CHAPTERII

COMBINED FINITE ELEMENT AND MOMENT
METHODS

This chapter describes the mathematical method applied in this thesis. The
geometrical and equivalent network representations of the edge slot are presented
as an introduction to the analysis of the edge slot. The formulation of the combined
finite element and moment methods is hegun by deriving the variational equation.
Applying the method to solve this equation brings out the integrals that can be clas-
sified based on their domain to be integrals for cavity region, internal and external
surfaces. These integrals are evaluated analytically, except the last integral that con-
tains the external Green’s function. The last is solved numerically by using Gauss
quadrature integral approximation. This chapter also conducts the calculation of

some characteristic parameters of the edge slot, such as admittance parameter, radi-
ation pattern, etc.

Figure 2.1: The coordinate system and geometrical parameters of the edge slot



2.1 Geometry of an Edge Slot

The geometry of the edge slot in which the analysis is confined is depicted
in Fig. 2.1. An edge slot is cut in the narrow ! of the rectangular waveguide
with tilting angle 9. The wavequide wall is assumed to be perfectly conducting,
and has width @, height Dand ! thickness { so that ! modes except TE10 are
cut off. This dominant mode is incident from the left end of the waveguide and a
matched load follows the slot at the other end. The required resonant length of the
slotis commonly more than the narrow wall height, thus the slot has extended parts,
notated as A, on the top and bottom walls of the waveguide.

In case of finite  !thickness, the length of the slot  ong inner surface will
be shorter than that of the outer surface. Consequently, the total slot length must be
defined along the centerline of an edge slot. The length is determined as follows.

VIR s 2A't (2.0

The next an ysis also needs the unit vectors of the slot direction and slot
width direction that are expressed as tt and v, respectively, depicted in Fig. (2.1).
Since the slot is bent onto the top and bottom ! | its direction ~ © varies as
expressed below.

= X slot on the bottom wall
= Ycos 9+ Zsin 9 slot on the side ! (2.2)
=X slot on the top !

Since the slot is cut inclinedly into the broad-wall, the metal surfaces, except those
at the slot end, are not directed to y but are with inclination angle of 6. The direction
of the slot width is perpendicular to this surface, thus it has similar direction for the
whole parts of the slot.

vz —ysin9+2cos9 (2.3)

2.2 Equivalent Network Representation of an Edge Slot

An edge slot cut on the rectangular waveguide causes some power emerged
from the waveguide to the free-space. Thus, it can be modeled as a shunt obsta-
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Figure 2.2: Transmission line equivalence of edge slot

cle on a two-wire transmission line, Fig.2.2. A transmission line of characteristic
admittance Go is shunted at Z —0 by a lumped admittance Y [1],[17].

Aoz 9t (2.4)

where ( and Dare the normalized conductance and susceptance of the slot.
These equivalent network parameters are related to the power distribution of
the edge slot [17], as shown in the relation of impedance Z .

I E  Fr+& Qi)=ih i (25

where P is the total reactive power of equivalent magnetic current of slot, Pr is
the portion of P radiated into the free space, Pj and Qj are portions of p stored,
respectively, outside and inside the waveguide around the slot, Al is the disconti-
nuity in modal current, and Zqjis the wave impedance of the excitation mode in the
waveguide. The slot is said to be resonant if YIGo is pure real.

The value of the admittance can be calculated with a simple relation between
the normalized admittance and reflection coefficient I' that given as [17].

Y _ et
Go 1+ r (2.6)
The reflection coefficient can be related to the field in the slot by:
_ (Wa)2 o 19 )7
"= Maiodncorb Fsiot E9X Hinc I ds (2.7)

with s the unit vector on the internal boundary surface inward the waveguide.
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Using the above relations, once we know the electric field distribution along
the slot, the network parameter can be calculated. The resonant length of the slot
also can be determined by taking the zero crossing of susceptance graph.

It is worth noting that the resonant conductance and the resonant length are
important parameters in the design of slotted waveguide array. Therefore, it is de-
sirable to be able to predict these parameters accurately.

2.3 Formulation of Combined Finite Element and Moment Method

The moment method generally provides efficient and accurate means of ana-
lyzing the scattering and radiation properties of the slot waveguide antenna. How-
ever, the conventional moment method is not suitable for the analysis of the edge
slot when accounting for the wall thickness. Since the required analytical expression
of the dyadic Green’s function for the cavity region caused by the wall thickness is
unavailable. This Green’s function is difficult to formulate due to the complexity of
the slot structure.

