
C H A P T E R I V

N E U R A L N E T W O R K F U N D A M E N T A L S

Artificial neural networks are mathematical structures involving learning
process. After neural network has learned what it needs to know, the trained network
can be used to perform certain tasks depending on the particular application. Neural
networks have the ability to learn from their environment and to adapt to it in an
interactive manner similar to their biological counterparts. The neural network
paradigm emerged from attempts to simulate and understand the working o f he human
brain. The human brain is composed o f networks o f neurons. There are about 1010
neurons in the brain and each neurons is randomly connected to approximately 104
other neurons. Today’s neural network models are only simplified structures and in no
way similar to the complexities o f human brain.

4.1 B io lo g ic a l n e u ra l n e tw o rks

The nervous system is a vast and complex neural network. The brain is the
central element o f the nervous system. It is connected to receptors that shuttle sensory
information to it, and it delivers action commands to effectors. The brain itselfs
consist o f a network o f about 1011 neurons that are interconnected through
subnetworks called nuclei. The subnetworks usually divide up and modify the
incoming sensory information before sending the information to other subnetworks.
The final form o f processed signals is delivered to effectors to initiate an action.

45

A biological neuron consists o f three main components: dendrites, cell body,
and axon; see Figure 4.1. Dendrites are branchlike protrusions from neural cell body.
The dendrites receive signals from other neurons (dendrites act like input hannels).
The receiving zones o f impulses, called synapses, are on dendrites'and cell body. The
number o f synaptic connections from other neurons may range from few hundred to
10,000.

F i g u r e 4 .1 Components o f neural

The cell body or soma sums the incoming signals from dendrites and sums
the signal from the numerous synapses on its surface.

The axons, the transmit channel o f impulses, is a long, fiberlike extension o f

cell body. Each neuron has one axon, which branches or fans out to other neurons.

The mentioned basic concept o f biological neural networks led to research in
the area o f the mechanism and model o f human brain including develop the model to
solve complex problems in science and engineering.

The first artificial neuron was produced in 1943 by the neurophysiologist
Warren McCulloch and the logician Walter Pits. They proposed the model o f a simple
neuron, which seemed appropriate for modeling symbolic logic, perceptron, and
behavior. The McCulloch-Pitts neuron is a simple unit having a linear activation

โ
y ^

—~—) tfënàrtsçs

46

function w it threshold value to produce an output. Figure 4.2 shows a simple neuron
network model. The signal pass from the neural input (x 1 to x„) to y. The total input
signal received is น and i f น > T , then the neuron output is =1. I f พุ-< T, then y = 0,
that is, "

where T is threshold.

Later, in 1959, Rosenblatt began work on the Perceptron. The perceptron
consisted o f neuron-like processing units with linear thresholds, and were arranged in
layers similar to biological systems. The perceptron can learn and computes a
weighted sum o f the inputs, subtracts a threshold, and passes one o f two possible
values out as the result.

(4,1)

where
X1 ,X2, ...,x„
พ 1,พ2,
T

= Input
= Connection weight
= Threshold

F i g u r e 4.2 Architecture o f a McCulloch-Pitts neuron^

In 1959, Widrow and Ho ff developed models which is called AD ALINE and
MAD ALINE. These models were named for their use o f Multiple ADAptive LINear
Elements. MADALINE was the first neural network to be applied to a real world

47

problem. It is an adaptive filter which eliminates echoes on phone lines. This neural
network is still in commercial use. AD ALINE used a different learning method called
the delta rule. The AD ALINE ’ ร method o f learning is supervised learning, in which
the neuron was given a target value. AD ALINE uses this target value to calculate the
prediction error and moves the weight values in the direction o f the negative gradient
o f the error. Still the AD ALINE is a linear neuron (having a linear transfer function)
and is limited to learning linear separable classes.

4.2 Bas ic a r t i f ic ia l n e u ra l n e tw o rk

Artificial neural networks consist o f many interconnected processing
elements (artificial neurons or nodes). That a neuron is an information processing unit
that roughly resembles its biological counterpart. Figure 4.3 shows a model o f an
artificial neural. There are four basic components o f model:

(1) There is a set o f synapses with associated synaptic or connection
weights. As shown in figure 4.3, the continuous-valued input to
synapses is a vector signal, with the individual vector components
given as Xj for j = 1, 2, ...,ท, Each vector component Xj is input to the
synapses and connected to neuron through a synaptic weight พ] that is,
each o f these inputs are multiplied by weight as shown in equation
(4.2).

y>in - b + พ 1X1 + พ2X2 + WjXj ; b is bias term. (4.2)

(2) The summing device acts to add all the signals; that is, each input is
multiplied be weight and then summed.

48

(3) The activation function or transfer function, serves to lim it the
amplitude o f neuron output. When activation function is nonlinear, its
finite limits are typically normalized in the rage o f either [0,1] or [-1,1],
The activation functions that are commonly supported are sigmoid,
sine, hypoberlic tangent, etc. Equation (4.3) shows an example o f
calculation by using activation function, logistic sigmoid.

Output y = f (y j = 1/(1+ exp (-yin)) (4.3)

(4) The threshold or bias is usually externally applied to the activation
function or incorporated into weight.

Input
signal

Threshold or
Bias

Figure 4.3 Nonlinear model o f artificial neuron

4 . 2 . 1 M a j o r c o m p o n e n t s o f a n a r t i f i c i a l n e u r o n n e t w o r k

C o m p o n e n t 1 . W e i g h t i n g F a c t o r s : A neuron usually receives many
simultaneous inputs. Each input has its own relative weight which gives the
i..put the impact that it needs on the processing element's summation
function. These weights perform the same type o f function as do the the
varying synaptic strengths o f biological neurons. In both cases, some inputs

49

are made more important than others so that they have a greater effect on the
processing element as they combine to produce a neural response.

