) into (3.24), the conditional variance is

V ar(Xt|Xt−1) = α(1− α)Xt−1 + (1− α2)σ2 − α(1− α)µ. (3.25)

To obtain σ̂2, we follow Abdulhamid et al. [2] by minimizing the function Sn

defined as

Sn =
n∑

t=2

[(Xt − E(Xt|Xt−1))
2 − V ar(Xt|Xt−1)]

2

=
n∑

t=2

[(Xt − αXt−1 − µ(1− α))2 − α(1− α)Xt−1 − (1− α2)σ2 + α(1− α)µ]2.

Taking the first order partial derivative of Sn with respect to σ2 and equating it

to zero, we get

0 =
∂Sn

∂σ2

∣∣
σ2=σ̂2,µ=µ̂,α=α̂

=

n∑
t=2

2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1− α̂)Xt−1 − (1− α̂2)σ̂2 + α̂(1− α̂)µ̂](α̂2 − 1).

Then

n∑
t=2

[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1− α̂)Xt−1 − (1− α̂2)σ̂2 + α̂(1− α̂)µ̂] = 0. (3.26)

By solving the equation (3.26), the estimation of σ2 can be obtained as

σ̂2 =

∑n
t=2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1− α̂)Xt−1 + α̂(1− α̂)µ̂]

(1− α̂2)(n− 1)
. (3.27)

From (3.10) and (3.27),

2β̂2(1 + θ̂) + θ̂2(1 + α̂) + β̂θ̂(4 + 3θ̂)

θ̂2(β̂ + θ̂)2

= σ̂2
CLS =

∑n
t=2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1− α̂)Xt−1 + α̂(1− α̂)µ̂]

(1− α̂2)(n− 1)
.
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3.1.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for α, µ and σ2 are obtained. By using

Definition 2.3.3 then the sample autocovariance function of Xt

γ̂(k) =
1

n

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄), (3.28)

where 0 ≤ k < n and X̄ =
1

n

n∑
t=1

Xt is the sample mean.

From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.28), the

Yule-Walker estimator of α is

α̂YW =
γ̂(1)

γ̂(0)
=

n∑
t=2

(Xt − X̄)(Xt−1 − X̄)

n∑
t=1

(Xt − X̄)2
.

Consider µ = E(Xt) defined in (3.9) and σ2 = V ar(Xt) defined in (3.10) and note that

S2 =

n∑
t=1

(Xt − X̄)

n− 1
. The Yule-Walker estimators of µ and σ2 are

µ̂YW = X̄ =
2β̂ + θ̂

θ̂(β̂ + θ̂)
,

σ̂2
YW = S2 =

2β̂2(1 + θ̂) + θ̂2(1 + α̂) + β̂θ̂(4 + 3θ̂)

θ̂2(β̂ + θ̂)2
,

respectively.

3.1.3 Simulation Results

In this section, we produce 10,000 samples from the BNLINAR(1) model for true

parameter values in different settings (1) α = 0.1, β = 1, θ = 1; (2) α = 0.3, β = 2, θ = 2;

(3) α = 0.5, β = 3, θ = 3 of different sample sizes n = 50, 100, 500, 1000, 5000 and 10000

by using the statistical software R and obtain estimators of parameters from two methods

described in Section 3.1.2. Then we compare the obtained estimators in terms of their
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means and variances. Table 3.1 shows mean and variance (in brackets) of the estimators

for different values of the parameters α, µ and σ2.

From Table 3.1, we observe that the estimators obtained from the two estimation

methods converge to the true parameters. In addition, increasing the sample size yields

smaller variance. The conditional least squares estimate (CLS) and the Yule-Walker

estimate (YW) are approximately the same. Considering the variance we can see that the

CLS estimators have smaller variance than the YW estimators for parameters α and µ.

However, the YW has smaller variance than the CLS for the parameter σ2. Considering

the mean, we can see that the CLS estimators converge to the true parameter faster

than the YW estimators for parameters α and µ.

3.1.4 Real data

In this section, we apply the two models with two real data sets : (1) the numbers

of Skin-lesions and (2) the numbers of Anorexias.

3.1.4.1 The numbers of Skin-lesions

The first example considers the numbers of Skin-lesions monthly from January

2003 to December 2009 from a region in New Zealand. The data was original introduced

in Aghababaei et al. [1]. Sample mean and variance are 1.43 and 3.36, respectively. The

fitted BNLINAR(1) model is

Xt = 0.2365 ◦Xt−1 + ItHt,

The predicted values of the numbers of Skin-lesions series are given by

X̂1 =
2β̂ + θ̂

θ̂(β̂ + θ̂)
= 1.4142,

X̂t = α̂X̂t−1 + (1− α̂)
2β̂ + θ̂

θ̂(β̂ + θ̂)
.
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(α, θ, β, µ, σ2) = (0.1, 1, 1, 1.5, 3.25)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.0838
(0.0193)

1.4796
(0.0742)

3.1156
(1.3730)

0.0707
(0.0193)

1.4730
(0.0766)

3.1751
(1.3920)

100 0.0943
(0.0101)

1.4855
(0.0372)

3.1740
(0.7122)

0.0848
(0.0101)

1.4854
(0.0382)

3.2074
(0.7310)

500 0.0982
(0.0021)

1.4969
(0.0070)

3.2364
(0.1418)

0.0970
(0.0021)

1.4964
(0.0079)

3.2386
(0.1454)

1000 0.0990
(0.0011)

1.4998
(0.0032)

3.2453
(0.0723)

0.0982
(0.0011)

1.4983
(0.0040)

3.2455
(0.0717)

5000 0.0999
(0.0002)

1.4996
(0.0007)

3.2493
(0.0154)

0.0998
(0.0002)

1.4996
(0.0008)

3.2497
(0.0144)

10000 0.0999
(0.0001)

1.4999
(0.0003)

3.2495
(0.0077)

0.0999
(0.0001)

1.4999
(0.0004)

3.2497
(0.0073)

(α, θ, β, µ, σ2) = (0.3, 2, 2, 0.75, 1.1875)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.2649
(0.0223)

0.7035
(0.0413)

1.0840
(0.2564)

0.2515
(0.0218)

0.7018
(0.0412)

1.1044
(0.2535)

100 0.2815
(0.0120)

0.7094
(0.0214)

1.1120
(0.1271)

0.2758
(0.0117)

0.7092
(0.0202)

1.1182
(0.1228)

500 0.2956
(0.0026)

0.7157
(0.0042)

1.1371
(0.0267)

0.2948
(0.0026)

0.7143
(0.0043)

1.1372
(0.0268)

1000 0.2988
(0.0013)

0.7270
(0.0022)

1.1416
(0.0136)

0.2971
(0.0013)

0.7166
(0.0021)

1.1430
(0.0137)

5000 0.2999
(0.0003)

0.7366
(0.0004)

1.1435
(0.0032)

0.2997
(0.0003)

0.7166
(0.0004)

1.1445
(0.0027)

10000 0.3000
(0.0000)

0.7399
(0.0002)

1.1698
(0.0015)

0.2999
(0.0001)

0.7378
(0.0002)

1.1699
(0.0013)

(α, θ, β, µ, σ2) = (0.5, 3, 3, 0.5, 0.6944)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.4363
(0.0266)

0.4396
(0.0496)

0.5286
(0.6079)

0.4221
(0.0258)

0.4328
(0.0351)

0.5801
(0.1272)

100 0.4680
(0.0130)

0.4407
(0.0180)

0.5970
(0.0647)

0.4604
(0.0135)

0.4403
(0.0184)

0.6024
(0.0671)

500 0.4925
(0.0028)

0.4453
(0.0037)

0.6161
(0.0140)

0.4911
(0.0028)

0.4442
(0.0037)

0.6166
(0.0139)

1000 0.4967
(0.0015)

0.4459
(0.0018)

0.6207
(0.0072)

0.4959
(0.0014)

0.4460
(0.0019)

0.6217
(0.0072)

5000 0.4993
(0.0003)

0.4562
(0.0004)

0.6215
(0.0019)

0.4992
(0.0003)

0.4462
(0.0004)

0.6229
(0.0014)

10000 0.5000
(0.0001)

0.4772
(0.0001)

0.6458
(0.0016)

0.5000
(0.0001)

0.4729
(0.0001)

0.6464
(0.0007)

Table 3.1: Mean and variance (in brackets) of the estimators for different values of the
parameters α, µ and σ2 for the BNLINAR(1) model
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Substituting parameter estimates α̂ = 0.2365 and 2β̂ + θ̂

θ̂(β̂ + θ̂)
= 1.4142.

X̂t = 0.2365X̂t−1 + 1.0797, t = 2, 3, . . . , 72.

The expectation and variance computed from the BNLINAR(1) model are 1.414 and

3.356, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.

3.1.4.2 The numbers of Anorexias

The second example considers the numbers of Anorexias monthly from January

2003 to December 2009 from a region in New Zealand. Sample mean and variance are

0.82 and 2.90, respectively. The fitted BNLINAR(1) is

Xt = 0.4909 ◦Xt−1 + ItHt,

The predicted values of the numbers of Anorexias series are given by

X̂1 =
2β + θ

θ(β + θ)
= 0.8313,

X̂t = α̂X̂t−1 + (1− α̂)
2β + θ

θ(β + θ)
.

