
C H A P T E R  I V

N E U R A L  N E T W O R K  F U N D A M E N T A L S

Artificial neural networks are mathematical structures involving learning 
process. After neural network has learned what it needs to know, the trained network 
can be used to perform certain tasks depending on the particular application. Neural 
networks have the ability to learn from their environment and to adapt to it in an 
interactive manner similar to their biological counterparts. The neural network 
paradigm emerged from attempts to simulate and understand the working o f he human 
brain. The human brain is composed o f networks o f neurons. There are about 1010 
neurons in the brain and each neurons is randomly connected to approximately 104 
other neurons. Today’s neural network models are only simplified structures and in no 
way similar to the complexities o f human brain.

4.1 B io lo g ic a l n e u ra l n e tw o rks

The nervous system is a vast and complex neural network. The brain is the 
central element o f the nervous system. It is connected to receptors that shuttle sensory 
information to it, and it delivers action commands to effectors. The brain itselfs 
consist o f a network o f about 1011 neurons that are interconnected through 
subnetworks called nuclei. The subnetworks usually divide up and modify the 
incoming sensory information before sending the information to other subnetworks. 
The final form o f processed signals is delivered to effectors to initiate an action.
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A biological neuron consists o f three main components: dendrites, cell body, 
and axon; see Figure 4.1. Dendrites are branchlike protrusions from neural cell body. 
The dendrites receive signals from other neurons (dendrites act like input hannels). 
The receiving zones o f impulses, called synapses, are on dendrites'and cell body. The 
number o f synaptic connections from other neurons may range from few hundred to 
10,000.

F i g u r e  4 .1  Components o f neural

The cell body or soma sums the incoming signals from dendrites and sums 
the signal from the numerous synapses on its surface.

The axons, the transmit channel o f impulses, is a long, fiberlike extension o f

cell body. Each neuron has one axon, which branches or fans out to other neurons.

The mentioned basic concept o f biological neural networks led to research in 
the area o f the mechanism and model o f human brain including develop the model to 
solve complex problems in science and engineering.

The first artificial neuron was produced in 1943 by the neurophysiologist 
Warren McCulloch and the logician Walter Pits. They proposed the model o f a simple 
neuron, which seemed appropriate for modeling symbolic logic, perceptron, and 
behavior. The McCulloch-Pitts neuron is a simple unit having a linear activation
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function w it threshold value to produce an output. Figure 4.2 shows a simple neuron 
network model. The signal pass from the neural input (x 1 to x„) to y. The total input 
signal received is น and i f  น > T , then the neuron output is =1. I f  พุ-< T, then y = 0, 
that is, "

where T is threshold.

Later, in 1959, Rosenblatt began work on the Perceptron. The perceptron 
consisted o f neuron-like processing units with linear thresholds, and were arranged in 
layers similar to biological systems. The perceptron can learn and computes a 
weighted sum o f the inputs, subtracts a threshold, and passes one o f two possible 
values out as the result.

(4,1)

where
X1 ,X2, ...,x„ 
พ 1,พ2,
T

= Input
= Connection weight 
= Threshold

F i g u r e  4.2 Architecture o f a McCulloch-Pitts neuron^

In 1959, Widrow and Ho ff developed models which is called AD ALINE and 
MAD ALINE. These models were named for their use o f Multiple ADAptive LINear 
Elements. MADALINE was the first neural network to be applied to a real world
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problem. It is an adaptive filter which eliminates echoes on phone lines. This neural 
network is still in commercial use. AD ALINE used a different learning method called 
the delta rule. The AD ALINE ’ ร method o f learning is supervised learning, in which 
the neuron was given a target value. AD ALINE uses this target value to calculate the 
prediction error and moves the weight values in the direction o f the negative gradient 
o f the error. Still the AD ALINE is a linear neuron (having a linear transfer function) 
and is limited to learning linear separable classes.

4.2 Bas ic a r t i f ic ia l n e u ra l n e tw o rk

Artificial neural networks consist o f many interconnected processing 
elements (artificial neurons or nodes). That a neuron is an information processing unit 
that roughly resembles its biological counterpart. Figure 4.3 shows a model o f an 
artificial neural. There are four basic components o f model:

(1) There is a set o f synapses with associated synaptic or connection 
weights. As shown in figure 4.3, the continuous-valued input to 
synapses is a vector signal, with the individual vector components 
given as Xj for j  = 1, 2, ...,ท, Each vector component Xj is input to the 
synapses and connected to neuron through a synaptic weight พ] that is, 
each o f these inputs are multiplied by weight as shown in equation 
(4.2).

y>in -  b + พ 1X1 + พ2X2 + WjXj ; b is bias term. (4.2)

(2) The summing device acts to add all the signals; that is, each input is 
multiplied be weight and then summed.
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(3) The activation function or transfer function, serves to lim it the 
amplitude o f neuron output. When activation function is nonlinear, its 
finite limits are typically normalized in the rage o f either [0,1] or [-1,1], 
The activation functions that are commonly supported are sigmoid, 
sine, hypoberlic tangent, etc. Equation (4.3) shows an example o f 
calculation by using activation function, logistic sigmoid.

Output y  = f ( y j  = 1/(1+ exp (-yin)) (4.3)

(4) The threshold or bias is usually externally applied to the activation 
function or incorporated into weight.

Input
signal

Threshold or 
Bias

Figure 4.3 Nonlinear model o f artificial neuron

4 . 2 . 1  M a j o r  c o m p o n e n t s  o f  a n  a r t i f i c i a l  n e u r o n  n e t w o r k

C o m p o n e n t  1 . W e i g h t i n g  F a c t o r s :  A neuron usually receives many 
simultaneous inputs. Each input has its own relative weight which gives the 
i..put the impact that it needs on the processing element's summation 
function. These weights perform the same type o f function as do the the 
varying synaptic strengths o f biological neurons. In both cases, some inputs
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are made more important than others so that they have a greater effect on the 
processing element as they combine to produce a neural response.