Weights are adaptive coefficients within the network that determine
the intensity o f the input signal as registered by the artificial neuron. They
are a measure o f an input's connection strength. These strengths can be
modified in response to various training sets and according to a network's
specific topology or through its learning rules.

C o m p o n e n t 2 , S u m m a t i o n F u n c t i o n / B a s i s F u n c t i o n : The first step in a
processing element's operation is to compute the weighted sum o f all o f the
inputs. Mathematically, the inputs and the corresponding weights are vectors
which can be represented as (x;, X2 . . . x„) and (พ;, พ2 . . . 'พท). This simplistic
summation function is found by muliplying each component o f the X vector
by the corresponding component o f the พ vector and then adding up all the
products. Input 1 = X ; * พ1, input 2 = x2 * พ2, etc., are added as input 1 +
input 2 + . . . + input ท.

The summation function can be more complex than just the simple
input and weight sum o f products. The input and weighting coefficients can
be combined in many different ways before passing on to the transfer
function.

The basis function has to common forms:

1. Linear-Basis function (LBF) is a hyperplane-type function.
This is a first-order basis function. The net value is a linear combination o f
the inputs,

5 0

น i (พ , x) = X w i j x j (4-4)
J~1

2. Radial-basis function (RBF) is a hyper sphere-type function.

This involves asecond-order (nonlinear) basis function. The net value
represents the distance to a reference pattern,

U i (w , x) = j z (x i ~ w i j) 2 (4 -5) ^

Moreover, the second-order function can also be extended to a (more
general) elliptic-basis function.

C o m p o n e n t 3 . T r a n s f e r F u n c t i o n o r A c t i v a t i o n F u n c t i o n : The result o f
the summation function, almost always the weighted sum, is transformed to a
working output through an algorithmic process known as the transfer
function. In the transfer function the summation total can be compared with
some threshold to determine the neural output. I f the sum is greater than the
threshold value, the processing element generates a signal. I f the sum o f the
input and weight products is less than the threshold, no signal (or some
inhibitory signal) is generated. Both types o f response are significant.

The transfer function is generally non-linear. Linear (straight-line
functions are limited because the output is simply proportional to the input.

Linear functions are not very useful. For example, the most common transfer
functions (Figure 4.1) are step function (hard limiter), ramping function,
Gaussian function and sigmoid function, sample transfer functions.

The sigmoid functions such as logistic and tanh and the Gaussian
function are the most common choices. Sigmoid function or S-shaped curve

51

approaches a minimum and maximum value at the asymptotes. It is common
for this curve to be called a sigmoid when it ranges between 0 and 1, and a
hyperbolic tangent when it ranges between -1 and 1.

Transfer functions for the hidden units are needed to introduce
nonlinearity into the network. Without nonlinearity, hidden units would not
make nets more powerful than just plain perceptrons (which do not have any
hidden units, just input and output units). The reason is that a composition o f
linear functions is again a linear function. However, it is the nonlinearity (i.e,
the capability to represent nonlinear functions) that makes multilayer
networks so powerful. Functions such as tanh that produce both positive and
negative values tend to yield faster training than functions that produce only
positive values such as logistic, because o f better numerical conditioning. For
continuous-valued targets with a bounded range, the logistic and tanh
functions are useful, provided you either scale the outputs to the range o f the
targets or scale the targets to the range o f the output activation function
("scaling" means multiplying by and adding appropriate constants). But i f the
target values have no known bounded range, it is better to use an unbounded
activation function, most often the identity function (which amounts to no
activation function). I f the target values are positive but have no known
upper bound, an exponential output activation function could be applied.

5 2

Step F un ction R am p F u n ction

V i
1

1 k

' ฯ ' v
r X.

-1 1 พ, X
1

X < 0 , oII>>

0 < X < 1 , XII

X > i 7 y = 1

Va

y = 1 / (1+๙0

Sigm oid F un ction

F i g u r e 4 .4 Sample transfer functions

C o m p o n e n t 4 . S c a l i n g : After the processing element's transfer function, the
result can pass through additional processes which scale. This scaling simply
add or subtract a constant and then multiply or divide by a constant. That the
neural networks training process can be made more efficient i f scaling
processing steps are carried out on the input pattern and target. For example,
in the backpropagation algorithm used to train a feedforward perceptron, i f a
sigmoid function is used as a nonlinear activation function, the saturation
lim it are 0 and 1. I f the training patterns have large values compared to these
limits, the nonlinear activation functions could be operating almost
exclusively in a saturated mode and not allow the network to train.
Therefore, the training data should be range-scale to avoid this problem.

53

The training data can be amplitude-scaled in basically two ways: so
that the value o f the patterns lie between -1 and 1, or so that the values o f
the patterns lie between 0 and 1. These two types o f amplitude scaling are
usually referred to as min/max scaling. —'

C o m p o n e n t ร . O u t p u t F u n c t i o n ะ Each processing element is allowed one
output signal which it may output to hundreds o f other neurons. This is just
like the biological neuron, where there are many inputs and only one output
action. Normally, the output is directly equivalent to the transfer function's
result. Some network topologies, however, modify the transfer result to
incorporate competition among neighboring processing elements. Neurons
are allowed to compete with each other, inhibiting processing elements
unless they have great strength. Competition can occur at one or both o f two
levels. First, competition determines which artificial neuron w ill be active, or
provides an output. Second, competitive inputs help determine which
processing element w ill participate in the learning or adaptation process.

C o m p o n e n t 6 . E r r o r F u n c t i o n : Most methods for training supervised
networks require a measure o f the discrepancy between the networks output
value and the target (desired output) value. The difference between the target
and output values is called the "error".

Usually, an error function is applied to each case and is defined in
terms o f the target and output values. Error functions are also called "loss"
functions, for example, squared-error, mean or average o f squared errors.

