การวิเคราะห์สายอากาศแบบท่อน้ำคลื่นที่มีช่องเปิดตามสันขอบด้านข้างด้วยวิธีผสมระหว่าง ระเบียบวิธีไฟไนต์เอลิเมนต์กับวิธีโมเมนต์

นายอีสวานดิ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-17-4429-3 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ANALYSIS OF AN EDGE SLOT WAVEGUIDE ANTENNA USING A COMBINED FINITE ELEMENT AND MOMENT METHODS

Mr. Iswandi

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Electrical Engineering

Department of Electrical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2005

ISBN 974-17-4429-3

	USING A COMBINED FINITE ELEMENT. METHODS	AND MOMENT	
By:	Mr. ISWANDI		
Field of study:	ELECTRICAL ENGINEERING		
Thesis Advisor:	ASSISTANT PROFESSOR TUPTIM ANGK	KAEW, D. Eng.	
Accepted by th	ne Faculty of Engineering, Chulalongkorn Univ	versity in Partial	
Fulfillment of the Re	equirement for the Master's Degree		
Dean of the Faculty of Engineering Professor Direk Lavansiri, Ph.D.			
THESIS COMMITT	TEE:		
 Associate	Professor Chatchai Waiyapattanakorn, Ph.D.	Chairman	
Assis	tant Professor Tuptim Angkaew, D. Eng.	Thesis Advisor	
	Professor Monai Krairiksh, D. Eng.	Member	

Thesis title: ANALYSIS OF AN EDGE SLOT WAVEGUIDE ANTENNA

อีสวานคิ: การวิเคราะห์สายอากาศแบบท่อน้ำคลื่นที่มีช่องเปิคตามสันขอบด้านข้างค้วยวิธี ผสมระหว่างระเบียบวิธีไฟในต์เอลิเมนต์กับวิธีโมเมนต์ (ANALYSIS OF AN EDGE SLOT WAVEGUIDE ANTENNA USING A COMBINED FINITE ELEMENT AND MOMENT METHODS) อ.ที่ปรึกษา: ผศ. คร.ทับทิม อ่างแก้ว , 73 หน้า, ISBN 974-17-4429-3.

งานวิทยานิพนธ์นำเสนอระเบียบวิธีเชิงเลงเพื่อวิเคราะห์คุณลักษณะของการแผ่กระจายคลื่นจาก ช่องเปิดตามสันขอบด้านข้างของท่อนำคลื่นสี่เหลี่ยมด้วยวิธีผสมระหว่างระเบียบวิธีไฟในต์เอลิเมนต์กับวิธีโมเมนต์ เพื่อให้การคำนวณได้ผลดีจึงได้เลือกใช้ระเบียบวิธีไฟในต์เอลิเมนต์ในการประมาณสนามแม่เหล็ก ไฟฟ้าในช่องเปิดเนื่องจากต้องนำผลของความหนาของตัวนำที่เป็นผนังของท่อนำคลื่นมาพิจารณาด้วย อย่างไรก็ตามระเบียบวิธีไฟในต์เอลิเมนต์มีข้อด้อยในการวิเคราะห์บริเวณสนามที่เปิดโล่งเมื่อเปรียบเทียบ กับวิธีโมเมนต์ ดังนั้นจึงได้มีการนำวิธีทั้งสองมาผสมกันเพื่อนำข้อดีของวิธีแต่ละวิธีมาใช้ร่วมกัน นอกจากนี้งานวิทยานิพนธ์ยังได้ศึกษาการนำเอลิเมนต์เอกฐานมาใช้ในระเบียบวิธีไฟในต์เอลิเมนต์ในกรณี ของวิธีผสมที่นำเสนอในวิทยานิพนธ์ด้วย

เพื่อเป็นการทคสอบความถูกต้องของโปรแกรมที่ผู้เขียนได้จัดสร้างขึ้นตามระเบียบวิธีที่นำเสนอ จึง ได้นำโปรแกรมไปคำนวณในกรณีตัวอย่างและเปรียบเทียบผลการคำนวณ ผลการเปรียบเทียบการกระจาย สนามไฟฟ้าตามความยาวของช่องเปิดพบว่าตรงกับผลการคำนวณที่มีผู้นำเสนอไว้ก่อนแล้ว นอกจากนี้ยัง ได้คำนวณพารามิเตอร์ต่างๆที่สามารถวัดได้เพื่อเปรียบเทียบกับผลการทคลอง ผลที่ได้พบว่าสอดคล้องกันดี งานวิทยานิพนธ์ยังได้เสนอผลเพิ่มเติมที่เป็นประโยชน์ต่อการออกแบบสายอากาศ เช่น กราฟแสดงการ เปลี่ยนแปลงค่าความนำไฟฟ้าสมมูลกับมุมเอียงของช่องเปิด และรูปแบบการแผ่กระจายคลื่นของสายอากาศ ในส่วนผลของการศึกษาเรื่องการใช้เอลิเมนต์เอกฐานในวิธีผสมระหว่างไฟในต์เอลิเมนต์กับวิธีโมเมนต์นั้น พบว่าได้ผลไม่ถูกต้อง จึงสรุปได้ว่าไม่สามารถนำมาใช้ร่วมกันได้ ทั้งนี้อาจมีสาเหตุมาจากธรรมชาติของ ฟังก์ชันการประมาณของระเบียบวิธีทั้งสองนั้นแตกต่างกัน