Weights are adaptive coefficients within the network that determine 
the intensity o f the input signal as registered by the artificial neuron. They 
are a measure o f an input's connection strength. These strengths can be 
modified in response to various training sets and according to a network's 
specific topology or through its learning rules.

C o m p o n e n t  2 , S u m m a t i o n  F u n c t i o n  /  B a s i s  F u n c t i o n :  The first step in a 
processing element's operation is to compute the weighted sum o f all o f the 
inputs. Mathematically, the inputs and the corresponding weights are vectors 
which can be represented as (x;, X2 . . . x„) and (พ;, พ2 . . . 'พท). This simplistic 
summation function is found by muliplying each component o f the X  vector 
by the corresponding component o f the พ vector and then adding up all the 
products. Input 1 = X ; * พ1, input 2 = x2 * พ2, etc., are added as input 1 + 
input 2 + . . .  + input ท.

The summation function can be more complex than just the simple 
input and weight sum o f products. The input and weighting coefficients can 
be combined in many different ways before passing on to the transfer 
function.

The basis function has to common forms:

1. Linear-Basis function (LBF) is a hyperplane-type function. 
This is a first-order basis function. The net value is a linear combination o f 
the inputs,
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น i  ( พ ,  x ) =  X w i j x j  (4-4)
J~1

2. Radial-basis function (RBF) is a hyper sphere-type function.

This involves asecond-order (nonlinear) basis function. The net value 
represents the distance to a reference pattern,

U i ( w , x )  =  j  z  ( x i  ~ w i j ) 2  ( 4 -5 )  ^

Moreover, the second-order function can also be extended to a (more 
general) elliptic-basis function.

C o m p o n e n t  3 .  T r a n s f e r  F u n c t i o n  o r  A c t i v a t i o n  F u n c t i o n :  The result o f 
the summation function, almost always the weighted sum, is transformed to a 
working output through an algorithmic process known as the transfer 
function. In the transfer function the summation total can be compared with 
some threshold to determine the neural output. I f  the sum is greater than the 
threshold value, the processing element generates a signal. I f  the sum o f the 
input and weight products is less than the threshold, no signal (or some 
inhibitory signal) is generated. Both types o f response are significant.

The transfer function is generally non-linear. Linear (straight-line 
functions are limited because the output is simply proportional to the input.

Linear functions are not very useful. For example, the most common transfer 
functions (Figure 4.1) are step function (hard limiter), ramping function,
Gaussian function and sigmoid function, sample transfer functions.

The sigmoid functions such as logistic and tanh and the Gaussian 
function are the most common choices. Sigmoid function or S-shaped curve
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approaches a minimum and maximum value at the asymptotes. It is common 
for this curve to be called a sigmoid when it ranges between 0 and 1, and a 
hyperbolic tangent when it ranges between -1 and 1.

Transfer functions for the hidden units are needed to introduce 
nonlinearity into the network. Without nonlinearity, hidden units would not 
make nets more powerful than just plain perceptrons (which do not have any 
hidden units, just input and output units). The reason is that a composition o f 
linear functions is again a linear function. However, it is the nonlinearity (i.e, 
the capability to represent nonlinear functions) that makes multilayer 
networks so powerful. Functions such as tanh that produce both positive and 
negative values tend to yield faster training than functions that produce only 
positive values such as logistic, because o f better numerical conditioning. For 
continuous-valued targets with a bounded range, the logistic and tanh 
functions are useful, provided you either scale the outputs to the range o f the 
targets or scale the targets to the range o f the output activation function 
("scaling" means multiplying by and adding appropriate constants). But i f  the 
target values have no known bounded range, it is better to use an unbounded 
activation function, most often the identity function (which amounts to no 
activation function). I f  the target values are positive but have no known 
upper bound, an exponential output activation function could be applied.
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F i g u r e  4 .4  Sample transfer functions

C o m p o n e n t  4 . S c a l i n g  : After the processing element's transfer function, the 
result can pass through additional processes which scale. This scaling simply 
add or subtract a constant and then multiply or divide by a constant. That the 
neural networks training process can be made more efficient i f  scaling 
processing steps are carried out on the input pattern and target. For example, 
in the backpropagation algorithm used to train a feedforward perceptron, i f  a 
sigmoid function is used as a nonlinear activation function, the saturation 
lim it are 0 and 1. I f  the training patterns have large values compared to these 
limits, the nonlinear activation functions could be operating almost 
exclusively in a saturated mode and not allow the network to train. 
Therefore, the training data should be range-scale to avoid this problem.
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The training data can be amplitude-scaled in basically two ways: so 
that the value o f the patterns lie between -1 and 1, or so that the values o f 
the patterns lie between 0 and 1. These two types o f amplitude scaling are 
usually referred to as min/max scaling. —'

C o m p o n e n t  ร . O u t p u t  F u n c t i o n  ะ Each processing element is allowed one 
output signal which it may output to hundreds o f other neurons. This is just 
like the biological neuron, where there are many inputs and only one output 
action. Normally, the output is directly equivalent to the transfer function's 
result. Some network topologies, however, modify the transfer result to 
incorporate competition among neighboring processing elements. Neurons 
are allowed to compete with each other, inhibiting processing elements 
unless they have great strength. Competition can occur at one or both o f two 
levels. First, competition determines which artificial neuron w ill be active, or 
provides an output. Second, competitive inputs help determine which 
processing element w ill participate in the learning or adaptation process.

C o m p o n e n t  6 .  E r r o r  F u n c t i o n :  Most methods for training supervised 
networks require a measure o f the discrepancy between the networks output 
value and the target (desired output) value. The difference between the target 
and output values is called the "error".