5 4

a) Square-error

The square error can be calculated by the following equation:

E(y,p) = (y-p)2 — ■ (4.6)

Where E = error, y = output value, p = target value

The error function for an entire data set or total error is the sum o f
squared errors, abbreviated SSE.

b) Mean square error or average square error

The average error is the mean or average o f squared errors, abbreviated MSE
or ASE The average error is the proportion o f misclassified cases.

Let zm = (Xi,y) , i = 1, ...,m where is order o f training set
พ — connection weight
g(x, พ) - output o f neural network

Mean Square Error can be calculated by the following'equation:

m-l((yr g(xh พ))2+(yj-g(x1, พ)) 2+ ... + (ym-g(xm, พ))2) (4.7)

Using the average error instead o f the total error is especially
convenient when using batch backprop-type training methods where a
learning rate must be supplied to multiply by the negative gradient to
compute the change in the weights. I f the gradient o f the average error is
used, the choice o f learning rate w ill be relatively insensitive to the number
o f training cases. But i f the gradient o f the total error is used, smaller
learning rates would be used for larger training sets.

5 5

C o m p o n e n t 7 . L e a r n i n g F u n c t i o n : The purpose o f the learning function is
to modify the variable connection weights on the inputs o f each processing
element according to some neural based algorithm. This process o f changing
the weights o f the input connections to achieve some desired result can also
be called the adaption function, as well as the learning mode. There are two
types o f learning: supervised and unsupervised. Supervised learning requires
a teacher. The teacher may be a training set o f data or an observer who
grades the performance o f the network results. Either way, having a teacher
is learning by reinforcement. When there is no external teacher, the system
must organize itself by some internal criteria designed into the network. This
is learning by doing.

4.2.2 A rch ite c tu re o f neural ne tw o rk

4 .2 .2 .1 N e u r a l n e t w o r k s t r u c t u r e

Neural network structure can be divided into types: Feedforward networks
and feedback networks: 1

1) F e e d - f o r w a r d n e t w o r k s

Feed-forward networks (Figure 4.5) allow signals to travel one way only;
from input to output. There is no feedback (loops) i.e. the output o f any layer does not
affect that same layer. Feed-forward networks tend to be straight forward networks
that associate inputs with outputs. They are extensively used in pattern recognition.
This type o f organisation is also referred to as bottom-up or top-down.

5 6

2) F e e d b a c k n e t w o r k s

Feedback networks can have signals travelling in both directions by
introducing loops in the network. Feedback networks are very powerful and can get
extremely complicated. Feedback networks are dynamic; their 'state' is changing
continuously until they reach an equilibrium point. They remain at the equilibrium
point until the input changes and a new equilibrium needs to be found. Feedback
architectures are also referred to as interactive or recurrent, although the latter term is
often used to denote feedback connections in single-layer organisations.

In p u t L a y e r H id d e n L a y e r O u tp u t L a y e r

F i g u r e 4 .5 General structure o f feedforward network with one hidden layer

4 .2 .2 .2 C o n n e c t i o n S t r u c t u r e s

A neural network comprises the neuron and weight building blocks. The
behavior o f the network depends largely on the interaction between these building

57

blocks. There are four types o f weighted connections: feedforward, feedback, lateral,
and time-delayed connections, as shown in Figure 4.6:

1. Feedforward connections : For all the neural models, data from neurons o f a
lower layer are propagated forward to neurons o f an upper layer via
feedforward connections networks.

2~ Feedback Connections'. Feedback networks bring data from neurons o f an
upper layer back to neurons o f a lower layer.

3. Lateral Connections: . In the feature map example, by allowing neurons to
interact via the lateral network, a certain topological ordering relationship can
be preserved. Another example is the lateral orthogonalization network which
forces the network to extract orthogonal components.

4. Time-delayed Connections'. Delay elements may be incorporated into the
connections to yield temporal dynamics models. They are more suitable for
temporal pattern recognitions.

LATERAL

INPUT PATTERN

Figure 4.6 Basic structure o f neural network weighted connection

58

4.2.2.3 Network layers

The commonest type o f artificial neural network consists o f three groups, or
layers, o f units: a layer o f "input" units is connected to a layer o f "hidden" units,
which is connected to a layer o f "output" units.

1) The activity o f the input units represents the raw information that is
fed into the network.

2) The activity o f each hidden unit is determined by the activities o f
the input units and the weights on the connections between the input and the
hidden units.

3) The behavior o f the output units depends on the activity o f the
hidden units and the weights between the hidden and output units.

This simple type o f network is interesting because the hidden units are free to
construct their own representations o f the input. The weights between the input and
hidden units determine when each hidden unit is active, and so by modifying these
weights, a hidden unit can choose what it represents.

The single-layer organisation, in which all units are connected to one
another, constitutes the most general case and is o f more potential computational
power than hierarchically structured multi-layer organisations. In multi-layer
networks, units are often numbered by layer, instead o f following a global numbering.

4 . 2 . 3 L e a r n i n g a l g o r i t h m

59

Neural networks are trained rather than programmed. “ Training” or
“ Learning” means modifying the values o f the weights in the interconnections to
achieve some target criteria for the output layer or nodes. Information is stored and
distributed throughout the network via the interconnection weights.-'

Many learning rules have been developed, but there is a common feature in
those learning rules. Therefore, the learning methods can be grouped into two types :
supervised and unsupervised learning algorithm (Figure 4.7) .