Substituting parameter estimates α̂ = 0.4909 and 2β̂ + θ̂

θ̂(β̂ + θ̂)
= 0.8313.

X̂t = 0.4909X̂t−1 + 0.4232, t = 2, 3, . . . , 72.

The expectation and variance computed from the BNLINAR(1) model are 0.831 and

2.900, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.
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3.2 Construction of the first order integer-valued autoregressive models

with the two-parameter generalized Poisson-Lindley distribution based

on the negative binomial thinning operator model (NNLINAR(1))

In this section, we construct the first order integer-valued autoregressive mod-

els with two-parameter generalized Poisson-Lindley distribution based on the negative

binomial thinning operator model (NNLINAR(1)). Moreover, we investigate many prop-

erties of the constructed model such as moments, parameter estimations and perform

some numerical studies.

Definition 3.2.1. The first order integer-valued autoregressive model with two-parameter

generalized Poisson-Lindley distribution based on the negative binomial thinning oper-

ator (NNLINAR(1)) {Xt}t≥1 is defined as

Xt = α ∗Xt−1 + εt, (3.29)

where the negative the binomial thinning α∗ defined in Definition 2.4.2, {Xt}t≥1 is a

stationary process with the NGPL(θ, β) distribution and {εt}t≥1 is a sequence of i.i.d.

random variables such that α ∗Xt−1 and εt are independent.

Theorem 3.2.1. The innovation process {εt}t≥1 has the probability generating function

Φεt(s) =
(β + θ − s+ 1)(θ + αθ − αθs+ α− αs)2

(θ − s+ 1)2(1 + α− αs)(θ + β + αθ + αβ − α(β + θ + 1)s)
, (3.30)

for s ∈ R.

Proof. Since {Xt}t≥1 is a stationary process with the NGPL(θ, β), from Theorem

2.4.2(5),

Φα∗Xt−1(s) = E(s(α∗Xt−1)) = ΦXt((1 + α− αs)−1).
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From (3.29) and the property that α ∗Xt−1 and εt are independent, for s ∈ R,

ΦXt(s) = E(sXt)

= E(sα∗Xt−1+εt)

= E(sα∗Xt−1sεt)

= E(s(α∗Xt−1))E(sεt)

= Φα∗Xt−1(s)Φεt(s)

= ΦXt((1 + α− αs)−1)Φεt(s).

From Theorem 2.1.5(3), the innovation process {εt}t≥1 has the probability generating

function

Φεt(s) =
ΦXt(s)

ΦXt((1 + α− αs)−1)

=
θ2(β + θ − s+ 1)

(β + θ)(θ − s+ 1)2

˙(β + θ)(θ − (1 + α− αs)−1 + 1)2

θ2(θ − (1 + α− αs)−1 + 1 + β)

=
β + θ − s+ 1

(θ − s+ 1)2

˙(θ + αθ − αθs− 1 + 1 + α− αs)2

(1 + α− αs)(β + αβ − αβs+ θ + θα− αθs− 1 + 1 + α− αs)

=
(β + θ − s+ 1)(θ + αθ − αθs+ α− αs)2

(θ − s+ 1)2(1 + α− αs)(θ + β + α+ αθ + αβ − α(β + θ + 1)s)
.

Theorem 3.2.2. The autocovariance function, γk (k ≥ 1), of the NNLINAR(1) model

{Xt}t≥1 defined in Definition 3.2.1 is given by

γk = Cov(Xt, Xt−k) = αkγ0, (3.31)

where γ0 is the variance of Xt.

Consequently, the autocorrelation function of order k, ρk, of the NNLINAR(1) model

is

ρk = αk. (3.32)
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Proof. From (3.29) and the property that εt and Xt−k are independent, for k ≥ 1,

γk = Cov(Xt, Xt−k)

= Cov(α ∗Xt−1 + εt, Xt−k)

= Cov(α ∗Xt−1, Xt−k) + Cov(εt, Xt−k)

= αCov(Xt−1, Xt−k)

= αCov(α ∗Xt−2 + εt−1, Xt−k)

= αk−1Cov(α ∗Xt−k, Xt−k) (3.33)

= αkγ0.

By applying (3.29) recursively to obtain (3.33). Consequently, the correlation function

ρk can be written as

ρk =
γk
γ0

= αk.

Remark 3.2.1. From (3.32), the autocorrelation function declines exponentially as k

converges to infinity.

3.2.1 Probabilistic properties of the NNLINAR(1) model

In this section, we investigate many conditional properties such as conditional

mean and conditional variance of the constructed model. Since {Xt}t≥1 is a stationary

process with the NGPL(θ, β). From Theorem 2.1.5, mean and variance of Xt for the

NNLINAR(1) model are given respectively by

E(Xt) =
2β + θ

θ(β + θ)
, (3.34)

V ar(Xt) =
2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
. (3.35)
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Theorem 3.2.3. The expectation of εt defined in Definition 3.2.1 is

E(εt) = (1− α)E(Xt),

where E(Xt) is defined in (3.34).

Proof. From (3.29), since {Xt}t≥1 is a stationary process with the NGPL(θ, β),

E(Xt) = E(α ∗Xt−1 + εt)

= αE(Xt) + E(εt).

Then E(εt) = (1− α)E(Xt).

Theorem 3.2.4. The variance of εt defined in (3.29) is

V ar(εt) = (1− α2)V ar(Xt)− α(1 + α)E(Xt),

where E(Xt) and V ar(Xt) are defined in (3.34) and (3.35), respectively.

Proof. From (3.29), since {Xt}t≥1 is a stationary process with the NGPL(θ, β),

V ar(Xt) = V ar(α ∗Xt−1 + εt)

= V ar(α ∗Xt−1) + V ar(εt)

= α(1 + α)E(Xt−1) + α2V ar(Xt−1) + V ar(εt).

Then, (1− α2)V ar(Xt) = α(1 + α)E(Xt) + V ar(εt).

Consequently, V ar(εt) = (1− α2)V ar(Xt)− α(1 + α)E(Xt).
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Theorem 3.2.5. The (k+1)-step ahead conditional expectation of the NNLINAR(1)

model is

E(Xt+k|Xt−1 = x) = αk+1x+ (1− αk+1)

(
2β + θ

θ(β + θ)

)
,

for x ∈ {0, 1, 2, . . .}.

Proof.

E(Xt+k|Xt−1 = x) = E(α ∗Xt+k−1 + εt+k|Xt−1 = x)

= E(α ∗ (α ∗Xt+k−2 + εt+k−1) + εt+k|Xt−1 = x),

by using (3.29) to obtain the last equality. Applying (3.29) to {Xt}t≥1 recursively,

E(Xt+k|Xt−1 = x) = E(αk+1 ∗Xt−1 + αk ∗ εt + αk−1 ∗ εt+1 + · · ·+ εt+k|Xt−1 = x)

= E(αk+1 ∗Xt−1|Xt−1 = x) +

k∑
h=0

E(αh ∗ εt+k−h|Xt−1 = x)

= αk+1x+

k∑
h=0

αhE(εt+k−h) (3.36)

= αk+1x+

(
1− αk+1

1− α

)
E(εt)

= αk+1x+ (1− αk+1)

(
2β + θ

θ(β + θ)

)
,

where we use Theorem 2.4.2(3) to obtain (3.36).

Remark 3.2.2. The conditional expectation E(Xt+k|Xt−1 = x) converges to the un-

conditional expectation 2β + θ

θ(β + θ)
as k converges to infinity.
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Proof. Since 0 < α < 1,

lim
k→∞

E(Xt+k|Xt−1 = x) = lim
k→∞

(
αk+1x+ (1− αk+1)

(
2β + θ

θ(β + θ)

))
=

2β + θ

θ(β + θ)
.

Theorem 3.2.6. The (k + 1)-step ahead conditional variance for the NNLINAR(1)

model is

V ar(Xt+k|Xt−1 = x) =αk+1(1 + αk+1)x+
1− α2(k+1)

1− α2
V ar(εt)

+
α(1− αk)(1− αk+1)

1− α2
E(εt), (3.37)

for x ∈ {0, 1, 2, . . .}.

Proof. From (3.29),

V ar(Xt+k|Xt−1 = x)

= V ar(α ∗Xt+k−1 + εt+k|Xt−1 = x)

= V ar(α ∗ (α ∗Xt+k−2 + εt+k−1) + εt+k|Xt−1 = x) (3.38)

= V ar(αk+1 ∗Xt−1 + αk ∗ εt + αk−1 ∗ εt+1 + · · ·+ εt+k|Xt−1 = x)

= V ar(αk+1 ∗Xt−1) +

k∑
h=0

V ar(αh ∗ εt+k|Xt−1 = x)

= αk+1(1 + αk+1)x+

k∑
h=0

V ar(αh ∗ εt+k−h) (3.39)

= αk+1(1 + αk+1)x+

k∑
h=0

(αh(1 + αh)E(εt+k−h) + α2hV ar(εt+k−h))

= αk+1(1 + αk+1)x+ V ar(εt)

k∑
h=0

α2h + E(εt)

k∑
h=0

αh(1− αh)

= αk+1(1 + αk+1)x+
1− α2(k+1)

1− α2
V ar(εt) +

α(1− αk)(1− αk+1)

1− α2
E(εt),
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where we use (3.29) to obtain (3.38) and Theorem 2.4.2(4) to obtain (3.39).