Usually, an error function is applied to each case and is defined in 
terms o f the target and output values. Error functions are also called "loss" 
functions, for example, squared-error, mean or average o f squared errors.
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a) Square-error

The square error can be calculated by the following equation:

E(y,p) = (y-p)2 —  ■ (4.6)

Where E  = error, y  = output value, p = target value

The error function for an entire data set or total error is the sum o f 
squared errors, abbreviated SSE.

b) Mean square error or average square error

The average error is the mean or average o f squared errors, abbreviated MSE 
or ASE The average error is the proportion o f misclassified cases.

Let zm = (Xi,y) , i = 1, ...,m where is order o f training set 
พ  — connection weight 
g(x, พ) -  output o f neural network

Mean Square Error can be calculated by the following'equation:

m-l((yr g(xh พ))2+(yj-g(x1, พ) ) 2+ ... + (ym-g(xm, พ))2) (4.7)

Using the average error instead o f the total error is especially 
convenient when using batch backprop-type training methods where a 
learning rate must be supplied to multiply by the negative gradient to 
compute the change in the weights. I f  the gradient o f the average error is 
used, the choice o f learning rate w ill be relatively insensitive to the number 
o f training cases. But i f  the gradient o f the total error is used, smaller 
learning rates would be used for larger training sets.
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C o m p o n e n t  7 .  L e a r n i n g  F u n c t i o n :  The purpose o f the learning function is 
to modify the variable connection weights on the inputs o f each processing 
element according to some neural based algorithm. This process o f changing 
the weights o f the input connections to achieve some desired result can also 
be called the adaption function, as well as the learning mode. There are two 
types o f learning: supervised and unsupervised. Supervised learning requires 
a teacher. The teacher may be a training set o f data or an observer who 
grades the performance o f the network results. Either way, having a teacher 
is learning by reinforcement. When there is no external teacher, the system 
must organize itself by some internal criteria designed into the network. This 
is learning by doing.

4.2.2 A rch ite c tu re  o f neural ne tw o rk

4 .2 .2 .1  N e u r a l  n e t w o r k  s t r u c t u r e

Neural network structure can be divided into types: Feedforward networks 
and feedback networks: 1

1 )  F e e d - f o r w a r d  n e t w o r k s

Feed-forward networks (Figure 4.5) allow signals to travel one way only; 
from input to output. There is no feedback (loops) i.e. the output o f any layer does not 
affect that same layer. Feed-forward networks tend to be straight forward networks 
that associate inputs with outputs. They are extensively used in pattern recognition. 
This type o f organisation is also referred to as bottom-up or top-down.
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2 )  F e e d b a c k  n e t w o r k s

Feedback networks can have signals travelling in both directions by 
introducing loops in the network. Feedback networks are very powerful and can get 
extremely complicated. Feedback networks are dynamic; their 'state' is changing 
continuously until they reach an equilibrium point. They remain at the equilibrium 
point until the input changes and a new equilibrium needs to be found. Feedback 
architectures are also referred to as interactive or recurrent, although the latter term is 
often used to denote feedback connections in single-layer organisations.

In p u t L a y e r  H id d e n  L a y e r  O u tp u t L a y e r

F i g u r e  4 .5  General structure o f feedforward network with one hidden layer 

4 .2 .2 .2  C o n n e c t i o n  S t r u c t u r e s

A  neural network comprises the neuron and weight building blocks. The 
behavior o f the network depends largely on the interaction between these building
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blocks. There are four types o f weighted connections: feedforward, feedback, lateral, 
and time-delayed connections, as shown in Figure 4.6:

1. Feedforward connections : For all the neural models, data from neurons o f a 
lower layer are propagated forward to neurons o f an upper layer via 
feedforward connections networks.

2~ Feedback Connections'. Feedback networks bring data from neurons o f an 
upper layer back to neurons o f a lower layer.

3. Lateral Connections: . In the feature map example, by allowing neurons to 
interact via the lateral network, a certain topological ordering relationship can 
be preserved. Another example is the lateral orthogonalization network which 
forces the network to extract orthogonal components.

4. Time-delayed Connections'. Delay elements may be incorporated into the 
connections to yield temporal dynamics models. They are more suitable for 
temporal pattern recognitions.

LATERAL

INPUT PATTERN

Figure 4.6 Basic structure o f neural network weighted connection
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4.2.2.3 Network layers

The commonest type o f artificial neural network consists o f three groups, or 
layers, o f units: a layer o f "input" units is connected to a layer o f "hidden" units, 
which is connected to a layer o f "output" units.

1) The activity o f the input units represents the raw information that is 
fed into the network.

2) The activity o f each hidden unit is determined by the activities o f 
the input units and the weights on the connections between the input and the 
hidden units.

3) The behavior o f the output units depends on the activity o f the 
hidden units and the weights between the hidden and output units.

This simple type o f network is interesting because the hidden units are free to 
construct their own representations o f the input. The weights between the input and 
hidden units determine when each hidden unit is active, and so by modifying these 
weights, a hidden unit can choose what it represents.

The single-layer organisation, in which all units are connected to one 
another, constitutes the most general case and is o f more potential computational 
power than hierarchically structured multi-layer organisations. In multi-layer 
networks, units are often numbered by layer, instead o f following a global numbering.

4 . 2 . 3  L e a r n i n g  a l g o r i t h m
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Neural networks are trained rather than programmed. “ Training”  or 
“ Learning” means modifying the values o f the weights in the interconnections to 
achieve some target criteria for the output layer or nodes. Information is stored and 
distributed throughout the network via the interconnection weights.-'

Many learning rules have been developed, but there is a common feature in 
those learning rules. Therefore, the learning methods can be grouped into two types : 
supervised and unsupervised learning algorithm (Figure 4.7) .