N eu ra l N etw o rk

U n su p erv ised lea rn in g S u p erv ised lea rn in g

- Additive Grossberg (AG)
- Adaptive Resonance Theory (ART)
- Continuous Hopfield (CH)
- Learning Matrix (LM)
- Learning Vector uantizer (LVQ)

- Perceptron
- Adaline
- Backpropagation (BP)
- Boltzman Machine (BM)
- Associate Reward-Penalty
(ARP)

Figure 4.7 Learning method; unsupervised and supervised learning

a) Supervised learning

The vast majority o f artificial neural network solutions have been trained
with supervision. In this mode, the actual output o f a neural network is compared to
the desired output. Weights, which are usually randomly set to begin with, are then
adjusted by the network so that the next iteration, or cycle, w ill produce a closer
match between the desired and the actual output. The learning method tries to
minimize the current errors o f all processing elements. This global error reduction is
created over time by continuously modifying the input weights until an acceptable
network accuracy is reached.

6 0

With supervised learning, the artificial neural network must be trained before
it becomes useful (Figure 4.8 a). Training consists o f presenting input and output data
to the network. This data is often referred to as the training set. That is, for each input
set provided to the system, the corresponding desired output set fsprovided as well.
Training sets need to be fairly large to contain all the needed information i f the
network is to learn the features and relationships that are important. Not only do the
sets have to be large but the training sessions must include a wide variety o f data.

After a supervised network performs well on the training data, then it is
important to see what it can do with data it has not seen before. I f a system does not
give reasonable outputs, for this test set, the training period is not over. Indeed, this
testing is critical to insure that the network has not simply memorized a given set o f
data but has learned the general patterns involved within an application.

b) บทรนpervised Learning

Unsupervised learning is sometimes called self-supervised learning (Figure
4.8 b). Unsupervised learning is limited to networks known as_self-organizing maps.
These kinds o f networks are not in widespread use. TJhese networks use no external
influences to adjust their weights. Instead, they internally monitor their performance.
These networks look for regularities or trends in the input signals, and makes
adaptations according to the function o f the network. Even without being told whether
it's right or wrong, the network still must have some information about how to
organize itself. This information is built into the network topology and learning rules.

An unsupervised learning algorithm might emphasize cooperation among
clusters o f processing elements. In such a scheme, the clusters would work together. I f

61

some external input activated any node in the cluster, the cluster's activity as a whole
could be increased. Likewise, i f external input to nodes in the cluster was decreased,
that could have an inhibitory to effect on the entire cluster.

Competition between processing elements could also form a basis for
learning. Training o f competitive clusters could amplify the responses o f specific
groups to specific stimuli. As such, it would associate those groups with each other
and with a specific appropriate response. Normally, when competition for learning is
in effect, only the weights belonging to the winning processing element w ill be
updated.

Teacher

Figure 4.8 b) บทรpervised learning

6 2

4.2.3.1 Learning rate

The rate at which neural networks learn depends upon several controllable
factors. In selecting the approach there are many trade-offs to consider. Obviously, a
slower rate means a lot more time is spent in accomplishing the off-line learning to
produce an adequately trained system. With the faster learning rates, however, the
network may not be able to make the fine discriminations possible with a system that
learns more slowly.

Generally, several factors besides time have to be considered such as
network complexity, size, paradigm selection, architecture, type o f learning rule or
rules employed, and desired accuracy must all be considered. These factors play a
significant role in determining how long it w ill take to train a network. Changing any
one o f these factors may either extend the training time to an unreasonable length or
even result in an unacceptable accuracy.

Most learning functions have some provision for a learning rate, or learning
constant. Usually this term is positive and between zero and one. I f the learning rate is
greater than one, it is easy for the learning algorithm to overshoot in correcting the
weights, and the network w ill oscillate. Small values o f the learning rate w ill not
correct the current error as quickly, but i f small steps are taken in correcting errors,
there is a good chance o f arriving at the best minimum convergence.

4.2.3.2 Learning Rules

Many learning rules are in common use. Most o f these rules are some sort o f
variation o f the best known and oldest learning rules, Hebb's Rule.

Let พ weight and bias

63

X input signal

r Learning signal

d Teachering Signal

o Output signal —

a Learning Constant

k Time Step

The general equation o f learning signal is shown in equation (4.8)

r = ไ■ (พ, x,d) (4.8)

The weight o f network is adjusted after learning according to equation (4.9)

AW(k) = a r (W(k),X(k),d(k)) X(k) (4.9)

Therefore, the weight is adjusted and updated in each iteration o f learning process
according to equation (4.10)

AW(k+l) = พ(k) + AW(k) (4.10)

A few o f the major rules are presented as examples.
I

a) Hebb's Rule: The first, and undoubtedly the best known, learning rule was
introduced by Donald Hebb. The basic rule is: I f a neuron receives an input from
another neuron, and i f both are highly active (mathematically have the same sign), the
weight between the neurons should be strengthened. The weight is adjusted in the
following equation:

พ 1 (new) = พ 1 (old) + Xjt (4.11)

where wi = Connection weights

64

t = Target value

b) Hopfield Rule: It is similar to Hebb's rule with the exception that it specifies the
magnitude o f the strengthening or weakening. It states, " if the desired output and the
input are both active or both inactive, increment the connection weight by the learning
rate, otherwise decrement the weight by the learning rate."

c) The Delta Rule: This rule is a further variation o f Hebb's Rule. It is one o f the
most commonly used. This rule is based on the simple idea o f continuously modifying
the strengths o f the input connections to reduce the difference (the delta) between the
desired output value and the actual output o f a processing element. This rule changes
the synaptic weights in the way that minimizes the mean squared error o f the network.
This rule is also referred to as the W idrow-Hoff Learning Rule and the Least Mean
Square (LMS) Learning Rule. Figure 4.9 shows the process o f delta rule.

Figure 4.9 Delta learning rule

The way that the Delta Rule works is that the delta error in the output layer is
transformed by the derivative o f the transfer function and is then used in the previous
neural layer to adjust input connection weights. In other words, this error is back-
propagated into previous layers one layer at a time. The process o f back-propagating
the network errors continues until the first layer is reached. The network type called

6 5

Feedforward, Back-propagation derives its name from this method o f computing the
error term.