Remark 3.2.3. The conditional variance V ar(Xt+k|Xt−1 = x) converges to the uncon-

ditional variance 2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
as k converges to infinity.

Proof. Since 0 < α < 1,

lim
k→∞

V ar(Xt+k|Xt−1 = x)

= lim
k→∞

[
αk+1(1 + αk+1)x+

1− α2(k+1)

1− α2
V ar(εt) +

α(1− αk)(1− αk+1)

1− α2
E(εt)

]

=
V ar(εt)

1− α2
+

αE(εt)

1− α2

=
2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
.

Theorem 3.2.7. The Markov process with transition probabilities of the NNLINAR(1)

model is

plk =

k∑
m=0

(
l +m− 1

m

)(
1

1 + α

)l ( α

1 + α

)m

P (εt = k −m)I(l ̸= 0) + P (εt = k)I(l = 0),

(3.40)

where the process εt is defined in (3.29).

Proof.

plk = P (Xt = k|Xt−1 = l)

= P (α ∗Xt−1 + εt = k|Xt−1 = l).

=

k∑
m=0

P (α ∗Xt−1 = m|Xt−1 = l)P (εt = k −m)I(l ̸= 0) + P (εt = k)I(l = 0)

=
k∑

m=0

(
l +m− 1

m

)(
1

1 + α

)l ( α

1 + α

)m

P (εt = k −m)I(l ̸= 0) + P (εt = k)I(l = 0).
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3.2.2 Estimation and inference of the NNLINAR(1) model

In this section, we consider parameter estimation methods of the unknown pa-

rameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker

estimator (YW). These estimators are compared via Monte Carlo simulations in terms

of their means and variances by using the statistical software R [11].

3.2.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters α and µ of the NNLINAR(1)

model are obtained by minimizing the function defined in Definition 2.5.1. Let k = 0 in

the expression in Theorem 3.2.5, the conditional expectation is

E(Xt|Xt−1) = αXt−1 + µ(1− α),

where µ = E(Xt). Then

Qn =

n∑
t=2

(Xt − E(Xt|Xt−1))
2 =

n∑
t=2

(Xt − αXt−1 − µ(1− α))2.

Equating the first order partial derivatives of Qn with respect to µ and α to zero, then

∂Qn

∂µ

∣∣
µ=µ̂,α=α̂

= −
n∑

t=2

2(Xt − α̂Xt−1 − µ̂(1− α̂))(1− α̂) = 0. (3.41)

∂Qn

∂α̂

∣∣
µ=µ̂,α=α̂

=
n∑

t=2

2(Xt − α̂Xt−1 − µ̂(1− α̂))(µ̂−Xt−1) = 0. (3.42)

From (3.41),

n∑
t=2

Xt − α̂
n∑

t=2

Xt−1 − µ̂(n− 1)(1− α̂) = 0. (3.43)
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By solving the equation (3.43), the estimation of µ can be computed as

µ̂ =

n∑
t=2

Xt − α̂

n∑
t=2

Xt−1

(n− 1)(1− α̂)
. (3.44)

From (3.42)

0 = µ̂

n∑
t=2

Xt − α̂µ̂

n∑
t=2

Xt−1 − µ̂2(1− α̂)(n− 1)−
n∑

t=2

Xt−1Xt + α̂

n∑
t=2

X2
t−1

+ (1− α̂)µ̂

n∑
t=2

Xt−1. (3.45)

By solving equation (3.45) and substitute µ̂ in equation (3.44), the estimation of α can

be computed as

α̂ =

(n− 1)

n∑
t=2

Xt−1Xt −
n∑

t=2

Xt

n∑
t=2

Xt−1

(n− 1)

n∑
t=2

X2
t−1 −

(
n∑

t=2

Xt−1

)2 .

From (3.42) and (3.34), we have

2β̂CLS + θ̂CLS

θ̂CLS(θ̂CLS + β̂CLS)
= µ̂CLS =

n∑
t=2

Xt − α̂CLS

n∑
t=2

Xt−1

(n− 1)(1− α̂CLS)
.

The conditional least squares estimator of parameter σ2 is obtained by minimizing the

function defined in Abdulhamid et al. [2]. First, substitute k = 0 into (3.37),

V ar(Xt|Xt−1) = α(1− α)Xt−1 + V ar(εt). (3.46)

Substitute V ar(εt) from Theorem 3.2.4 in (3.46), the conditional variance is

V ar(Xt|Xt−1) = α(1 + α)Xt−1 + (1− α2)σ2 − α(1 + α)µ. (3.47)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49

To obtain σ̂2, we follow Abdulhamid et al. [2] by minimizing the function Sn defined as

Sn =

n∑
t=2

[(Xt − E(Xt|Xt−1))
2 − V ar(Xt|Xt−1)]

2

=

n∑
t=2

[(Xt − αXt−1 − µ(1− α))2 − α(1 + α)Xt−1 − (1− α2)σ2 + α(1 + α)µ]2.

Taking the first order partial derivative of Sn with respect to σ2 and equating it to zero,

we get

0 =
∂Sn

∂σ2

∣∣
σ2=σ̂2,µ=µ̂,α=α̂

=

n∑
t=2

2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1 + α̂)Xt−1 − (1− α̂2)σ̂2 + α̂(1 + α̂)µ̂](α̂2 − 1).

Then

n∑
t=2

[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1 + α̂)Xt−1 − (1− α̂2)σ̂2 + α̂(1 + α̂)µ̂] = 0. (3.48)

By solving the equation (3.48), the estimation of σ2 can be obtained as

σ̂2 =

∑n
t=2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1 + α̂)Xt−1 + α̂(1 + α̂)µ̂]

(1− α̂2)(n− 1)
. (3.49)

From (3.35) and (3.49)

2β̂2(1 + θ̂) + θ̂2(1 + θ̂) + β̂θ̂(4 + 3θ̂)

θ̂2(β̂ + θ̂)2

=

∑n
t=2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1 + α̂)Xt−1 + α̂(1 + α̂)µ̂]

(1− α̂2)(n− 1)
.
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3.2.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for α, µ and σ2 are obtained. By using

Definition 2.3.3, the sample autocovariance function of Xt

γ̂(k) =
1

n

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄), (3.50)

where 0 ≤ k < n and X̄ =
1

n

n∑
t=1

Xt is the sample mean.

From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.50), the

Yule-Walker estimator of α is

α̂YW =
γ̂(1)

γ̂(0)
=

n∑
t=2

(Xt − X̄)(Xt−1 − X̄)

n∑
t=1

(Xt − X̄)2
.

Consider µ = E(Xt) defined in (3.34) and σ2 = V ar(Xt) defined in (3.35) and note that

S2 =

n∑
t=1

(Xt − X̄)2

n− 1
. The Yule-Walker estimators of µ and σ2 are

µ̂YW = X̄ =
2β̂ + θ̂

θ̂(β̂ + θ̂)
,

σ̂2
YW = S2 =

2β̂2(1 + θ̂) + θ̂2(1 + θ̂) + β̂θ̂(4 + 3θ̂)

θ̂2(β̂ + θ̂)2
,

respectively.

3.2.3 Real data

In this section, we apply the two models with two real data sets : (1) the numbers

of Skin-lesions and (2) the numbers of Anorexias.
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3.2.3.1 The numbers of Skin-lesions

The first example considers the numbers of Skin-lesions monthly from January

2003 to December 2009 from a region in New Zealand. The data was originally intro-

duced in Aghababaei et al. [1]. Sample mean and variance are 1.43 and 3.36, respectively.

The fitted NNLINAR(1) model is

Xt = 0.2365 ∗Xt−1 + εt,

The predicted values of the numbers of Skin-lesions series are given by

X̂1 =
2β̂ + θ̂

θ̂(β̂ + θ̂)
= 1.4142

X̂t = α̂X̂t−1 + (1− α̂)
2β̂ + θ̂

θ̂(β̂ + θ̂)
.

Substituting parameter estimates α̂ = 0.2365 and 2β̂ + θ̂

θ̂(β̂ + θ̂)
= 1.4142.

X̂t = 0.2365X̂t−1 + 1.0797, t = 2, 3, . . . , 72.

The expectation and variance computed from the NNLINAR(1) model are 1.4142 and

3.356, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.

3.2.3.2 The numbers of Anorexias

The second example considers the numbers of Anorexias monthly from January

2003 to December 2009 from a region in New Zealand. The data was original introduced

in Aghababaei et al. [1]. Sample mean and variance are 0.82 and 2.90, respectively. The

fitted NNLINAR(1) is

Xt = 0.4909 ∗Xt−1 + εt,
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The predicted values of the numbers of Anorexias series are given by

X̂1 =
2β + θ

θ(β + θ)
= 0.8313,

X̂t = α̂X̂t−1 + (1− α̂)
2β + θ

θ(β + θ)
.