N eu ra l N etw o rk

U n su p erv ised  lea rn in g S u p erv ised  lea rn in g

- Additive Grossberg (AG)
- Adaptive Resonance Theory (ART)
- Continuous Hopfield (CH)
- Learning Matrix (LM)
- Learning Vector uantizer (LVQ)

- Perceptron
- Adaline
- Backpropagation (BP)
- Boltzman Machine (BM)
- Associate Reward-Penalty 
(ARP)

Figure 4.7 Learning method; unsupervised and supervised learning

a) Supervised learning

The vast majority o f artificial neural network solutions have been trained 
with supervision. In this mode, the actual output o f a neural network is compared to 
the desired output. Weights, which are usually randomly set to begin with, are then 
adjusted by the network so that the next iteration, or cycle, w ill produce a closer 
match between the desired and the actual output. The learning method tries to 
minimize the current errors o f all processing elements. This global error reduction is 
created over time by continuously modifying the input weights until an acceptable 
network accuracy is reached.
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With supervised learning, the artificial neural network must be trained before 
it becomes useful (Figure 4.8 a). Training consists o f presenting input and output data 
to the network. This data is often referred to as the training set. That is, for each input 
set provided to the system, the corresponding desired output set fsprovided as well. 
Training sets need to be fairly large to contain all the needed information i f  the 
network is to learn the features and relationships that are important. Not only do the 
sets have to be large but the training sessions must include a wide variety o f data.

After a supervised network performs well on the training data, then it is 
important to see what it can do with data it has not seen before. I f  a system does not 
give reasonable outputs, for this test set, the training period is not over. Indeed, this 
testing is critical to insure that the network has not simply memorized a given set o f 
data but has learned the general patterns involved within an application.

b) บทรนpervised Learning

Unsupervised learning is sometimes called self-supervised learning (Figure 
4.8 b). Unsupervised learning is limited to networks known as_self-organizing maps. 
These kinds o f networks are not in widespread use. TJhese networks use no external 
influences to adjust their weights. Instead, they internally monitor their performance. 
These networks look for regularities or trends in the input signals, and makes 
adaptations according to the function o f the network. Even without being told whether 
it's right or wrong, the network still must have some information about how to 
organize itself. This information is built into the network topology and learning rules.

An unsupervised learning algorithm might emphasize cooperation among 
clusters o f processing elements. In such a scheme, the clusters would work together. I f
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some external input activated any node in the cluster, the cluster's activity as a whole 
could be increased. Likewise, i f  external input to nodes in the cluster was decreased, 
that could have an inhibitory to effect on the entire cluster.

Competition between processing elements could also form a basis for 
learning. Training o f competitive clusters could amplify the responses o f specific 
groups to specific stimuli. As such, it would associate those groups with each other 
and with a specific appropriate response. Normally, when competition for learning is 
in effect, only the weights belonging to the winning processing element w ill be 
updated.

Teacher

Figure 4.8 b) บทรpervised learning
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4.2.3.1 Learning rate

The rate at which neural networks learn depends upon several controllable 
factors. In selecting the approach there are many trade-offs to consider. Obviously, a 
slower rate means a lot more time is spent in accomplishing the off-line learning to 
produce an adequately trained system. With the faster learning rates, however, the 
network may not be able to make the fine discriminations possible with a system that 
learns more slowly.

Generally, several factors besides time have to be considered such as 
network complexity, size, paradigm selection, architecture, type o f learning rule or 
rules employed, and desired accuracy must all be considered. These factors play a 
significant role in determining how long it w ill take to train a network. Changing any 
one o f these factors may either extend the training time to an unreasonable length or 
even result in an unacceptable accuracy.

Most learning functions have some provision for a learning rate, or learning 
constant. Usually this term is positive and between zero and one. I f  the learning rate is 
greater than one, it is easy for the learning algorithm to overshoot in correcting the 
weights, and the network w ill oscillate. Small values o f the learning rate w ill not 
correct the current error as quickly, but i f  small steps are taken in correcting errors, 
there is a good chance o f arriving at the best minimum convergence.

4.2.3.2 Learning Rules

Many learning rules are in common use. Most o f these rules are some sort o f 
variation o f the best known and oldest learning rules, Hebb's Rule.

Let พ  weight and bias
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X  input signal

r Learning signal

d  Teachering Signal

o  Output signal —

a  Learning Constant

k Time Step

The general equation o f learning signal is shown in equation (4.8)

r = ไ■ (พ, x,d)  (4.8)

The weight o f network is adjusted after learning according to equation (4.9)

AW(k) = a r  ( W(k),X(k),d(k) ) X(k) (4.9)

Therefore, the weight is adjusted and updated in each iteration o f learning process 
according to equation (4.10)

AW(k+l) = พ(k) + AW(k) (4.10)

A  few o f the major rules are presented as examples.
I

a) Hebb's Rule: The first, and undoubtedly the best known, learning rule was 
introduced by Donald Hebb. The basic rule is: I f  a neuron receives an input from 
another neuron, and i f  both are highly active (mathematically have the same sign), the 
weight between the neurons should be strengthened. The weight is adjusted in the 
following equation:

พ 1 (new) = พ 1 (old) + Xjt (4.11)

where wi = Connection weights
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t = Target value

b) Hopfield Rule: It is similar to Hebb's rule with the exception that it specifies the 
magnitude o f the strengthening or weakening. It states, " if  the desired output and the 
input are both active or both inactive, increment the connection weight by the learning 
rate, otherwise decrement the weight by the learning rate."

c) The Delta Rule: This rule is a further variation o f Hebb's Rule. It is one o f the 
most commonly used. This rule is based on the simple idea o f continuously modifying 
the strengths o f the input connections to reduce the difference (the delta) between the 
desired output value and the actual output o f a processing element. This rule changes 
the synaptic weights in the way that minimizes the mean squared error o f the network. 
This rule is also referred to as the W idrow-Hoff Learning Rule and the Least Mean 
Square (LMS) Learning Rule. Figure 4.9 shows the process o f delta rule.

Figure 4.9 Delta learning rule

The way that the Delta Rule works is that the delta error in the output layer is 
transformed by the derivative o f the transfer function and is then used in the previous 
neural layer to adjust input connection weights. In other words, this error is back- 
propagated into previous layers one layer at a time. The process o f back-propagating 
the network errors continues until the first layer is reached. The network type called
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Feedforward, Back-propagation derives its name from this method o f computing the 
error term.