ภาควิชา	วิศวกรรมไฟฟ้า	ลายมือชื่อนิสิต 🖟	
สาขาวิชา	วิศวกรรมไฟฟ้า	ลายมือชื่ออาจารย์ที่ปรึกษา นี 🕹	
ปีการศึกษา	2548		

##46706472 MAJOR ELECTRICAL ENGINEERING
KEY WORD: EDGE SLOT / SLOTTED WAVEGUIDE ANTENNA / HYBRID
METHOD/ FINITE ELEMENT METHOD / MOMENT METHOD

ISWANDI: ANALYSIS OF AN EDGE SLOT WAVEGUIDE ANTENNA USING A COMBINED FINITE ELEMENT AND MOMENT METHODS, THESIS ADVISOR: ASSISTANT PROFESSOR TUPTIM ANGKAEW, D. Eng., 73 pp., ISBN 974-17-4429-3

A numerical analysis method for analyzing radiation characteristic of an edge slot waveguide antenna by using combined finite element and moment methods is presented in this thesis. The finite element method has been used to find the approximate solution of the electric field in the cavity of the slot in order to incorporate the wall thickness of slot into the numerical modeling. As the finite element method is less efficient than the moment method for the case of open region, the moment method is employed in free space outside the slot cavity which includes region in rectangular waveguide and free space region outside the radiation slot. Thus, the combined finite element method and moment method has been proposed in this thesis in order to combined the merit of both methods. In addition, the concept of using singular element has been firstly investigated in this thesis for improving the accuracy of approximation of electric field at the corners of the edge slot.

The numerical examples have been carried out to validate the program written by the author. The computed results of electric field distribution along the slot and resonant length agree well with other published results. The proposed method has been employed to find other parameters which are useful for designing antenna such as normalized conductance versus slot inclination angle and radiation patterns. By investigating the use of singular element, it is found that the singular element cannot be used in this case of combined finite element and moment method because of the conflict nature of interpolation functions using in finite element and moment methods.

Department	Electrical Engineering	Student's signature	Mamo
Field of study	Electrical Engineering	Advisor's signature	teption Angleser
Academic year .	2005 .		

ACKNOWLEDGEMENTS

I would like to express my great gratitude and deep appreciation to my advisor, Assist. Prof. Dr. Tuptim Angkaew, for her supports, her guidance and her friendship during completing my thesis. I would like to thank my thesis committee members, Assoc. Prof. Dr. Chatchai Waiyapattanakorn and Prof. Dr. Monai Krairiksh for any encouragements and suggestions for completing my thesis.

I would like to express my sincere gratitude AUN/SEED-Net - JICA for granting me a full scholarship without which my study at Chulalongkorn University would not be possible.

I would like to thank many other students in the electromagnetic wave group, from whom I benefited a lot through stimulating discussions. My thanks also for all my colleagues in PERMITHA (The Association of Indonesian Students in Thailand) that have experienced me with the nice friendship, discussions and various knowledge.

Lastly, I would like to thank my family. I am very grateful to my father, Samat, my mother, Sugiyah and my sister, Lilis Surawandayanti, who always encourage and support me to realize all my dreams even though they have to sustain the long time separation from their beloved son.