When using the delta rule, it is important to ensure that the input data set is
well randomized. Well ordered or structured presentation o f the training set can lead
to a network which can not converge to the desired accuracy.

d) The Gradient Descent Rule: This rule is similar to the Delta Rule in that the
derivative o f the transfer function is still used to modify the delta error before it is
applied to the connection weights. Here, however, an additional proportional constant
tied to the learning rate is appended to the final modifying factor acting upon the
weight. This rule is commonly used, even though it converges to a point o f stability
very slowly.

It has been shown that different learning rates for different layers o f a
network help the learning process converge faster. In these tests, the learning rates for
those layers close to the output were set lower than those layers near the input. This is
especially important for applications where the input data is not derived from a strong
underlying model. j

e) Kohonen's Learning Rule: This procedure, developed by Teuvo Kohonen, was
inspired by learning in biological systems. In this procedure, the processing elements
compete for the opportunity to learn, or update their weights. The processing element
with the largest output is declared the winner and has the capability o f inhibiting its
competitors as well as exciting its neighbors. Only the winner is permitted an output,
and only the winner plus its neighbors are allowed to adjust their connection weights.
Weights are adjusted as the following equation:

66

Wjj(new) = พ 1/ old) + a[Wi-Wij(old)] (4.12)

Further, the size o f the neighborhood can vary during the training period. The
usual paradigm is to start with a larger definition o f the neighborhood, and narrow in
as the training process proceeds. Because the winning element is defined as the one
that has the closest match to the input pattern, Kohonen networks model the
distribution o f the inputs.

4 . 2 . 4 B a c k p r o p a g a t i o n n e u r a l n e t w o r k

Backpropagation is the most widely used learning process in neural
networks, and it was first developed by Werbos in 1974. This method has been
recovered several times, in 1986 by Rumelhart, Hinton, and William.
Backpropagation is a gradient descent learning rule, also called the generalized delta
rule. In this method, the network predicted output is compared with the actual output
(target), and the weights are changed in the negative direction o f error to minimize the
prediction error. This type o f learning is known as "supervised Learning".

4.2.4.1 Backpropagation learning algorithm for feedforward multilyer
neural network

Training multilayer feedforward neural network with backpropagation
algorithms results in a nonlinear mapping. Thus, given two sets o f data, that is,
input/output pairs, the multilayer feedforward neural network can have its connection
weights adjusted by backpropagation algorithm to develop a specific nonlinear
mapping. During training phase, the connection weights are adjusted to minimize the
disparity between actual and desired output.

67

multilayer feedforward neural networks have three layers o f weight, namely,
one output layer and two hidden layers. An example o f this type o f neural network is
shown in Figure 4.10.

in p u t la y e r o u tp u t la y e r

1Ë. h id d en la y e r 2— h id d en la y e r ,

Figure 4.10 Multilayer feedforward network

Backpropagation algorithm is approach applied to minimizing the prediction
error. The error function to be minimized is defined as proportional to the square o f
the difference between the actual and desired output, for all the data patterns to be
learned. Let Ep be th e prediction error for patternp. Then,

Ep = ^ (d pj ~ ° p j) 2 (413)

where dpi and Op] represent the desired target value and actual output, respectively.
The overall error is then given by:

E = ZEp (4.14)

Using a gradient descent, the learning rule for a network weight in any one o f network
layers is given by:

d E p d E p d S p j

d w] j dSpj dWÿ
(4.15)

68

where W j j is the weight from node z to node j and W j j is the change in W j j , due to
prediction error in patternp.

The computations in unity for a pattern p can be represented by,

Spj ijOpj (4.16)

Opj = fi{Spj) (4.17)

where Opj is the output o f the neuron j for pattern p . The error gradient with respect
to the weights can then be determined as follows:

dE p dEp dS p j (4.18)
dw]j dS p j dw I j

The second term o f equation (4.18) can be obtained from equation (4.16)

d w i j d w j j

= 1
k

dw jk
d W 'j 0 pk

= o pi

D e f i n i n g dEp

equation (4.18) can be written as

(4.19)

(4.20)

dEp
dM 'ij ^ pj o pi (4.21)

The weight change is proportional to the error gradient with respect to the weights.
Therefore,

69

Aw i j = TjS P J o pi (4 -2 2)

where ๆis learning rate. The values o f Spj need to be determined for each neuron j.
Then, the weights o f the network can be updated such that the' prediction error
decreases. Using the chain rule on equation (4.21),

5 . dE p __ d E p 9 0 pj (4.23)
Ù = ~ a s ~ = ~ a o pj s s pJ

From equation (4.13) and (4.17), equation (4.23) can be written as,

s Pi = -< d Pi -<4-24>

For sigmoidal functions, f ’pj (Spj) can easily be obtained to be

f ' j (S p j) = O p j(l - O pJ) (4.25)

The first derivative can easily be calculated for sigmoid function from the output
values only as given above.

Equation (4.24) useful for calculating ร'ร for the neurons in the output layer.
However, this equation cannot be used for the hidden layer neurons, because the
"target value" similar to dpj, is not available to define the error for the hidden layer
neurons. Therefore, when j refers to a hidden layer neuron, the term dEp can be
obtained as follows:

dE
J o

p_ =
Pi ร

àEp ÔSpk
s pk d o p j

dE ปี= z pk
d

d 9 , f) o . ^7 PJpk o u pj j-X w j k ° 1

= - X £ p k w jk (4.25)

70

where it is the output layer. Therefore, <5for a hidden layer neuron is given by:

Spj = Z 6 p k « j k / j f S p j) (4-26)

The weight update rule is given by equation (4.22) and the dpj is given by
equation (4.24) for neuron in the output layer, and by equation (4.26) for neurons in
the hidden layer. The values o f f ’p/Spj), for sigmoidal functions, required in these
equations. The ร values o f the output neurons are calculated first and then
"propagated back" to the hidden layer, giving the name "backpropagation" to this
generalized delta rule.