When using the delta rule, it is important to ensure that the input data set is 
well randomized. Well ordered or structured presentation o f the training set can lead 
to a network which can not converge to the desired accuracy.

d) The Gradient Descent Rule: This rule is similar to the Delta Rule in that the 
derivative o f the transfer function is still used to modify the delta error before it is 
applied to the connection weights. Here, however, an additional proportional constant 
tied to the learning rate is appended to the final modifying factor acting upon the 
weight. This rule is commonly used, even though it converges to a point o f stability 
very slowly.

It has been shown that different learning rates for different layers o f a 
network help the learning process converge faster. In these tests, the learning rates for 
those layers close to the output were set lower than those layers near the input. This is 
especially important for applications where the input data is not derived from a strong 
underlying model. j

e) Kohonen's Learning Rule: This procedure, developed by Teuvo Kohonen, was 
inspired by learning in biological systems. In this procedure, the processing elements 
compete for the opportunity to learn, or update their weights. The processing element 
with the largest output is declared the winner and has the capability o f inhibiting its 
competitors as well as exciting its neighbors. Only the winner is permitted an output, 
and only the winner plus its neighbors are allowed to adjust their connection weights. 
Weights are adjusted as the following equation:
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Wjj(new) = พ 1/ old) + a[Wi-Wij(old)] (4.12)

Further, the size o f the neighborhood can vary during the training period. The 
usual paradigm is to start with a larger definition o f the neighborhood, and narrow in 
as the training process proceeds. Because the winning element is defined as the one 
that has the closest match to the input pattern, Kohonen networks model the 
distribution o f the inputs.

4 . 2 . 4  B a c k p r o p a g a t i o n  n e u r a l  n e t w o r k

Backpropagation is the most widely used learning process in neural 
networks, and it was first developed by Werbos in 1974. This method has been 
recovered several times, in 1986 by Rumelhart, Hinton, and William. 
Backpropagation is a gradient descent learning rule, also called the generalized delta 
rule. In this method, the network predicted output is compared with the actual output 
(target), and the weights are changed in the negative direction o f error to minimize the 
prediction error. This type o f learning is known as "supervised Learning".

4.2.4.1 Backpropagation learning algorithm for feedforward multilyer 
neural network

Training multilayer feedforward neural network with backpropagation 
algorithms results in a nonlinear mapping. Thus, given two sets o f data, that is, 
input/output pairs, the multilayer feedforward neural network can have its connection 
weights adjusted by backpropagation algorithm to develop a specific nonlinear 
mapping. During training phase, the connection weights are adjusted to minimize the 
disparity between actual and desired output.
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multilayer feedforward neural networks have three layers o f weight, namely, 
one output layer and two hidden layers. An example o f this type o f neural network is 
shown in Figure 4.10.

in p u t la y e r  o u tp u t la y e r

1Ë. h id d en  la y e r  2—  h id d en  la y e r  ,

Figure 4.10 Multilayer feedforward network

Backpropagation algorithm is approach applied to minimizing the prediction 
error. The error function to be minimized is defined as proportional to the square o f 
the difference between the actual and desired output, for all the data patterns to be 
learned. Let Ep be th e prediction error for patternp. Then,

Ep = ^  ( d pj ~ ° p j ) 2 (413)

where dpi and Op] represent the desired target value and actual output, respectively. 
The overall error is then given by:

E = ZEp (4.14)

Using a gradient descent, the learning rule for a network weight in any one o f network 
layers is given by:

d E  p  d E  p  d S  p j

d w ] j dSpj dWÿ
(4.15)
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where W j j  is the weight from node z to node j  and W j j  is the change in W j j ,  due to 
prediction error in patternp.

The computations in unity for a pattern p can be represented by,

Spj ijOpj (4.16)

Opj = fi{Spj) (4.17)

where Opj is the output o f the neuron j  for pattern p . The error gradient with respect 
to the weights can then be determined as follows:

dE p dEp dS p j (4.18)
dw]j dS p j dw I j

The second term o f equation (4.18) can be obtained from equation (4.16)

d w i j  d w  j j

= 1
k

dw jk
d W 'j 0  pk

= o pi

D e f i n i n g dEp

equation (4.18) can be written as

(4.19)

(4.20)

dEp
dM 'ij ^  pj o  pi (4.21)

The weight change is proportional to the error gradient with respect to the weights. 
Therefore,
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Aw i j  = TjS P J  o  pi ( 4 -2 2 )

where  ๆis learning rate. The values o f Spj need to be determined for each neuron j. 
Then, the weights o f the network can be updated such that the' prediction error 
decreases. Using the chain rule on equation (4.21),

5 . dE p __ d E p 9 0  pj (4.23)
Ù = ~ a s ~ = ~ a o pj s s pJ

From equation (4.13) and (4.17), equation (4.23) can be written as,

s Pi = -< d Pi -<4-24> 

For sigmoidal functions, f ’pj (Spj) can easily be obtained to be

f ' j ( S p j  ) = O p j( l - O pJ ) (4.25)

The first derivative can easily be calculated for sigmoid function from the output 
values only as given above.

Equation (4.24) useful for calculating ร'ร for the neurons in the output layer. 
However, this equation cannot be used for the hidden layer neurons, because the 
"target value" similar to dpj, is not available to define the error for the hidden layer 
neurons. Therefore, when j  refers to a hidden layer neuron, the term dEp can be 
obtained as follows:

dE
J o

p_ = 
Pi ร

àEp ÔSpk
s pk d o  p j

dE ปี= z pk
d

d 9 , f) o  . ^7 PJpk o u  pj j-X  w j k °  1

= -  X  £ p k w jk (4.25)
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where it is the output layer. Therefore, <5for a hidden layer neuron is given by:

Spj = Z 6 p k «  j k / j f S p j  ) (4-26)

The weight update rule is given by equation (4.22) and the dpj is given by 
equation (4.24) for neuron in the output layer, and by equation (4.26) for neurons in 
the hidden layer. The values o f f ’p/Spj), for sigmoidal functions, required in these 
equations. The ร values o f the output neurons are calculated first and then 
"propagated back" to the hidden layer, giving the name "backpropagation" to this 
generalized delta rule.