Substituting parameter estimates α̂ = 0.4909 and 2β̂ + θ̂

θ̂(β̂ + θ̂)
= 0.8313.

X̂t = 0.4909X̂t−1 + 0.4232, t = 2, 3, . . . , 72.

The expectation and variance computed from the NNLINAR(1) model are 0.831 and

2.900, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

INAR(1) MODEL WITH A

TWO-PARAMETER GENERALIZED

POISSON-LINDLEY INNOVATION

In this chapter, we construct two first order integer-valued autoregressive models

with a two-parameter generalized Poisson-Lindley innovation based on (1) the binomial

thinning operator and (2) the negative binomial thinning operator. Moreover, proba-

bilistic properties of the constructed models and parameter estimation are demonstrated.

4.1 Construction of the first order integer-valued autoregressive model with

a two-parameter generalized Poisson-Lindley innovation based on the

binomial thinning operator (NLINARB(1))

In this section, we construct the first order integer-valued autoregressive model

with two-parameter generalized Poisson-Lindley innovation based on the binomial thin-

ning operator model (NLINARB(1)). Moreover, we investigate many properties of

the constructed model such as expectations, parameter estimations and perform some

numerical studies.

Definition 4.1.1. The first order integer-valued autoregressive model with two-parameter

generalized Poisson-Lindley innovation based on the binomial thinning operator (NLI-

NARB(1)) {Xt}t≥1 is defined as

Xt = α ◦Xt−1 + ϵt, (4.1)
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where the binomial thinning α◦ is defined in Definition 2.4.1 and {ϵt}t≥1 is a stationary

process with the NGPL(θ, β) defined in Definition 2.1.9 such that α ◦Xt−1 and ϵt are

independent.

Theorem 4.1.1. The autocovariance function, γk (k ≥ 1), of the NLINARB(1) model

{Xt}t≥1 defined in Definition 4.1.1 is given by

γk = Cov(Xt, Xt−k) = αkγ0. (4.2)

where γ0 is the variance of Xt.

Consequently, the autocorrelation function of order k, ρk, of the NLINARB(1) model

is

ρk = αk. (4.3)

Proof. From (4.1) and the property that ϵt and Xt−k are independent, for k ≥ 1,

γk = Cov(Xt, Xt−k)

= Cov(α ◦Xt−1 + ϵt, Xt−k)

= Cov(α ◦Xt−1, Xt−k) + Cov(ϵt, Xt−k)

= αCov(Xt−1, Xt−k)

= αCov(α ◦Xt−2 + ϵt−1, Xt−k)

= αk−1Cov(α ◦Xt−k, Xt−k) (4.4)

= αkγ0.

By applying (4.1) recursively to obtain (4.4). Consequently, the correlation function ρk

can be written as

ρk =
γk
γ0

= αk.
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Remark 4.1.1. From (4.3), the autocorrelation function declines exponentially as k

converges to infinity.

4.1.1 Probabilistic properties of the NLINARB(1) model

In this section, we investigate many conditional properties such as conditional

expectation and conditional variance of the constructed model. Since {ϵt}t≥1 is a sta-

tionary process with the NGPL(θ, β). From Theorem 2.1.5, expectation and variance

of ϵt for the NLINARB(1) model are given respectively by

E(ϵt) =
2β + θ

θ(β + θ)
, (4.5)

V ar(ϵt) =
2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
. (4.6)

Theorem 4.1.2. The expectation of Xt defined in (4.1) is

E(Xt) =
2β + θ

θ(β + θ)(1− α)
.

Proof. From (4.1), since {ϵt}t≥1 is a stationary process with the NGPL(θ, β),

E(Xt) = E(α ◦Xt−1 + ϵt)

= αE(Xt) + E(ϵt).

Then, (1− α)E(Xt) = E(ϵt).

Therefore, E(Xt) =
E(ϵt)

1− α
=

2β + θ

θ(β + θ)(1− α)
.

Theorem 4.1.3. The variance of Xt defined in (4.1) is

V ar(Xt) =
θ2(1 + α+ αθ) + 2β2(1 + θ + αθ) + βθ(4 + 3(1 + α)θ)

(1− α2)θ2(β + θ)2
.
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Proof. From (4.1), since {ϵt}t≥1 is a stationary process with the NGPL(θ, β),

V ar(Xt) = V ar(α ◦Xt−1 + ϵt)

= V ar(α ◦Xt−1) + V ar(ϵt)

= α(1− α)E(Xt−1) + α2V ar(Xt−1) + V ar(ϵt)

= α(1− α)E(Xt) + α2V ar(Xt) + V ar(ϵt).

Then (1− α2)V ar(Xt) = α(1− α)E(Xt) + V ar(ϵt).

Consequently, V ar(Xt) =
α(1− α)E(Xt) + V ar(ϵt)

(1− α2)

=
αE(ϵt) + V ar(ϵt)

(1− α2)
. (4.7)

By using (4.5)–(4.7), we have

V ar(Xt) =
θ2(1 + α+ αθ) + 2β2(1 + θ + αθ) + βθ(4 + 3(1 + α)θ)

(1− α2)θ2(β + θ)2
.

Theorem 4.1.4. The (k+1)-step ahead conditional expectation of the NLINARB(1)

model is

E(Xt+k|Xt−1 = x) = αk+1x+
(1− αk+1)

(1− α)

(
2β + θ

θ(β + θ)

)
,

for x = 0, 1, 2, . . ..

Proof.

E(Xt+k|Xt−1 = x) = E(α ◦Xt+k−1 + ϵt+k|Xt−1 = x)

= E(α ◦ (α ◦Xt+k−2 + ϵt+k−1) + ϵt+k|Xt−1 = x),
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by using (4.1) to obtain the last equality. Applying (4.1) to {Xt}t≥1 recursively,

E(Xt+k|Xt−1 = x) = E(αk+1 ◦Xt−1 + αk ◦ ϵt + αk−1 ◦ ϵt+1 + · · ·+ ϵt+k|Xt−1 = x)

= E(αk+1 ◦Xt−1|Xt−1 = x) +

k∑
h=0

E(αh ◦ ϵt+k−h|Xt−1 = x)

= αk+1x+

k∑
h=0

αhE(ϵt+k−h) (4.8)

= αk+1x+

(
1− αk+1

1− α

)
E(ϵt), (4.9)

where we use Theorem 2.4.2(3) to obtain (4.8).

Substitute E(ϵt) in (4.9), then

E(Xt+k|Xt−1 = x) = αk+1x+
(1− αk+1)

(1− α)

(
2β + θ

θ(β + θ)

)
.

Remark 4.1.2. The conditional expectation E(Xt+k|Xt−1 = x) converges to the un-

conditional expectation 2β + θ

θ(β + θ)(1− α)
as k converges to infinity.

Proof. Since 0 < α < 1,

lim
k→∞

E(Xt+k|Xt−1 = x) = lim
k→∞

(
αk+1x+

(1− αk+1)

(1− α)

(
2β + θ

θ(β + θ)

))
=

2β + θ

θ(β + θ)(1− α)
.
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Theorem 4.1.5. The (k + 1)-step ahead conditional variance for the NLINARB(1)

model is

V ar(Xt+k|Xt−1 = x) = αk+1(1− αk+1)x+
1− α2(k+1)

1− α2
V ar(ϵt)

+
(1− αk)(α− αk+2)

1− α2
E(ϵt), (4.10)

for x = {0, 1, 2, . . .}.

Proof.

V ar(Xt+k|Xt−1 = x)

= V ar(α ◦Xt+k−1 + ϵt+k|Xt−1 = x)

= V ar(α ◦ (α ◦Xt+k−2 + ϵt+k−1) + ϵt+k|Xt−1 = x)

= V ar(αk+1 ◦Xt−1 + αk ◦ ϵt + αk−1 ◦ ϵt+1 + · · ·+ ϵt+k|Xt−1 = x) (4.11)

= V ar(αk+1 ◦Xt−1) +
k∑

h=0

V ar(αh ◦ ϵt+h|Xt−1 = x)

= αk+1(1− αk+1)x+
k∑

h=0

V ar(αh ◦ ϵt+h)

= αk+1(1− αk+1)x+

k∑
h=0

(αh(1− αh)ϵt+h + α2h)V ar(ϵt+h) (4.12)

= αk+1(1− αk+1)x+ V ar(ϵt)

k∑
h=0

α2h + E(ϵt)

k∑
h=0

αh(1− αh)

= αk+1(1− αk+1)x+
1− α2(k+1)

1− α2
V ar(ϵt) +

(1− αk)(α− αk+2)

1− α2
E(ϵt),

where we use (4.1) to obtain (4.11) and Theorem 2.4.1(4) to obtain (4.12).