Implementing the error backpropagation rule as described is very simple. But
this method converge slowly to the optimal values. The training algorithm can be
significantly improved by using an acceleration method called "momentum
algorithm" which is a conventional optimization tool. The idea o f the algorithm is to
update the weights in the direction with a linear combination o f current gradient o f the
instantaneous error. The weights are updated according to:

A Wij(t) = 'ๆôpj(t) Opj(t) + a Aw 11 (t-1) - (4.27)

where t refers to an epoch, or an iteration, incremented by 1 for each sweep
through the whole set o f input-output values. The term a is the momentum parameter
which can take a value between 0 and I, determining the relative contribution o f the
earlier gradients to the current weight change. This procedure produces a large change
in the weights i f the changes are currently large, and w ill decrease as the changes
become less. Therefore the training speed increases, and the network is less likely to
get stuck in local optima early on, since the momentum term w ill push the network
out o f local optima following the overall general trend in weight movement. Figure 11

71

shows the forward flow o f the data to the feedforward network and backward flow o f
the error in such network trained with error backpropagation algorithm. The summary
o f backpropagation algorithm step is presented in Appendix B.

Figure 11 Forward flow o f information or data (arrows) and backward flow
I

o f error (dash line) in a backpropagation type o f neural network

4.2.4.2 Levenberg-Marquardt algorithm

Levenberg- Marquardt backpropagation algorithm represents a simplified
version o f Newton’s method applied to the problem o f training multilayer neural
networks. To apply the Levenberg- Marquardt backpropagation algorithm, the
problem o f training has to be formulated as nonlinear optimization problem. Consider
multilayer feedforward neural network, the task o f neural network training can be

72

viewed as finding a set o f neural network output for all patterns in the training set.
The algorithm can be described below:

c d Xout (4.28)

E(w) = e2/2 (4.29)

= -(V2E(w))-’ VE(w) (4.30)

where V 2E(w) is the Hessian matrix (.H).
VE(w) represents the gradient o f the error function (f e)
d is the desired output and X is an actual output.

J is the Jacabian matrix defined by,

d 6 2 de2
dw 1 dw g
d6^ de 2
dw 2 dw g

(4.31)

By using the expression for Jacobian matrix, the Hessian can be expressed as

V*E(พ) = f j +s ■" (4.32)
t

where matrix ร is the matrix o f second order derivatives given by

s = ZeS?e (4.33)

When approaching the minimum o f error function, the elemens o f matrix ร become
small, and Hessian can be closely approximated by

H ~ f j ' (4.34)

Therefore, we obtain

73

Aw = (JTJ+ !ๆ)-1 f e (4.35)

where ๆis a small number o f learning rate and / is the identity matrix.

The biggest problem in implementing the Levenberg-Marquardt is the calculation o f
Jacobian matrix ([J (w j) . Each tern in matrix has the form

_ det Aet (4-36)
l,J dw j A Wj

The Levenberg-Marquardt algorithm can be summarized in the following step.

Step 1: Initialize the network weights to small random values. Set the learning rate
parameter.

Step 2: Present the input pattern, and calculate the output o f the network.

Step 3: Use (4.36) to calculate the elements o f the Jacobia matrix associated with the
input/output pair.

Step 4: When the last input/output pair is present, use (4.35) to_ perform the update o f
the weights.

Step 5: Stop i f the network has converged; else, go back to step 2.

4.3 N e u ra l n e tw o rk design

a) Model structure and size

No standard method has been known to determine the structure and the
number o f nodes o f a network required for any particular application. Although there

74

are some guidelines and heuristics suggested in the literature the actual choice still
remains on a case-to-case basis. The normal procedure for selecting the hidden nodes
is to fix an initial size and then check i f this model satisfies the error requirement
when the training process is stopped. I f not, the size is revised and the whole
procedure repeated until it satisfies the tolerance for the prediction error. Although the
choice o f the number o f hidden nodes here is done by trial-and-error, normally within
a few trials it becomes quite easy to constrain it in an optimum range (within some
upper and lower lim it) required for achieving acceptable training. The choice is also
made keeping in view o f one o f the objective o f this work which is to select
parsimonious models i.e. models which contain the smallest number o f free
parameters such as the connection weights, required to represent the time system
adequately.

b) Data collection (input/output data)

Data collection involves a number o f important tasks. In utilizing neural
networks, the data set collection is normally split into various sets. One is the initial
training set, which is the data used to train the network weights and normally span the
operating region o f the model. Next is the testing data set, which is used* for final
validation o f the trained neural network.

The choice o f input data fed into the network is an important consideration in
the utilization o f neural networks for any particular application. For steady state
application, the choice o f inputs to the network basically depends on the relevant
variables likely to have an effect on the predicted output variable. For modeling the
dynamic behavior o f a system, it would not only depend on these relevant variables
but also the time history o f these variables as well as the time history o f the output

75

variables. The knowledge o f the system such as the model order is use as the initial
guide to decide on the time history.

c) Data processing

After data collection, all data should be pre-processed using statistical
procedure. Data in the training sets are pre-processed to have zero mean and unit
variance. This is necessary to prevent input with large average values in certain
dimension.

d) Weight Initialization

The initial weight specification has a pronounced effect on the speed and
quality o f neural network training. It is best to initialize the weights with small,
random numbers e.g. in the range -0.5 to 0.5 (Bhat andMcAvoy, 1990) so that each
connection responds slightly differently during training and has the effect o f breaking
the symmetry and promotes faster convergence to the global minimum. I f the final
prediction does not satisfy the error tolerance during training, other than reconfiguring
the network, the weights are also re-initialized and the identification process repeated,

i This has been found to improve the performance o f the neural network training.

