Chapter 3

Learning Algorithms

31 Generic Elliptic Radial Basis Function

There are many parameters for adjusting in a radial basis function learning
algorithms while using a non-linear RBF model. The controllable parameters of this
function are a center vector (which control a position of hidden node), a width vector
(which control a size of the hidden node) and a rotational vector (which control a
direction of the hidden node).  To work with the classification problem, the network
should be controlled by a special cost function. According to using of the multivariate
Gaussian function, the controllable parameters are a center vector and a covariance
matrix [5] that make the traditional algorithm has a high cost. But our network proposes
the using of a generic elliptic radial basis functions, which reduce that cost by
eliminating the covariance matrix operation and including all of these features (the

controllable parameters). The following notations are used in our proposed radial basis

function.
Let X input vectors (i.e. {xhx2, ... ,x,})
C : centervectors (ie. {C, C2 .., cn)
width vectors (ie. { , 2 .., )
W12 1
A r22.. 12

rotation matrix (i.e.

dimensions

ij indices of dimensions
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The proposed elliptic function is given in equation 3.1. The output of the function
is composedly fed to a sigmoid function as shown in equation 3.2. These two functions
are combined as a generic elliptic radial basis function (GERBF). The elliptic activation

function was presented as hl(c, , r) for each neuron k and the sigmoid function was

shown below as 'y 1(h) for each neuron k too.
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Figure 3.2 demonstrates the effects of C and on the shape of the GERBF
function. The circle is the result of plotting GERBF when 1= 2 while the ellipse is

the result of plotting GERBF when , 2 2 and rA (where | is an Identity matrix)

with the same center vector ¢ .

Figure 3.1 The figure of C and

If we plot the composition function of K (c, , r) and y k{h) in three dimensions,
the shape of this function looks like a multivariate Gaussian function. The steepness of
the shape is controlled by the steepness constant p. The steepness of the function is

increased accordingly to the value of p.  our algorithm, p is chosen randomly and
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used in each learning time for finding an optimal network (the network that used smallest

number of hidden node).

Figure 3.2 The figure of the composition function of hk(C, ,I‘) and yk(h)

The rotation of our GERBF is controlled by I'. The translation is controlled by
changing the value of C and the size is scaled by . The constant p is used to
determine the steepness of our function. The output of the each data vector decreases
(or increases) onotonically with the distance from a center vector. If the data vector is
near the center vector, the output of this vector will close to one. On the other hand, the
output is near zero if it locates far from the rim of the function. Then, we use this feature
to classify the same class data vectors. |If the data vectors are in the same class, the
output of each one is close to one. So our network need a set of GERBFs for covering a
class of data vector.  the same way, the output of the other class vectors should be
nearly zero while they locate far from the rim of the set of GERBFs.

For the learning, the gradient descent of the cost function is used to control the
variables C, and I'. From the meaning of covered data, the value of y k(hk)

should be nearly one. So our cost function is defined as follows.

f p. 2
a=t 1 Hgﬁ} (33)
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where m is the number of trained data vectors and ()L is the output of GERBFs
covering data vector X .. The cost function is minimal when every (i are equal to one.

The parameters C,  and I are adjusted by the gradient descent learning rule.

3.2 Learning Algorithm

Our learning algorithm is based on the learning of RAN [2]. To follow the main
idea of RAN, we begin our algorithm without any hidden node in hidden layer. The
learning is processed until all data in the same class are covered. To learn any data set,
we pick up a class of input data set randomly first. Suppose the data set is in class A. A
first data vector that was selected randomly from A is performed as an introducer of the
first GRBF to the network. Then, the other same class data vector are randomly
selected and fed sequentially one by one to the network. If it is not already covered by
any hidden node then the adjusting will be started to cover this data vector. The shape
of the nearest hidden node is stretched to cover it by adjusting the parameters C, '
and I'. The adjusting is done step by step by a gradient descent of the cost function.
Enlarging a GERBF shape may cover the data in the other classes. If this even occurs,
the enlarging process for this GERBF should be stopped and the size of the hidden
node is shrunk instead. For example, the shrinking of , of the adjusted hidden node,
which is an element of the width vectors, should be decreased. The delta value (the
small value that is used to shrinking  each step of learning) is computed by a small
ratio of the old ,. If the shrinkage is not successful, a new GERBF neuron will be
introduced to the network. Suppose that the data vectors in class A will be covered first.

Let ~ be a constant greater than one.



Covering Algorithm

ol

© oo =~ o

10,
11.
12
18.
14.
15.
16.

Let -1

19

Introduce a GERBF neuron,”,. and initialize its parameters (C, 0.

Select the first data vector randomly and set the first GERBF neuronf to

cover this vector by setci = x/.

While there are some data vectors in class A still not trained 00

Feed a new data vectorx/that is selected randomly

Ifx, is not covered byfa then

End If
End While

Try to stretch the size offa to cover x;
LetT =1
While there is a data vector from other classes covered
by this function and T <5 do
Shrink the size offa and T=T + 1
End While
If T> then
n-n +1and introduce a new GERBF neuron
End If

Figure 3.3 shows the process of adjusting the size of a GERBF to cover the data

in class A. Each number indicates the sequence of size adjusting.
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Figure 3.3 The enlargement of training hidden node in learning season.
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3.3 Pruning Algorithm

After the learning process, the network may have the many redundant hidden
nodes. A redundant GERBF node is the node whose all of its data vectors are covered
by some other GERBF nodes. The pruning procedure is needed the reduced of the
redundant nodes. Since the problem of pruning all redundant neurons can be viewed as
a problem of finding minimum set cover [8], any existing heuristic algorithm can be

applied to this problem. Here, we propose the following pruning algorithm.