Remark 4.1.3. The conditional variance V ar(Xt+k|Xt−1 = x) converges to the uncon-

ditional variance θ2(1 + α+ αθ) + 2β2(1 + θ + αθ) + βθ(4 + 3(1 + α)θ)

(1− α2)θ2(β + θ)2
as k converges

to infinity.
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Proof. Since 0 < α < 1,

lim
k→∞

V ar(Xt+k|Xt−1 = x)

= lim
k→∞

[
αk+1(1− αk+1)x+

1− α2(k+1)

1− α2
V ar(ϵt) +

(1− αk)(α− αk+2)

1− α2
E(ϵt)

]

=
V ar(ϵt)

1− α2
+

αE(ϵt)

1− α2

=
θ2(1 + α+ αθ) + 2β2(1 + θ + αθ) + βθ(4 + 3(1 + α)θ)

(1− α2)θ2(β + θ)2
.

Theorem 4.1.6. The Markov process with transition probabilities of the NLINARB(1)

model is

plk =

min(l,k)∑
m=0

(
l

m

)
αm(1− α)l−mP (ϵt = k −m),

where the process ϵt is defined in (4.1).

Proof.

plk = P (Xt = k|Xt−1 = l)

= P (α ◦Xt−1 + ϵt = k|Xt−1 = l)

=

min(l,k)∑
m=0

P (α ◦Xt−1 = m|Xt−1 = l)P (ϵt = k −m|Xt−1 = l)

=

min(l,k)∑
m=0

P (α ◦Xt−1 = m|Xt−1 = l)P (ϵt = k −m)

=

min(l,k)∑
m=0

(
l

m

)
αm(1− α)l−mP (ϵt = k −m),

by using Definition 2.4.1 and the process ϵt is defined in (4.1).
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4.1.2 Estimation and inference of the NLINARB(1) model

In this section, we consider parameter estimation methods of the unknown pa-

rameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker

estimator (YW). These estimators are compared via Monte Carlo simulations in terms

of their means and variances by using the statistical software R [11].

4.1.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters α and µ of the NLINARB(1)

model are obtained by minimizing the function defined in Definition 2.5.1. Let k = 0 in

the expression in Theorem 4.1.4, the conditional expectation is

E(Xt|Xt−1) = αXt−1 + µ(1− α),

where µ = E(Xt). Then

Qn =

n∑
t=2

(Xt − E(Xt|Xt−1))
2 =

n∑
t=2

(Xt − αXt−1 − µ(1− α))2.

Equating the first order partial derivatives of Qn with respect to µ and α to zero, then

∂Qn

∂µ

∣∣
µ=µ̂,α=α̂

= −
n∑

t=2

2(Xt − α̂Xt−1 − µ̂(1− α̂))(1− α̂) = 0, (4.13)

∂Qn

∂α̂

∣∣
µ=µ̂,α=α̂

=
n∑

t=2

2(Xt − α̂Xt−1 − µ̂(1− α̂))(µ̂−Xt−1) = 0. (4.14)

From (4.13),

n∑
t=2

Xt − α̂
n∑

t=2

Xt−1 − µ̂(n− 1)(1− α̂) = 0. (4.15)
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By solving equation (4.15), the estimation of µ can be computed as

µ̂ =

n∑
t=2

Xt − α̂

n∑
t=2

Xt−1

(n− 1)(1− α̂)
. (4.16)

From (4.14),

0 = µ̂

n∑
t=2

Xt − α̂µ̂

n∑
t=2

Xt−1 − µ̂2(1− α̂)(n− 1)−
n∑

t=2

Xt−1Xt + α̂

n∑
t=2

X2
t−1

+ (1− α̂)µ̂

n∑
t=2

Xt−1. (4.17)

By solving equation (4.17) and substitute µ̂ in equation (4.16), the estimation of α can

be computed as

α̂ =

(n− 1)

n∑
t=2

Xt−1Xt −
n∑

t=2

Xt

n∑
t=2

Xt−1

(n− 1)

n∑
t=2

X2
t−1 −

(
n∑

t=2

Xt−1

)2 .

From (3.21) and Theorem 4.1.2, we have

2β̂CLS + θ̂CLS

θ̂CLS(θ̂CLS + β̂CLS)(1− α̂CLS)
= µ̂CLS =

n∑
t=2

Xt − α̂CLS

n∑
t=2

Xt−1

(n− 1)(1− α̂CLS)
.

The conditional least squares estimator of the parameter σ2 is obtained by minimizing

the function defined in Abdulhamid et al. [2]. First, substitute k = 0 into (4.10).

V ar(Xt|Xt−1) = α(1− α)Xt−1 + V ar(ϵt). (4.18)

Substitute V ar(ϵt) from (4.6) into (4.18), the conditional variance is

V ar(Xt|Xt−1) = α(1− α)Xt−1 + (1− α2)σ2 − α(1− α)µ. (4.19)
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To obtain σ̂2, we follow Abdulhamid et al. [2] by minimizing the function Sn defined as

Sn =

n∑
t=2

[(Xt − E(Xt|Xt−1))
2 − V ar(Xt|Xt−1)]

2

=

n∑
t=2

[(Xt − αXt−1 − µ(1− α))2 − α(1− α)Xt−1 − (1− α2)σ2 + α(1− α)µ]2.

Taking the first order partial derivative of Sn with respect to σ2 and equating it to zero,

we get

0 =
∂Sn

∂σ2

∣∣
σ2=σ̂2,µ=µ̂,α=α̂

=

n∑
t=2

2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1− α̂)Xt−1 − (1− α̂2)σ̂2 + α̂(1− α̂)µ̂](α̂2 − 1).

Then

n∑
t=2

[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1− α̂)Xt−1 − (1− α̂2)σ̂2 + α̂(1− α̂)µ̂] = 0. (4.20)

By solving the equation (4.20), the estimation of σ2 can be obtained as

σ̂2 =

∑n
t=2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1− α̂)Xt−1 + α̂(1− α̂)µ̂]

(1− α̂2)(n− 1)
. (4.21)

From Theorem 4.1.3, and (4.21),

θ̂2(1 + α̂+ α̂θ̂) + 2β̂2(1 + θ̂ + α̂θ̂) + β̂θ̂(4 + 3(1 + α̂)θ̂)

(1− α̂2)θ̂2(β̂ + θ̂)2

= σ̂2
CLS =

∑n
t=2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1− α̂)Xt−1 + α̂(1− α̂)µ̂]

(1− α̂2)(n− 1)
.
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4.1.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for α, µ and σ2 are obtained. By using

Definition 2.3.3 then the sample autocovariance function of Xt

γ̂(k) =
1

n

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄), (4.22)

where 0 ≤ k < n and X̄ =
1

n

n∑
t=1

Xt is the sample mean.

From the Yule-Walker equation defined in Definition 2.5.2 and equation (4.22), the

Yule-Walker estimator of α is

α̂YW =
γ̂(1)

γ̂(0)
=

n∑
t=2

(Xt − X̄)(Xt−1 − X̄)

n∑
t=1

(Xt − X̄)2
.

Consider µ = E(Xt) defined in Theorem 4.1.2 and σ2 = V ar(Xt) defined in (4.6) and

note that S2 =

n∑
t=1

(Xt − X̄)

n− 1
. The Yule-Walker estimators of µ and σ2 are

µ̂YW = X̄ =
2β̂ + θ̂

θ̂(β̂ + θ̂)(1− α̂)
, (4.23)

σ̂2
YW = S2 =

θ̂2(1 + α̂+ α̂θ̂) + 2β̂2(1 + θ̂ + α̂θ̂) + β̂θ̂(4 + 3(1 + α̂)θ̂)

(1− α̂2)θ̂2(β̂ + θ̂)2
, (4.24)

respectively.

4.1.3 Simulation Results

In this section, we produce 1,000 samples from the NLINARB(1) model for true

parameter values in different settings (1) α = 0.1, β = 0.1, θ = 0.5; (2) α = 0.4, β =

0.3, θ = 0.8; (3) α = 0.7, β = 0.5, θ = 1.5 of different sample sizes n = 50, 500, 1000 by

using the statistical software R and obtain estimators of parameters from two methods

described in Section 4.1.2. Then we compare the obtained estimators in terms of their
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(α, θ, β, µ, σ2) = (0.1, 0.5, 0.1, 2.593, 7.8938)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.1020
(0.0181)

3.6138
(0.2874)

10.8499
(14.2988)

0.0766
(0.0184)

3.6150
(0.2812)

11.0341
(14.5398)

500 0.0936
(0.0095)

2.5714
(0.0866)

7.7373
(4.0705)

0.0970
(0.0021)

2.5917
(0.0191)

7.8660
(0.9042)

1000 0.0996
(0.0010)

2.5879
(0.0092)

7.8122
(0.4615)

0.0987
(0.0010)

2.5880
(0.0092)

7.8200
(0.4609)

(α, θ, β, µ, σ2) = (0.4, 0.8, 0.3, 2.6515, 5.3879)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.3736
(0.0177)

2.5851
(0.2519)

5.0868
(4.4710)

0.3473
(0.0186)

2.5694
(0.2433)

5.1007
(4.3824)

500 0.3837
(0.0098)

2.6319
(0.1300)

5.2851
(2.2662)

0.3945
(0.0021)

2.6467
(0.0244)

5.3759
(0.4151)

1000 0.4005
(0.0010)

2.6563
(0.0127)

5.3936
(0.2171)

0.3993
(0.0010)

2.6554
(0.0126)

5.3944
(0.2166)

(α, θ, β, µ, σ2) = (0.7, 1.5, 0.5, 2.7778, 4.0305)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.6542
(0.0109)

2.7112
(0.4355)

3.6773
(2.9730)

0.6219
(0.01225)

2.6145
(0.3861)

3.5899
(2.7554)

500 0.6781
(0.0063)

2.7625
(0.2360)

3.9581
(1.9262)

0.6932
(0.0012)

2.7633
(0.0458)

4.0039
(0.3713)

1000 0.6979
(0.0006)

2.7783
(0.0245)

4.0228
(0.1877)

0.6966
(0.0006)

2.7779
(0.0243)

4.0291
(0.1872)

Table 4.1: Mean and variance (in brackets) of the estimators for different values of the
parameters α, µ and σ2 for the NLINARB(1) model

means and variances. Table 4.1 shows mean and variance (in brackets) of the estimators

for different values of the parameters α, µ and σ2.