Implementing the error backpropagation rule as described is very simple. But 
this method converge slowly to the optimal values. The training algorithm can be 
significantly improved by using an acceleration method called "momentum 
algorithm" which is a conventional optimization tool. The idea o f the algorithm is to 
update the weights in the direction with a linear combination o f current gradient o f the 
instantaneous error. The weights are updated according to:

A Wij(t) = 'ๆôpj(t) Opj(t) + a Aw 11 (t-1) - (4.27)

where t refers to an epoch, or an iteration, incremented by 1 for each sweep 
through the whole set o f input-output values. The term a  is the momentum parameter 
which can take a value between 0 and I, determining the relative contribution o f the 
earlier gradients to the current weight change. This procedure produces a large change 
in the weights i f  the changes are currently large, and w ill decrease as the changes 
become less. Therefore the training speed increases, and the network is less likely to 
get stuck in local optima early on, since the momentum term w ill push the network 
out o f local optima following the overall general trend in weight movement. Figure 11
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shows the forward flow o f the data to the feedforward network and backward flow o f 
the error in such network trained with error backpropagation algorithm. The summary 
o f backpropagation algorithm step is presented in Appendix B.

Figure 11 Forward flow o f information or data (arrows) and backward flow
I

o f error (dash line) in a backpropagation type o f neural network

4.2.4.2 Levenberg-Marquardt algorithm

Levenberg- Marquardt backpropagation algorithm represents a simplified 
version o f Newton’s method applied to the problem o f training multilayer neural 
networks. To apply the Levenberg- Marquardt backpropagation algorithm, the 
problem o f training has to be formulated as nonlinear optimization problem. Consider 
multilayer feedforward neural network, the task o f neural network training can be
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viewed as finding a set o f neural network output for all patterns in the training set. 
The algorithm can be described below:

c d  Xout (4.28)

E(w) = e2/2 (4.29)

= -(V2E(w))-’ VE(w) (4.30)

where V 2E(w) is the Hessian matrix (.H).
VE(w) represents the gradient o f the error function ( f  e) 
d  is the desired output and X is an actual output.

J  is the Jacabian matrix defined by,

d 6 2 de2
dw 1 dw g
d6^ de 2
dw 2 dw g

(4.31)

By using the expression for Jacobian matrix, the Hessian can be expressed as

V*E(พ) = f j  +s ■" (4.32)
t

where matrix ร is the matrix o f second order derivatives given by

s  = ZeS?e (4.33)

When approaching the minimum o f error function, the elemens o f matrix ร become 
small, and Hessian can be closely approximated by

H  ~ f j  ' (4.34)

Therefore, we obtain
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Aw = (JTJ+ !ๆ)-1 f e  (4.35)

where  ๆis a small number o f learning rate and /  is the identity matrix.

The biggest problem in implementing the Levenberg-Marquardt is the calculation o f 
Jacobian matrix ([ J ( w j ) .  Each tern in matrix has the form

_ det Aet (4-36)
l,J dw j  A Wj

The Levenberg-Marquardt algorithm can be summarized in the following step.

Step 1: Initialize the network weights to small random values. Set the learning rate 
parameter.

Step 2: Present the input pattern, and calculate the output o f the network.

Step 3: Use (4.36) to calculate the elements o f the Jacobia matrix associated with the 
input/output pair.

Step 4: When the last input/output pair is present, use (4.35) to_ perform the update o f 
the weights.

Step 5: Stop i f  the network has converged; else, go back to step 2.

4.3 N e u ra l n e tw o rk  design

a) Model structure and size

No standard method has been known to determine the structure and the 
number o f nodes o f a network required for any particular application. Although there
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are some guidelines and heuristics suggested in the literature the actual choice still 
remains on a case-to-case basis. The normal procedure for selecting the hidden nodes 
is to fix an initial size and then check i f  this model satisfies the error requirement 
when the training process is stopped. I f  not, the size is revised and the whole 
procedure repeated until it satisfies the tolerance for the prediction error. Although the 
choice o f the number o f hidden nodes here is done by trial-and-error, normally within 
a few trials it becomes quite easy to constrain it in an optimum range (within some 
upper and lower lim it) required for achieving acceptable training. The choice is also 
made keeping in view o f one o f the objective o f this work which is to select 
parsimonious models i.e. models which contain the smallest number o f free 
parameters such as the connection weights, required to represent the time system 
adequately.

b) Data collection (input/output data)

Data collection involves a number o f important tasks. In utilizing neural 
networks, the data set collection is normally split into various sets. One is the initial 
training set, which is the data used to train the network weights and normally span the 
operating region o f the model. Next is the testing data set, which is used* for final 
validation o f the trained neural network.

The choice o f input data fed into the network is an important consideration in 
the utilization o f neural networks for any particular application. For steady state 
application, the choice o f inputs to the network basically depends on the relevant 
variables likely to have an effect on the predicted output variable. For modeling the 
dynamic behavior o f a system, it would not only depend on these relevant variables 
but also the time history o f these variables as well as the time history o f the output
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variables. The knowledge o f the system such as the model order is use as the initial 
guide to decide on the time history.

c) Data processing

After data collection, all data should be pre-processed using statistical 
procedure. Data in the training sets are pre-processed to have zero mean and unit 
variance. This is necessary to prevent input with large average values in certain 
dimension.