e) Training Methodology

Training is a procedure to determine the optimal values o f the connection
weights and bias weights. It begins by initially assigning arbitrary small random
values (both positive and negative) to the weights. Training proceeds iteratively until
a satisfactory model is obtained. In each iteration, called an epoch, the actual outputs
corresponding to all the sets o f inputs in the training set are predicted, and the weights
are adjusted in the direction in which the output prediction error decreases. For

76

training to be complete many iterations are necessary. The weights are incrementally
adjusted for every pattern in every iteration and they gradually converge on the
optimal values. I f ท represents the total number o f data patterns in the X, Y data set,
where X is the matrix o f inputs and Y is the matrix o f targets,-then one iteration
corresponds to feeding all the ท, patterns once. Actual outputs are not available for the
hidden units. Therefore, to adjust the hidden layer weights, error from the output layer
is propagated back to the hidden layer, and their weights adjusted to decrease the
prediction error.

Different network architectures require different training algorithms and
training times can be significantly reduced by the use o f suitable algorithms. However
backpropagation with its variants remain the mainstay o f performing neural network
(multilayered feedforward) learning. Hence training or optimization o f the weights to
achieve the required prediction, is performed in this work by the backpropagation
technique with a momentum term. Although there are many other variants o f this
method to improve the speed o f training, this approach is deemed sufficient to
produce the required results and accuracy for our application in this work.

f) Model Validation

Overlearning, which occurs when the model starts to learn the presented
pattern in a pointwise fashion instead o f learning the functionality, is a potential
problem that can easily occur in process identification. During overlearning the
performance o f the network training continues to improve on the learning data set but
starts to degrade on the testing set i.e. poor generalization capability at this instance. It
can however be dealt with by proper training and validation.

77

Figure 12 Basic steps-neural network design

Most o f the quantitative validation tests available are based on correlation
approaches, for linear systems, intended to check whether the residuals are correlated
to the input signal or among themselves (autocorrelated). Other information criteria
methods such as Akaike Information Criteria, Final Prediction Error and Bayesian
Information Criteria etc., (Ljung, 1987; Cherkassky el al., 1995) attempt to measure

78

how well a model fits the data set provided as well as penalizing complex models by
accounting for the number o f parameters in the model. However the model can also
be validated, as in mainly done in this study, by predicting the output in data sets not
used in the identification procedure and the quality o f the fit can bo-observed in terms
o f its sum-squared error.

The major steps required to be followed in performing neural network
designed are outlined in the chart o f Figure 12.

4.4 A p p lic a t io n o f a r t i f ic ia l n e u ra l n e tw o rk

4.4.1 Identification

The general problem o f nonlinear system identification is presented in Figure
4.13. Ideally, the identification process should be capable o f producing an accurate
model o f nonlinear system without any prior knowledge o f system dynamics. The
Identification being composed o f forward modeling, which the forward model o f the
system is identified and inverse modeling.

o x(t)

F i g u r e 4 .1 3 general model o f the system identification process

79

4.4.1.1 Forward modeling

The procedure o f training a neural network to represent the forward
dynamics (i.e. obtain outputs given the inputs) o f a system is referréd to as forward
modeling. A structure for achieving this is shown in Figure 4.14. The neural network
model is placed in parallel with system and the error between the system and the
network outputs (the prediction error) as the neural network training signal. A
multilayered feedforward network is used in order to apply a backpropagation training
algorithm. Assume that the plant is governed by the following nonlinear discrete time
difference equation:

/ (t+1) =f(/ (t-n+l);x(t),...,x(t-m+l) (37)

Thus, the plant output y* at time t+1 depends on the past ท output values and on the
past m values o f the input X . We concentrated here is only on the dynamical part o f the
plant response; the model does not explicitly represent plant disturbances (for a
method o f including the disturbance see, e.g., Chen et al. (1990)). Special cases o f the
model (4.2) have been considered by Narendra and Parthasarathy (1990).

An obvious approach for system modeling is to choose the input-output
structure o f the neural network to be the same as that o f the system. Denoting the
output o f the network by ym then it is obtained that

y m (t + l) = F (y p (t y P (t - n + 1); x(t x(t - m + 1)) (38)

In the above, the mapping F(.) represents the nonlinear input-output map of
the network which approximates the plant mapping F(.). Note that the input to the
network includes the past values o f the plant output but not the past values o f the
network output (the network has no feedback). The learning statistical

80

backpropagation algorithm is used to find the optimal values o f the network weights.
The structure o f the model equation (38) is called series-parallel.

I f it is assumed that after a suitable training period the network gives a good
representation o f the plant (i.e. ym then for subsequent post-training purposes the
network output itself and its delayed values can be fed back and used as part o f the
network input. In this way the network can be used independently o f the plant. Such a
network is described as

y m (t + 1) = F (y m (t y m (Î - ท + 1); x (t x (t - m + 1)) (39)

This structure may also be used from beginning that is during the whole process o f
learning. The structure o f equation (39) is called parallel. The series-parallel is
supported by stability results. Moreover, the parallel model requires a dynamical
backpropagation training algorithm.