From Table 4.1, we observe that the estimators obtained from the two estima-

tion methods converge to the true parameters. In addition, increasing the sample size

yields smaller variance. The conditional least squares estimate (CLS) and the Yule-

Walker estimate (YW) are approximately the same. Considering the variance, we can

see that the CLS estimators have smaller variance than YW estimators for the param-

eter α. However, the YW has smaller variance than CLS for the parameters µ and σ2.

Then, considering the mean, we can see that the YW estimators converge to the true

parameters faster than the CLS estimators for the parameters σ2 and µ.
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4.1.4 Real data

In this section, we apply the two models with two real data sets : (1) the in-

cidents of acute febrile mucocutaneous lymph node syndrome and (2) the numbers of

earthquakes per year magnitude 7.0 or greater (1900-1998).

4.1.4.1 The incidents of acute febrile mucocutaneous lymph node syndrome

(MCLS)

The first example considers the data give weekly counts of the incidents of acute

febrile mucocutaneous lymph node syndrome (MCLS) in Totori-prefecture, Japan, dur-

ing 1982. Sample mean and variance are 1.711 and 3.111, respectively. The fitted

NLINARB(1) model is

Xt = 0.5241 ◦Xt−1 + ϵt,

The predicted values of the numbers of MCLS series are given by

X̂1 =
2β̂ + θ̂

θ̂(β̂ + θ̂)(1− α̂)
= 1.6843,

X̂t = α̂X̂t−1 +
2β̂ + θ̂

θ̂(β̂ + θ̂)
.

Substituting parameter estimates α̂ = 0.5241 and 2β̂ + θ̂

θ̂(β̂ + θ̂)
= 0.8016.

X̂t = 0.5241X̂t−1 + 0.8016, t = 2, 3, . . . , 52.

The expectation and variance computed from the NLINARB(1) model are 1.684 and

3.111, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.
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4.1.4.2 The number of earthquakes per year magnitude 7.0 or greater (1900-

1998).

The second example considers the numbers of earthquakes per year magnitude 7.0

or greater (1900-1998). Sample mean and variance are 20.02 and 52.75, respectively.

The fitted NLINARB(1) model is

Xt = 0.5434 ◦Xt−1 + ϵt,

The predicted values of the number of earthquakes per year magnitude 7.0 or greater

series are given by

X̂1 =
2β̂ + θ̂

θ̂(β̂ + θ̂)(1− α̂)
= 20.1283,

X̂t = α̂X̂t−1 +
2β̂ + θ̂

θ̂(β̂ + θ̂)
,

Substituting parameter estimates α̂ = 0.5434 and 2β̂ + θ̂

θ̂(β̂ + θ̂)
= 9.1906.

X̂t = 0.5434X̂t−1 + 9.1906, t = 2, 3, . . . , 99.

The expectation and variance computed from the NLINARB(1) model are 20.128 and

52.755, respectively. We can see that the model can capture the sample mean and

variance of the data set. Therefore, the model is reasonable to this data set.
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4.2 Construction of the first order integer-valued autoregressive model with

a two-parameter generalized Poisson-Lindley innovation based on the

negative binomial thinning operator (NLINARN(1))

In this section, we construct the first order integer-valued autoregressive model

with two-parameter generalized Poisson-Lindley innovation based on the negative bino-

mial thinning operator model (NLINARN(1)). Moreover, we investigate many proper-

ties of the constructed model such as means, parameter estimations and perform some

numerical studies.

Definition 4.2.1. The first order integer-valued autoregressive model with two-parameter

generalized Poisson-Lindley innovation based on the negative binomial thinning operator

(NLINARN(1)) {Xt}t≥1 is defined as

Xt = α ∗Xt−1 + εt, (4.25)

where the negative binomial thinning α∗ defined in Definition 2.4.2 and {εt}t≥1 is a

stationary process with the NGPL(θ, β) defined in Definition 2.1.9 such that α ∗Xt−1

and εt are independent.

Theorem 4.2.1. The autocovariance function, γk (k ≥ 1), of the NLINARN(1) model

{Xt}t≥1 defined in Definition 4.2.1 is given by

γk = Cov(Xt, Xt−k) = αkγ0, (4.26)

where γ0 is the variance of Xt.

Consequently, the autocorrelation function of order k, ρk, of the NLINARN(1) model

is

ρk = αk. (4.27)
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Proof. From (4.25) and the property that εt and Xt−k are independent, for k ≥ 1,

γk = Cov(Xt, Xt−k)

= Cov(α ∗Xt−1 + εt, Xt−k)

= Cov(α ∗Xt−1, Xt−k) + Cov(εt, Xt−k)

= αCov(Xt−1, Xt−k)

= αCov(α ∗Xt−2 + εt−1, Xt−k)

= αk−1Cov(α ∗Xt−k, Xt−k) (4.28)

= αkγ0.

By applying (4.25) recursively to obtain (4.28). Consequently, the correlation function

ρk can be written as

ρk =
γk
γ0

= αk.

Remark 4.2.1. From (4.27), the autocorrelation function declines exponentially as k

converges to infinity.

4.2.1 Probabilistic properties of the NLINARN(1) model

In this section, we investigate many conditional properties such as conditional

expectation and conditional variance of the constructed model. Since {εt}t≥1 is a sta-

tionary process with the NGPL(θ, β). From Theorem 2.1.5, expectation and variance

of εt for the NLINARN(1) model are given respectively by

E(εt) =
2β + θ

θ(β + θ)
, (4.29)

V ar(εt) =
2β2(1 + θ) + θ2(1 + θ) + βθ(4 + 3θ)

θ2(β + θ)2
. (4.30)
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Theorem 4.2.2. The expectation of Xt defined in (4.25) is

E(Xt) =
2β + θ

θ(β + θ)(1− α)
.

Proof. From (4.25), since {εt}t≥1 is a stationary process with the NGPL(θ, β),

E(Xt) = E(α ∗Xt−1 + εt)

= αE(Xt) + E(εt).

Then (1− α)E(Xt) = E(εt),

Therefore, E(Xt) =
E(εt)

1− α
=

2β + θ

θ(β + θ)(1− α)
.

Theorem 4.2.3. The variance of Xt defined in (4.25) is

V ar(Xt) =
(2β2 + θ2)(1− α+ θ + α2θ) + βθ(4− 4α+ 3θ + 3α2θ)

(α− 1)2(1 + α)θ2(β + θ)2
.

Proof. From (4.25), since {εt}t≥1 is a stationary process with the NGPL(θ, β),

V ar(Xt) = V ar(α ∗Xt−1 + εt)

= V ar(α ∗Xt−1) + V ar(εt)

= α(1 + α)E(Xt−1) + α2V ar(Xt−1) + V ar(εt)

= α(1 + α)E(Xt) + α2V ar(Xt) + V ar(εt).

Then, (1− α2)V ar(Xt) = α(1 + α)E(Xt) + V ar(εt).

Consequently, V ar(Xt) =
α(1 + α)E(Xt) + V ar(εt)

(1− α2)
. (4.31)

By using Theorem 4.2.2, (4.30) and (4.31), we have

V ar(Xt) =
(2β2 + θ2)(1− α+ θ + α2θ) + βθ(4− 4α+ 3θ + 3α2θ)

(α− 1)2(1 + α)θ2(β + θ)2
.
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Theorem 4.2.4. The (k+1)-step ahead conditional expectation of the NLINARN(1)

model is

E(Xt+k|Xt−1 = x) = αk+1x+
(1− αk+1)

(1− α)

(
2β + θ

θ(β + θ)

)
,

for x = 0, 1, 2, . . ..

Proof.