Contents

Abstrac	t in Tha	ii	iv
Abstrac	t in Eng	glish	v
Acknow	ledgem	ents	vi
Content	ts		vii
List of 7	Tables .		ix
List of l	Figures		X
СНАРТ	TER I	INTRODUCTION	1
1.1	Backgr	round	1
1.2	Resear	ch Motivation	3
1.3	Object	ives of the Research	5
1.4	Chapte	er Organization	6
CHAP	TER II	COMBINED FINITE ELEMENT AND MOMENT METHODS	
2.1	Geome	etry of an Edge Slot	8
2.2	Equiv	alent Network Representation of an Edge Slot	8
2.3	Formu	lation of Combined Finite Element and Moment Method	10
	2.3.1	Field Equivalent Principle	10
	2.3.2	Reaction Variational Equation	12
	2.3.3	The formulation of fields in cavity region	15
	2.3.4	The formulation of fields on the inner surfaces	18
	2.3.5	The formulation of fields on the outer surfaces	29
	2.3.6	Matrix Assembly and Finalization	33
2.4	Admit	tance properties of edge slot	34

2.5	Radiati	ion pattern of edge slot	35
СНАРТ	ER III	SINGULAR ELEMENT SHAPE FUNCTION	37
3.1	Finite (element on singular point	37
3.2	Formu	lation of singular element shape function	38
3.3	Elaborating the singular element on the analysis of edge slot 4		
	3.3.1	Singular element on the cavity integral	40
	3.3.2	Singular element on the internal surface integrals	44
СНАРТ	TER IV	RESULT AND DISCUSSION	47
4.1	Electri	c Field Distribution	47
4.2	Evalua	ation of Numerical Convergency	49
4.3	Singul	ar Element Implementation	50
4.4	Calcul	ation of Equivalent Network Parameter	56
4.5	Radiat	ion Pattern	59
4.6	Practic	cal Design Considerations	61
СНАРТ	TER V	CONCLUSION AND RECOMMENDATION	64
5.1	Conclu	usion	64
5.2	Recon	nmendation	65
Referen	ices	•••••	66
Appendix		69	
Biography			7 3

List of Tables

2.1	Vector multiplication for all combination of slot part	24
2.2	Vector multiplications for all combination of slot part	33
3.1	Comparison of the first integral calculations	43
3.2	Comparison of the second integral calculations	44
3.3	Comparison of H_i calculations	45
3.4	Comparison of the Y_{ij} calculations	45
1	Sample point of Gauss quadrature integral approximation with 4	
	points	71
2	Sample point of Gauss quadrature integral approximation with 9	
	points	72

List of Figures

1.1	(a) Edge slot cuts the waveguide wall current lines, (b) resonant	
	edge slot	1
2.1	The coordinate system and geometrical parameters of the edge slot .	7
2.2	Transmission line equivalence of edge slot	9
2.3	The field equivalence on the edge slot	11
2.4	The domain of the problem	13
2.5	The domain is divided into elements	16
2.6	The linear characteristic of the area coordinate shape function	17
2.7	Convergent value of integral calculation on the internal surface	29
2.8	Modeling the field caused by magnetic current on the external sur-	
	faces of slot	31
2.9	Example of source and field point in the coordinates system used in	
	wedge Green's function calculation	32
2.10	Coordinate transformation for the calculation of radiation patterns	36
3.1	The singular element shape function	38
3.2	The adjoining of singular element and standard element shape func-	
	tions	39
3.3	The configuration of singular element on the cavity's corner	40
4.1	Magnitude of electric field on inner, center and outer slot surface	
	for the first case	48
4.2	Phase of electric field on the inner, center and outer slot surface for	
	the first case	48
4.3	The comparison of calculation result with various number of layer	
	and element.	50

4.4	The magnitude of electric field along the inner surface for various	
	number of $ ho$	51
4.5	The argument of electric field along the inner surface for various	
	number of $ ho$	51
4.6	The magnitude of electric field along the outer surface for various	
	number of $ ho$	52
4.7	The argument of electric field along the outer surface for various	
	number of $ ho$	52
4.8	The variation of field distribution on the inner surface with various	
	number of layer with $ ho=0.5.$	54
4.9	The variation of field distribution on the outer surface with various	
	number of layer with $ ho=0.5.$	54
4.10	The variation of field distribution on the inner surface with various	
	number of elements with $ ho=0.5.$	55
4.11	The variation of field distribution on the outer surface with various	
	number of elements with $ ho=0.5.$	55
4.12	Normalized conductance and susceptance of edge slot versus the	
	slot length L and its comparison to some references	57
4.13	Normalized conductance versus slot inclination angle θ and its com-	
	parison to other calculation and measurement	58
4.14	Normalized conductance and susceptance of edge slot versus the	
	frequency f and its comparison to other calculation and measurement.	58
4.15	Radiation pattern of a single edge slot on the $y'' - z''$ plane	60
4.16	Radiation pattern of a single edge slot on the $x'' - z''$ plane	60
4.17	A pair of edge slot with the inclination angle is opposite each other	61
4.18	Equivalent network parameter of the edge slot array	62
1	Geometrical transformation of triangular area	70
2	The sample point of gaussian integral approximation for $n=3$ (a)	
	and $n = 9$ (b)	71

- 6-