d) Weight Initialization

The initial weight specification has a pronounced effect on the speed and 
quality o f neural network training. It is best to initialize the weights with small, 
random numbers e.g. in the range -0.5 to 0.5 (Bhat andMcAvoy, 1990) so that each 
connection responds slightly differently during training and has the effect o f breaking 
the symmetry and promotes faster convergence to the global minimum. I f  the final 
prediction does not satisfy the error tolerance during training, other than reconfiguring 
the network, the weights are also re-initialized and the identification process repeated, 

i This has been found to improve the performance o f the neural network training.

e) Training Methodology

Training is a procedure to determine the optimal values o f the connection 
weights and bias weights. It begins by initially assigning arbitrary small random 
values (both positive and negative) to the weights. Training proceeds iteratively until 
a satisfactory model is obtained. In each iteration, called an epoch, the actual outputs 
corresponding to all the sets o f inputs in the training set are predicted, and the weights 
are adjusted in the direction in which the output prediction error decreases. For
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training to be complete many iterations are necessary. The weights are incrementally 
adjusted for every pattern in every iteration and they gradually converge on the 
optimal values. I f  ท represents the total number o f data patterns in the X, Y  data set, 
where X  is the matrix o f inputs and Y  is the matrix o f targets,-then one iteration 
corresponds to feeding all the ท, patterns once. Actual outputs are not available for the 
hidden units. Therefore, to adjust the hidden layer weights, error from the output layer 
is propagated back to the hidden layer, and their weights adjusted to decrease the 
prediction error.

Different network architectures require different training algorithms and 
training times can be significantly reduced by the use o f suitable algorithms. However 
backpropagation with its variants remain the mainstay o f performing neural network 
(multilayered feedforward) learning. Hence training or optimization o f the weights to 
achieve the required prediction, is performed in this work by the backpropagation 
technique with a momentum term. Although there are many other variants o f this 
method to improve the speed o f training, this approach is deemed sufficient to 
produce the required results and accuracy for our application in this work.

f) Model Validation

Overlearning, which occurs when the model starts to learn the presented 
pattern in a pointwise fashion instead o f learning the functionality, is a potential 
problem that can easily occur in process identification. During overlearning the 
performance o f the network training continues to improve on the learning data set but 
starts to degrade on the testing set i.e. poor generalization capability at this instance. It 
can however be dealt with by proper training and validation.
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Figure 12 Basic steps-neural network design

Most o f the quantitative validation tests available are based on correlation 
approaches, for linear systems, intended to check whether the residuals are correlated 
to the input signal or among themselves (autocorrelated). Other information criteria 
methods such as Akaike Information Criteria, Final Prediction Error and Bayesian 
Information Criteria etc., (Ljung, 1987; Cherkassky el al., 1995) attempt to measure
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how well a model fits the data set provided as well as penalizing complex models by 
accounting for the number o f parameters in the model. However the model can also 
be validated, as in mainly done in this study, by predicting the output in data sets not 
used in the identification procedure and the quality o f the fit can bo-observed in terms 
o f its sum-squared error.

The major steps required to be followed in performing neural network 
designed are outlined in the chart o f Figure 12.

4.4 A p p lic a t io n  o f a r t i f ic ia l n e u ra l n e tw o rk

4.4.1 Identification

The general problem o f nonlinear system identification is presented in Figure 
4.13. Ideally, the identification process should be capable o f producing an accurate 
model o f nonlinear system without any prior knowledge o f system dynamics. The 
Identification being composed o f forward modeling, which the forward model o f the 
system is identified and inverse modeling.

o x(t)

F i g u r e  4 .1 3  general model o f the system identification process
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4.4.1.1 Forward modeling

The procedure o f training a neural network to represent the forward 
dynamics (i.e. obtain outputs given the inputs) o f a system is referréd to as forward 
modeling. A  structure for achieving this is shown in Figure 4.14. The neural network 
model is placed in parallel with system and the error between the system and the 
network outputs (the prediction error) as the neural network training signal. A  
multilayered feedforward network is used in order to apply a backpropagation training 
algorithm. Assume that the plant is governed by the following nonlinear discrete time 
difference equation:

/  (t+1) =f( /  (t-n+l);x(t),...,x(t-m+l) (37)

Thus, the plant output y* at time t+1 depends on the past ท output values and on the 
past m values o f the input X . We concentrated here is only on the dynamical part o f the 
plant response; the model does not explicitly represent plant disturbances (for a 
method o f including the disturbance see, e.g., Chen et al. (1990)). Special cases o f the 
model (4.2) have been considered by Narendra and Parthasarathy (1990).

An obvious approach for system modeling is to choose the input-output 
structure o f the neural network to be the same as that o f the system. Denoting the 
output o f the network by ym then it is obtained that

y m ( t + l ) =  F ( y p (t  y P ( t - n  + 1); x( t  x( t  -  m + 1 )) (38)

In the above, the mapping F(.) represents the nonlinear input-output map of 
the network which approximates the plant mapping F(.). Note that the input to the 
network includes the past values o f the plant output but not the past values o f the 
network output (the network has no feedback). The learning statistical
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backpropagation algorithm is used to find the optimal values o f the network weights. 
The structure o f the model equation (38) is called series-parallel.

I f  it is assumed that after a suitable training period the network gives a good 
representation o f the plant (i.e. ym then for subsequent post-training purposes the 
network output itself and its delayed values can be fed back and used as part o f the 
network input. In this way the network can be used independently o f the plant. Such a 
network is described as

y m ( t + 1 ) = F ( y m ( t y m ( Î -  ท + 1 ); x (  t x ( t  -  m + 1 )) (39)

This structure may also be used from beginning that is during the whole process o f 
learning. The structure o f equation (39) is called parallel. The series-parallel is 
supported by stability results. Moreover, the parallel model requires a dynamical 
backpropagation training algorithm.