E(Xt+k|Xt−1 = x) = E(α ∗Xt+k−1 + εt+k|Xt−1 = x)

= E(α ∗ (α ∗Xt+k−2 + εt+k−1) + εt+k|Xt−1 = x),

by using (4.25) to obtain the last equality. Applying (4.25) to {Xt}t≥1 recursively,

E(Xt+k|Xt−1 = x) = E(αk+1 ∗Xt−1 + αk ∗ εt + αk−1 ∗ εt+1 + · · ·+ εt+k|Xt−1 = x)

= E(αk+1 ∗Xt−1|Xt−1 = x) +

k∑
h=0

E(αh ∗ εt+k−h|Xt−1 = x)

= αk+1x+

k∑
h=0

αhE(εt+k−h) (4.32)

= αk+1x+

(
1− αk+1

1− α

)
E(εt), (4.33)

where we use Theorem 2.4.2(3) to obtain (4.32).

Substitute E(εt) in (4.33), then

E(Xt+k|Xt−1 = x) = αk+1x+
(1− αk+1)

(1− α)

(
2β + θ

θ(β + θ)

)
.

Remark 4.2.2. The conditional expectation E(Xt+k|Xt−1 = x) converges to the un-

conditional expectation 2β + θ

θ(β + θ)(1− α)
as k converges to infinity.
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Proof. Since 0 < α < 1,

lim
k→∞

E(Xt+k|Xt−1 = x) = lim
k→∞

(
αk+1x+

(1− αk+1)

(1− α)

(
2β + θ

θ(β + θ)

))
=

2β + θ

θ(β + θ)(1− α)
.

Theorem 4.2.5. The (k + 1)-step ahead conditional variance for the NLINARN(1)

model is

V ar(Xt+k|Xt−1 = x) =αk+1(1 + αk+1)x+
1− α2(k+1)

1− α2
V ar(εt)

+
α(1− αk)(1− αk+1)

1− α2
E(εt), (4.34)

for x = 0, 1, 2, . . ..

Proof.

V ar(Xt+k|Xt−1 = x)

= V ar(α ∗Xt+k−1 + εt+k|Xt−1 = x)

= V ar(α ∗ (α ∗Xt+k−2 + εt+k−1) + εt+k|Xt−1 = x) (4.35)

= V ar(αk+1 ∗Xt−1 + αk ∗ εt + αk−1 ∗ εt+1 + · · ·+ εt+k|Xt−1 = x)

= V ar(αk+1 ∗Xt−1) +

k∑
h=0

V ar(αh ∗ εt+k|Xt−1 = x)

= αk+1(1 + αk+1)x+

k∑
h=0

V ar(αh ∗ εt+k−h) (4.36)

= αk+1(1 + αk+1)x+

k∑
h=0

(αh(1 + αh)E(εt+k−h) + α2hV ar(εt+k−h))

= αk+1(1 + αk+1)x+ V ar(εt)

k∑
h=0

α2h + E(εt)

k∑
h=0

αh(1− αh)

= αk+1(1 + αk+1)x+
1− α2(k+1)

1− α2
V ar(εt) +

α(1− αk)(1− αk+1)

1− α2
E(εt),



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72

where we use (4.25) to obtain (4.35) and Theorem 2.4.2(4) to obtain (4.36).

Remark 4.2.3. The conditional variance V ar(Xt+k|Xt−1 = x) converges to the uncon-

ditional variance θ2(1 + α+ αθ) + 2β2(1 + θ + αθ) + βθ(4 + 3(1 + α)θ)

(1− α2)θ2(β + θ)2
as k converges

to infinity.

Proof. Since 0 < α < 1,

lim
k→∞

V ar(Xt+k|Xt−1 = x)

= lim
k→∞

[
αk+1(1 + αk+1)x+

1− α2(k+1)

1− α2
V ar(εt) +

α(1− αk)(1− αk+1)

1− α2
E(εt)

]

=
V ar(εt)

1− α2
+

αE(εt)

1− α2

=
θ2(1 + α+ αθ) + 2β2(1 + θ + αθ) + βθ(4 + 3(1 + α)θ)

(1− α2)θ2(β + θ)2
.

Theorem 4.2.6. The Markov process with transition probabilities of the NLINARN(1)

model is

plk =
k∑

m=0

(
l +m− 1

m

)(
1

1 + α

)l ( α

1 + α

)m

p(εt = k −m)I(l ̸= 0) + p(εt = k)I(l = 0),

where the process εt is defined in (4.25).

Proof.

plk = P (Xt = k|Xt−1 = l)

= P (α ∗Xt−1 + εt = k|Xt−1 = l)

=

k∑
m=o

P (α ∗Xt−1 = m|Xt−1 = l)P (εt = k −m)I(l ̸= 0) + P (εt = k)I(l = 0)

=

k∑
m=0

(
l +m− 1

m

)(
1

1 + α

)l ( α

1 + α

)m

P (εt = k −m)I(l ̸= 0) + P (εt = k)I(l = 0).
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4.2.2 Estimation and inference of the NLINARN(1) model

In this section, we consider parameter estimation methods of the unknown pa-

rameters by (1) the conditional least squares estimator (CLS) and (2) the Yule-Walker

estimator (YW). These estimators are compared via Monte Carlo simulations in terms

of their means and variances by using the statistical software R [11].

4.2.2.1 Conditional least squares estimation

The conditional least squares estimators of the parameters α and µ of the NLINARN(1)

model are obtained by minimizing the function defined in Definition 2.5.1. Let k = 0 in

the expression in Theorem 4.2.4, the conditional expectation is

E(Xt|Xt−1) = αXt−1 + µ(1− α),

where µ = E(Xt). Then

Qn =

n∑
t=2

(Xt − E(Xt|Xt−1))
2 =

n∑
t=2

(Xt − αXt−1 − µ(1− α))2.

Equating the first order partial derivatives of Qn with respect to µ and α to zero, we

then

∂Qn

∂µ

∣∣
µ=µ̂,α=α̂

= −
n∑

t=2

2(Xt − α̂Xt−1 − µ̂(1− α̂))(1− α̂) = 0, (4.37)

∂Qn

∂α̂

∣∣
µ=µ̂,α=α̂

=

n∑
t=2

2(Xt − α̂Xt−1 − µ̂(1− α̂))(µ̂−Xt−1) = 0. (4.38)

From (4.37),

n∑
t=2

Xt − α̂

n∑
t=2

Xt−1 − µ̂(n− 1)(1− α̂) = 0. (4.39)
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By solving the equation (4.39), the estimation of µ can be computed as

µ̂ =

n∑
t=2

Xt − α̂

n∑
t=2

Xt−1

(n− 1)(1− α̂)
. (4.40)

From (4.38),

0 = µ̂

n∑
t=2

Xt − α̂µ̂

n∑
t=2

Xt−1 − µ̂2(1− α̂)(n− 1)−
n∑

t=2

Xt−1Xt + α̂

n∑
t=2

X2
t−1

+ (1− α̂)µ̂

n∑
t=2

Xt−1. (4.41)

By solving equation (4.41) and substitute µ̂ in equation (4.40), the estimation of α can

be computed as

α̂ =

(n− 1)

n∑
t=2

Xt−1Xt −
n∑

t=2

Xt

n∑
t=2

Xt−1

(n− 1)

n∑
t=2

X2
t−1 −

(
n∑

t=2

Xt−1

)2 .

From (4.40) and Theorem 4.2.2, we have

2β̂CLS + θ̂CLS

θ̂CLS(θ̂CLS + β̂CLS)(1− α̂CLS)
= µ̂CLS =

n∑
t=2

Xt − α̂CLS

n∑
t=2

Xt−1

(n− 1)(1− α̂CLS)
.

The conditional least squares estimator of the parameters σ2 is obtained by minimizing

the function defined in Abdulhamid et al. [2]. Frist, substitute k = 0 into (4.34),

V ar(Xt|Xt−1) = α(1− α)Xt−1 + V ar(εt). (4.42)

Substitute V ar(εt) from (4.30) in (4.42), the conditional variance is

V ar(Xt|Xt−1) = α(1 + α)Xt−1 + (1− α2)σ2 − α(1 + α)µ. (4.43)
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To obtain σ̂2, we follow Abdulhamid et al. [2] by minimizing the function Sn defined as

Sn =

n∑
t=2

[(Xt − E(Xt|Xt−1))
2 − V ar(Xt|Xt−1)]

2

=

n∑
t=2

[(Xt − αXt−1 − µ(1− α))2 − α(1 + α)Xt−1 − (1− α2)σ2 + α(1 + α)µ]2.

Taking the first order partial derivative of Sn with respect to σ2 and equating it to zero,

we get

0 =
∂Sn

∂σ2

∣∣
σ2=σ̂2,µ=µ̂,α=α̂

=

n∑
t=2

2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1 + α̂)Xt−1 − (1− α̂2)σ̂2 + α̂(1 + α̂)µ̂](α̂2 − 1).