Pruning Algorithm

1. Foreach GERBF hidden node/,

2 Iffa is not a first consideration or it has not been pruned, Then

3 For each data vector in this hidden node

4 Ifthis data vector is covered by some other hidden node too, Then
) Feed a next hidden node. /* This hidden does not be pruned. 7
6. End If

7 End For

8 Prune this hidden node.

9 End If

10. End For
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I This node is
redundant and

3' must be pruned.

Figure 3.4 Pruning the redundant hidden.

Figure 3.4 shows an example of a redundant hidden node. Each ellipse
presents the position of each hidden node, which is allocated after we finish the

covering algorithm. The dashed ellipse presents the redundant hidden node that should

be pruned.
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34 Generalization Algorithm

The generalization of a GERBF network means the ability to correctly classify a
new incoming data vector. This implies that all untrained vectors must properly be
covf » by some GERBF neurons. To make this coverage possible, the size of each
GERBF neuron should be adjusted accordingly to the natural distribution of the
untrained vectors and the location of each GERBF center must be estimated and
relocated. Figure 3.5 shows an idea of estimating a new adjusted and relocated hidden
node. All data vectors are in a 2-dimensional space and are shown by symbols  and
“+" corresponding to their coordinates in Xand y axes. The data of Class! is the training
data set and the data of Class2 is the other class data set.
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Figure 3.5 Generalization idea
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We apply the technique of Bootstrap [5], [6], and [7] to estimate the mean as
well as the variance of the size and find the new center of each GERBF. The estimation
must be performed on both classes, the class covered by the GERBF and the class
outside the GERBF. The details of the algorithms are given as follows. Let T be a
constant, xj the data vectors covered by ga1 Ng the number of data vectors covered

by ga land Cg the new estimated center of GERBF ga.
Estimating Center Location Algorithm

L Foreach GERBF gado

2. | =1

3. While /<7 do

4, Let k >0 be arandom integer.

5. Randomly select a set , of k data vectors covered by go0.
6. Compute the mean center

1. [ =141,

8. End While

9. Let ¢g, = v v [ €.

10. End For

For all data vectors in ga, the mean as well as the variance of the GERBF size
are estimated in terms of the average distance and the variance of the distance with
respectto the Cg . Letf/; be the Euclidean distance between Cg and x- (where Xj-1
are the data vectors that, covered by ga), Dg the estimated mean of the distances of
all data vectors in galand Wy the estimated variance of the distances of all data

vectors in ga.
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Estimating Size Algorithm

1 Foreach GERBF ga do
2. Compute Cg

3. | -1
4, While / <T do
) Let A >0 be arandom integer.
6. Randomly selectaset 1of k data vectors covered by
. Foreach X.in 1 do
8. Compute dJ.
9. End For
] k
10, Letdlzlx—'z‘_ld,,
11, /=/+1.
12 End While
13 Let 3
14. For each xj covered by ga do
15. Compute d
16. End For
17 Compute variance K =- 1 3JzJ* (dj - Dg,)
18. End For

Figure 3.6 shows an example of how the estimating size algorithm works. The
small ellipse at the center of the figure is the size of D (where plotted by using D¢ as
the width of the GERBF to show the approximation size of Dg ). The middle ellipse is
the variance of training data set of class A, VOA) lwhich covered by g[A and the largest

ellipse is the variance of the other ciass data set (class B), V 111, which covered by g(B>.
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Figure 3.6 The variances of two classes of sample data set.

Suppose that class A is the considered class. To separate class A from class
B ,some GERBF neurons are required to cover the data vectors in class A and there is
no need to use any GERBF to cover the data vectors in class B . the other word, all
data in class B can be considered as covered by only one large GERBF neuron.
Fience, the above algorithm can be applied to both classes without any modification.
The size adjustment must be performed on both classes. There may be the case that
the estimated size of a GERBF in one class will be expanded over its neighboring
GERBF in another class. To avoid this situation, a compensation of variances of both
classes must be established. Let g aa) be a GERBF neuron covering the data vectors in
class A and ¢ (B a GERBF neuron covering data vectors in class B . gl'™and g (B
are adjacent.
Let 1 be the width of Q@A prior to applying the Bootstrap estimation. The width

W W is adjusted by the following variance compensation.
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AV =V -y (34)
VE _ (35)
R Ollq,' FoAVEY (36)

Figure 3.7 shows the approximated distribution size after generalization with
enlarging by the variance ratio cc (the middle ellipse) which is created by equation 3.6.
The outer ellipse presents the variance of the data set in class B and the middle ellipse
presents the estimated variance of the training data set of class A.
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Figure 3.7 The approximated size after enlarging with the ratio.
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Figure 3.8 shows the result of generalization. The dashed ellipse comes from the
middle ellipse in Figure 3.7 (generalized ellipse). The middle ellipse is the original size

and position.
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Figure 3.8 The comparison of the sizes ofthe GERBF before and after generalization.



	Chapter 3 Learning Algorithms
	3.1 Generic Elliptic Radial Basis Function
	3.2 Learning Algorithm
	3.3 Pruning Algorithm
	3.4 Generalization Algorithm