Figure 4.14 Identification

81

4.4.1.2 Inverse Modeling

The inverse model o f a dynamical system yields input for given output. The
models play a crucial role in a range o f control structures. However, obtaining inverse
models raises several important issues. Conceptually the simplest approach is direct
inverse modeling as shown in Figure 4.15a. Here, a synthetic training signal (the plant
input) is introduced to the system. The plant output is then used as input to the
network. The network output is compared with the training signal (the system input)
and this error is used to train the network. This structure w ill clearly force the network
to represent the inverse o f the plant. However, there are some drawbacks:

• The learning procedure is not "goal directed"; the training signal must be
chosen to sample over a wide range o f system inputs, and the actual
operational inputs may be hard to define a prior. The actual goal in the
control context is to make the system output behave in a desired way, and
thus the training signal in direct inverse modeling does not correspond to
the explicit goal;

• Second, i f the nonlinear system is not one-to-one, then an incorrect
inverse can be obtained.

The first point is strongly related with the general concept o f persistent
excitation. A second approach to inverse modeling which aims to overcome these
problems is known as specialized inverse learning (Psaltis, Sideris and Yarnamura,
1988). The specialized inverse learning structure is shown in Figure 4.15b. In this
approach the network inverse model precedes the system and receives as input a
training signal which spans the desired operational output space o f the controlled
system (i.e. it corresponds to the system reference signal). This learning structure also

82

contains a train forward model o f the system placed in parallel with the plant. The
error signal for the training algorithm in this case is the difference between the
training signal and the system output (it may also be the difference between the
training signal and the forward model output i f the system is noisy). It can be shown
that using the plant output an exact inverse even when the forward model is not exact
can be produced; this is not the case when the forward model output is used. The error
may then be propagated back through the forward model and the inverse model; only
the inverse network model weights are adjusted during this procedure. Thus, the
procedure is effective at learning and identifies mapping across the inverse model and
the forward model; the inverse model is learned as a side effect. In comparison with
direct inverse modeling, the specialized inverse learning approach possesses the
following features:

• The procedure is goal directed since it is based on the error between
desired system outputs and actual outputs. In other word, the system
receives inputs during training which correspond to the actual operational
inputs it w ill subsequently receive.

• In case in which the system forward mapping is not one-to-one a
particular inverse (pseudo-inverse) w ill be found. The problem o f bias can
also be handled.

Next, the input-output structure o f network modeling the system inverse is
considered. From equation (40) the inverse F 1 leading to the generation o f x(if)would
require knowledge o f the future value Ÿ (t+l). To overcome this problem we replace
this future value with the value r (t + 1) which is assumed to be available at time t.
This seems to be a reasonable assumption since r is typically related to the reference

83

X

Figure 4.15 Structure for inverse identification

signal which is normally known one step ahead. Thus, the nonlinear input-output
mapping relation o f the network modeling the plant inverse is

x(t)=F1(yp(t).....ÿ ’(t-n+l'); r(t+l); x(t-l)......x(t-m+l)) (40)

that is the inverse model network receives as inputs the current and past system
outputs, the training (reference) signal, and the past values o f the system outputs.
Where it is desirable to train the inverse without the plant the values o f Ÿ the above
relation are simply replaced by the forward model outputs ym .

84

4 . 4 . 2 N e u r a l n e t w o r k b a s e d c o n t r o l

Model o f dynamical systems and their inverse have immediate utility for
control. This topic presents two direct approaches to control : supervised control and
direct inverse control.

4.4.2.1 Supervised control

There are many control situations where a human provides the feedback
control actions for a particular task and where it has proven difficult to design an
automatic controller using standard control techniques. In some situations it may be
desirable to design an automatic controller which mimics the action o f the human

a)

b)

Figure 4.16 Supervised control (a) training the network (b) Operating

85

(this has been called supervised control).

An artificial neural network provides one possibility for this. Training the
neural network is similar in principle to learning a system forward model. The
network input corresponds to the sensory input information received by the human.
The network target outputs used for training correspond to human control input to the
system. The supervised control structure is shown in Figure 4.16.

4.4.2.2 Direct inverse control

Direct inverse control utilizes an inverse system model. The inverse model is
simply cascaded with the controlled system in order that the composed system results
in an identity mapping between desired response (i.e. the network inputs) and the
controlled system output. Thus, the network acts directly as the controller in such a
configuration. The direct inverse control structure is shown in Figure 4.17.

4

N EU lfAL
NETWORK

;c?
//

/

PLANT
FI n p u t X

a)

b)
Figure 4.17 Direct inverse control (a) learning for inverse function

(b) controlling by inverse function

86

4.4.2.3 Model reference control

Here, the desired performance o f closed-loop system is specified through a
stsble reference model, which is defined by its input-output pair. The control system

Figure 4.18 Structure for model reference

attempts to make the plant output match reference model output asymptotically. The
model reference control structure for nonlinear system utilizing connectionist model is
shown in Figure 4.18. In this structure the error defined above is used to train the
network acting as controller. Clearly, this approach is related to training o f inverse
plant models as outline above. In general, the training procedure w ill force the
controller to be detuned inverse, in a sense defined by the reference model.

I
4.4.2.4 Internal model control

In internal model control (IMC) the role o f system forward and inverse
model is emphasized. In this structure a system forward and inverse model are used
directly as elements within the feedback loop. IMC has been thoroughly examined
and shown to yield transparently to robustness and stability analysis. Moreover, IMC
extends readily to nonlinear systems control.

87

In internal model control a system model is placed in parallel w ith the real
system. The difference between the system and model outputs is used for feedback
purpose. This feedback signal is then processed by a controller subsystem in the
forward path; the properties o f IMC dictate that this part o f the controller should be
related to the system inverse (the nonlinear realization o f IMC illustrate in Figure
4.19.

Given network models for the system forward and inverse dynamics the
realisation o f internal model control using neural networks is straightforward; the
system model M and controller c (the inverse model) are realised using the neural
network models as shown in Figure 4.19.

Figure 4.19 Structure for internal model control

	Chapter IV Neural Network Fundamentals
	4.1 Biological neural networks
	4.2 Basic artificial neural network
	4.3 Neural network design
	4.4 Application of artificial neural network