Then

n∑
t=2

[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1 + α̂)Xt−1 − (1− α̂2)σ̂2 + α̂(1 + α̂)µ̂] = 0. (4.44)

By solving the equation (4.44), the estimation of σ2 can be obtained as

σ̂2 =

∑n
t=2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1 + α̂)Xt−1 + α̂(1 + α̂)µ̂]

(1− α̂2)(n− 1)
. (4.45)

From Theorem 4.2.3 , and (4.45)

(2β̂2 + θ̂2)(1− α̂+ θ̂ + α̂2θ̂) + β̂θ̂(4− 4α̂+ 3θ̂ + 3α̂2θ̂)

(α̂− 1)2(1 + α̂)θ̂2(β̂ + θ̂)2

= σ̂2
CLS =

∑n
t=2[(Xt − α̂Xt−1 − µ̂(1− α̂))2 − α̂(1 + α̂)Xt−1 + α̂(1 + α̂)µ̂]

(1− α̂2)(n− 1)
.
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4.2.2.2 The Yule-Walker estimation

In this part, the Yule-Walker estimation for α, µ and σ2 are obtained. By using

Definition 2.3.3 then the sample autocovariance function of Xt

γ̂(k) =
1

n

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄), (4.46)

where 0 ≤ k < n and X̄ =
1

n

n∑
t=1

Xt is the sample mean.

From the Yule-Walker equation defined in Definition 2.5.2 and equation (3.28), the

Yule-Walker estimator of α is

α̂YW =
γ̂(1)

γ̂(0)
=

n∑
t=2

(Xt − X̄)(Xt−1 − X̄)

n∑
t=1

(Xt − X̄)2
.

Consider µ = E(Xt) defined in Theorem 4.2.2 and σ2 = V ar(Xt) defined in (4.30) and

note that S2 =

n∑
t=1

(Xt − X̄)2

n− 1
. The Yule-Walker estimators of µ and σ2 are

µ̂YW = X̄ =
2β̂ + θ̂

θ̂(β̂ + θ̂)(1− α̂)
,

σ̂2
YW = S2 =

(2β̂2 + θ̂2)(1− α̂+ θ̂ + α̂2θ̂) + β̂θ̂(4− 4α̂+ 3θ̂ + 3α̂2θ̂)

(α̂− 1)2(1 + α̂)θ̂2(β̂ + θ̂)2
,

respectively.

4.2.3 Simulation Results

In this section, we produce 1,000 samples from the NLINARN(1) model for true

parameter values in different settings (1) α = 0.1, β = 0.1, θ = 0.5; (2) α = 0.4, β =

0.3, θ = 0.8; (3) α = 0.7, β = 0.5, θ = 1.5 of different sample sizes n = 50, 500, 1000 by

using the statistical software R and obtain estimators of parameters from two methods

described in Section 4.2.2. Then we compare the obtained estimators in terms of their
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(α, θ, β, µ, σ2) = (0.1, 0.5, 0.1, 2.5926, 7.9199)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.0957
(0.0191)

3.6178
(0.2886)

10.7572
(12.4924)

0.0706
(0.0193)

3.6174
(0.2801)

10.9366
(12.7226)

500 0.0951
(0.0091)

2.5492
(0.0934)

7.6828
(4.4768)

0.0966
(0.0021)

2.5825
(0.0172)

7.8631
(0.9130)

1000 0.0994
(0.0011)

2.5891
(0.0096)

7.8796
(0.4493)

0.0986
(0.0011)

2.5900
(0.0095)

7.8860
(0.4493)

(α, θ, β, µ, σ2) = (0.4, 0.8, 0.3, 2.6515, 6.3980)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.3677
(0.0181)

2.6110
(0.2911)

6.0872
(6.0744)

0.3442
(0.0186)

2.6207
(0.2770)

6.1152
(5.7594)

500 0.3805
(0.0120)

2.6275
(0.1519)

6.2051
(3.0989)

0.3956
(0.0025)

2.6407
(0.0301)

6.3318
(0.6778)

1000 0.3980
(0.0011)

2.6495
(0.0157)

6.3937
(0.3335)

0.3970
(0.0011)

2.6499
(0.0157)

6.3952
(0.3324)

(α, θ, β, µ, σ2) = (0.7, 1.5, 0.5, 2.7778, 9.3682)
n α̂CLS µ̂CLS σ̂2

CLS α̂YW µ̂YW σ̂2
YW

50 0.6050
(0.0201)

2.6025
(1.1181 )

8.8744
(181.3861)

0.5815
(0.0204)

2.6038
(0.8418)

8.8838
(28.7368)

500 0.6485
(0.0102)

2.7759
(0.5445)

8.9004
(23.3691)

0.6854
(0.00219)

2.7777
(0.1003)

9.1168
(4.3118)

1000 0.6922
(0.0011)

2.7698
(0.0444)

9.2245
(2.1964)

0.6912
(0.0011)

2.7699
(0.0439)

9.2890
(2.1828)

Table 4.2: Mean and variance (in brackets) of the estimators for different values of the
parameters α, µ and σ2 for the NLINARN(1) model

means and variances. Table 4.2 shows mean and variance (in brackets) of the estimators

for different values of the parameters α, µ and σ2.

From Table 4.2, we observe that the estimators obtained from the two estimation

methods converge to the true parameters. In addition, increasing the sample size yields

smaller variance. The conditional least squares estimate (CLS) and the Yule-Walker

estimate (YW) are approximately the same. Considering the variance, we can see that

the CLS estimators have smaller variance than the YW estimators for the parameter

α. However, the YW has smaller variance than the CLS for the parameters σ2 and µ.

Then, considering the mean, we can see that the YW estimators converge to the true

parameters faster than the CLS estimators for the parameters σ2 and µ.
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4.2.4 Real data

In this section, we apply the two models with two real data sets : (1) the in-

cidents of acute febrile mucocutaneous lymph node syndrome and (2) the numbers of

earthquakes per year magnitude 7.0 or greater (1900-1998).

4.2.4.1 The incidents of acute febrile mucocutaneous lymph node syndrome

(MCLS)

The first example considers the data give weekly counts of the incidents of acute

febrile mucocutaneous lymph node syndrome (MCLS) in Totori-prefecture, Japan, dur-

ing 1982. Sample mean and variance are 1.711 and 3.111, respectively. The fitted

NLINARN(1) model is

Xt = 0.5241 ∗Xt−1 + εt,

The predicted values of the numbers of MCLS series are given by

X̂1 =
2β̂ + θ̂

θ̂(β̂ + θ̂)(1− α̂)
= 1.6843,

X̂t = α̂X̂t−1 +
2β̂ + θ̂

θ̂(β̂ + θ̂)
.

Substituting parameter estimates α̂ = 0.5241 and 2β̂ + θ̂

θ̂(β̂ + θ̂)
= 0.8016.

X̂t = 0.5241X̂t−1 + 0.8016, t = 2, 3, . . . , 52.

The expectation and variance computed from the NLINARN(1) model are 1.684 and

3.111, respectively. We can see that the model can capture the sample mean and variance

of the data set. Therefore, the model is reasonable to this data set.
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4.2.4.2 The number of earthquakes per year magnitude 7.0 or greater (1900-

1998).

The second example considers the numbers of earthquakes per year magnitude 7.0

or greater (1900-1998). Sample mean and variance are 20.02 and 52.75, respectively.

The fitted NLINARN(1) model is

Xt = 0.5434 ∗Xt−1 + εt,

The predicted values of the numbers of earthquakes per year magnitude 7.0 or greater

series are given by

X̂1 =
2β̂ + θ̂

θ̂(β̂ + θ̂)(1− α̂)
= 20.1283,

X̂t = α̂X̂t−1 +
2β̂ + θ̂

θ̂(β̂ + θ̂)
,

Substituting parameter estimates α̂ = 0.5434 and 2β̂ + θ̂

θ̂(β̂ + θ̂)
= 9.1906.

X̂t = 0.5434X̂t−1 + 9.1906, t = 2, 3, . . . , 99.

The expectation and variance computed from the NLINARN(1) model are 20.128 and

52.755, respectively. We can see that the model can capture the sample mean and

variance of the data set. Therefore, the model is reasonable to this data set.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS

In this work, we apply the new generalized Poisson-Lindley distribution to con-

struct four new autoregressive model. The first model is the first order integer-valued au-

toregressive model with a two-parameter generalized Poisson-Lindley distribution based

on the binomial thinning operator. The second model is the first order integer-valued au-

toregressive model with a two-parameter generalized Poisson-Lindley distribution based

on the negative binomial thinning operator. The third model is the first order integer-

valued autoregressive model with a two-parameter generalized Poisson-Lindley inno-

vation based on the binomial thinning operator. The fourth model is the first order

integer-valued autoregressive model with a two-parameter generalized Poisson-Lindley

innovation based on the negative binomial thinning operator. A summary of models

discussed in this thesis is given below.
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For each of these models from diagram, we have derived the probability mass

function of the innovation and also some many properties of these models such as au-

tocorrelation functions, multi-step ahead conditional expectation, variance and partial

autocorrelation function. Moreover, we discussed estimations of the unknown param-

eters of the models by using the conditional least squares estimator (CLS) and the

Yule-Walker estimator (YW). The estimators are compared via Monte Carlo simula-

tions in terms of their means and variances. Applications of the models for real count

time series were also discussed.
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