Figure 4.14 Identification
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4.4.1.2 Inverse Modeling

The inverse model o f a dynamical system yields input for given output. The 
models play a crucial role in a range o f control structures. However, obtaining inverse 
models raises several important issues. Conceptually the simplest approach is direct 
inverse modeling as shown in Figure 4.15a. Here, a synthetic training signal (the plant 
input) is introduced to the system. The plant output is then used as input to the 
network. The network output is compared with the training signal (the system input) 
and this error is used to train the network. This structure w ill clearly force the network 
to represent the inverse o f the plant. However, there are some drawbacks:

• The learning procedure is not "goal directed"; the training signal must be 
chosen to sample over a wide range o f system inputs, and the actual 
operational inputs may be hard to define a prior. The actual goal in the 
control context is to make the system output behave in a desired way, and 
thus the training signal in direct inverse modeling does not correspond to 
the explicit goal;

• Second, i f  the nonlinear system is not one-to-one, then an incorrect 
inverse can be obtained.

The first point is strongly related with the general concept o f persistent 
excitation. A second approach to inverse modeling which aims to overcome these 
problems is known as specialized inverse learning (Psaltis, Sideris and Yarnamura, 
1988). The specialized inverse learning structure is shown in Figure 4.15b. In this 
approach the network inverse model precedes the system and receives as input a 
training signal which spans the desired operational output space o f the controlled 
system (i.e. it corresponds to the system reference signal). This learning structure also
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contains a train forward model o f the system placed in parallel with the plant. The 
error signal for the training algorithm in this case is the difference between the 
training signal and the system output (it may also be the difference between the 
training signal and the forward model output i f  the system is noisy). It can be shown 
that using the plant output an exact inverse even when the forward model is not exact 
can be produced; this is not the case when the forward model output is used. The error 
may then be propagated back through the forward model and the inverse model; only 
the inverse network model weights are adjusted during this procedure. Thus, the 
procedure is effective at learning and identifies mapping across the inverse model and 
the forward model; the inverse model is learned as a side effect. In comparison with 
direct inverse modeling, the specialized inverse learning approach possesses the 
following features:

• The procedure is goal directed since it is based on the error between 
desired system outputs and actual outputs. In other word, the system 
receives inputs during training which correspond to the actual operational 
inputs it w ill subsequently receive.

• In case in which the system forward mapping is not one-to-one a 
particular inverse (pseudo-inverse) w ill be found. The problem o f bias can 
also be handled.

Next, the input-output structure o f network modeling the system inverse is 
considered. From equation (40) the inverse F 1 leading to the generation o f x(if)would 
require knowledge o f the future value Ÿ (t+l). To overcome this problem we replace 
this future value with the value r (t + 1) which is assumed to be available at time t. 
This seems to be a reasonable assumption since r is typically related to the reference
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X

Figure 4.15 Structure for inverse identification 

signal which is normally known one step ahead. Thus, the nonlinear input-output 
mapping relation o f the network modeling the plant inverse is

x(t)=F1(yp(t).....ÿ ’(t-n+l'); r(t+l); x(t-l)......x(t-m+l)) (40)

that is the inverse model network receives as inputs the current and past system 
outputs, the training (reference) signal, and the past values o f the system outputs. 
Where it is desirable to train the inverse without the plant the values o f Ÿ  the above 
relation are simply replaced by the forward model outputs ym .
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4 . 4 . 2  N e u r a l  n e t w o r k  b a s e d  c o n t r o l

Model o f dynamical systems and their inverse have immediate utility for 
control. This topic presents two direct approaches to control : supervised control and 
direct inverse control.

4.4.2.1 Supervised control

There are many control situations where a human provides the feedback 
control actions for a particular task and where it has proven difficult to design an 
automatic controller using standard control techniques. In some situations it may be 
desirable to design an automatic controller which mimics the action o f the human

a )

b)

Figure 4.16 Supervised control (a) training the network (b) Operating
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(this has been called supervised control).

An artificial neural network provides one possibility for this. Training the 
neural network is similar in principle to learning a system forward model. The 
network input corresponds to the sensory input information received by the human. 
The network target outputs used for training correspond to human control input to the 
system. The supervised control structure is shown in Figure 4.16.

4.4.2.2 Direct inverse control

Direct inverse control utilizes an inverse system model. The inverse model is 
simply cascaded with the controlled system in order that the composed system results 
in an identity mapping between desired response (i.e. the network inputs) and the 
controlled system output. Thus, the network acts directly as the controller in such a 
configuration. The direct inverse control structure is shown in Figure 4.17.

4

N EU lfAL
NETWORK

;c? ...............
//

/

PLANT
FI n p u t  X

a )

b)
Figure 4.17 Direct inverse control (a) learning for inverse function 

(b) controlling by inverse function
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4.4.2.3 Model reference control

Here, the desired performance o f closed-loop system is specified through a 
stsble reference model, which is defined by its input-output pair. The control system

Figure 4.18 Structure for model reference

attempts to make the plant output match reference model output asymptotically. The 
model reference control structure for nonlinear system utilizing connectionist model is 
shown in Figure 4.18. In this structure the error defined above is used to train the 
network acting as controller. Clearly, this approach is related to training o f inverse 
plant models as outline above. In general, the training procedure w ill force the 
controller to be detuned inverse, in a sense defined by the reference model.

I
4.4.2.4 Internal model control

In internal model control (IMC) the role o f system forward and inverse 
model is emphasized. In this structure a system forward and inverse model are used 
directly as elements within the feedback loop. IMC has been thoroughly examined 
and shown to yield transparently to robustness and stability analysis. Moreover, IMC  
extends readily to nonlinear systems control.
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In internal model control a system model is placed in parallel w ith the real 
system. The difference between the system and model outputs is used for feedback 
purpose. This feedback signal is then processed by a controller subsystem in the 
forward path; the properties o f IMC dictate that this part o f the controller should be 
related to the system inverse (the nonlinear realization o f IMC illustrate in Figure 
4.19.

Given network models for the system forward and inverse dynamics the 
realisation o f internal model control using neural networks is straightforward; the 
system model M  and controller c  (the inverse model) are realised using the neural 
network models as shown in Figure 4.19.

Figure 4.19 Structure for internal model control
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