The moment method must couple with other method to circumvent this prob-
lem. One of the methods that can be used is the finite element method. Initially,
an equivalence principle is invoked to divide the problem domain into separate re-
gions, which are then coupled by enforcing the continuity condition at the interfaces
of these regions. The fields on the boundary surfaces are expressed by appropriate
Green’s functions as done by the conventional moment method. W hile the field in-
side the slot aperture is formulated in terms of a functional which is a feature of the
finite element method. Therefore, itis unnecessary to have a prior knowledge of the
dyadic Green’s function of the slot-cavity region.

231 Field Equivalent Principle

Using the field equivalence principle [18], it can be assumed that the slot
is closed by a perfect electric conductor. To ensure the continuity of tangential
electric fields at the slot location, a set of magnetic current sheets is placed at the
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Figure 2.3: The field equivalence on the edge slot

slot apertures, as shown in Fig. 2.3. This procedure decouples the original domain
of the problem into three separate regions, namely

* the region interior to the waveguide
* the region exterior to the waveguide

» the cavity region formed due to the waveguide wall thickness

In the interior region, the electromagnetic field is the sum of the incident and the
field produced by the surface magnetic current m j. In the cavity region, the elec-
tromagnetic field is the field produced by the surface magnetic currents m i and
M e. Similarly, the field in the exterior region is the field generated by the magnetic
current m .

By applying continuity conditions for tangential component of the magnetic
field on the surface Si and 5g, we can obtain:

Tit X Hine(r) 'Ti X Hint(r) —7] X Heavix)  on Si (2.8)

e X Heaj)(r) g XHext(r) =0 on ¢ (2.9)

Next, a dyadic Green’s function of magnetic type is introduced [19], which satisfies
the following equation

V XVG( ) - KIG(r e = -1s(f- ) (2.10)
x V x G(f, f') =0 (2.11)
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with | —XX + yy + 2z and k is the wave number. Using the Green’s function, it is
possible to calculate the magnetic field of each region.

H(r) = jue <G (f,") IM(fl)ds 212)

where i the angular frequency, € is the permittivity. The surface integral is taken
over the source region I' in the problem domain. If the magnetic fields in the three
regions are represented by (2.12) and the resultant expressions are substituted into
(2.8) and (2.9) the foIIJJing integral equations are formed

juedi X [Gcav:] )= Gint(r, ') -MI{r)ds'
tojuini X JGcav(fjf') -Me(rl)ds' = x Hine(r)  (2.13)

juene x 136 cav (J,‘T)-I\/Ii{r)ds‘
+ juenex W Geav(r,f) - Gexti?,?) -Me(r)d "= 0 (2.14)

where GinedtCav denotes the dyadic Green’s function in the interior, exterior and
cavity region. The equivalent magnetic current M S can be formulated as a function
of the electric field E with the relation:

Ms=Exn (2.15)

The electric field distribution along the slot can be calculated by solving those in-
tegral equations. Unfortunately, the Green’s function of the cavity region has not
been exactly formulated yet. It is the reason of ignorance of the wall thickness in
some researches. This formulation is also partly used in other investigations either
in the finite element method.

2.3.2 Reaction Variational Equation

The formulation of the finite element method is taken from the variational
equation derived in [17]. Itis derived from the variational reaction theory adopted
from [20],
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Figure 2.4: The domain of the problem

The derivation of the variational equation is commenced from the reaction:

Sip= JJJ{sE . J)<m= 0 216)

where E is the trial function and J is the trial source supporting the trial field with
the relation:

J=V . H- jujeok (217)

Substituting (2.17) into(2.16), and employing the divergence theorem of Gauss, the
reaction form becomes:

5 jjk*-v . H —juerE-E)dQ,
= {1-H x SE)ds + VV (ne-H x 5E)ds

v« SE—jue(BE - E)dvt (218)

where Ul and ne denote the unit vector outward normal to slot surface si and se,
respectively. It can be seen that the domain of problems consists of the cavity region
and the surface area of si and se as shown in figure 2.4.

The magnetic field H is brought into the term of trial electric field by in-
voking the formulation of the magnetic field in the inner surface and outer surface
as expressed in equation (2.13) and (2.14) and the magnetic field inside the cavity
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region:
[T=-— VvxI (2.19)
ju t*
After the substitution, the following variational equation is obtained.

iV E 0

(55 ver)s
+\ffffn KE[)'G in 'nix E(f)ds'ds
[JLeJ[JL x E(r) -Gext(r,?) -nex E(f)ds'ds

V@ ISV Ix g (2.20)

This variational equation has been proved in [11] to be stationary at the exact so-
lution of the unknown electric field. The problem in the above equation can be

classified in terms of cavity region ¢, internal and external boundary surfaces (s
and se).

The field is simplified by assuming the narrow slot case that the electric field
is constant across the slot width. It is expressed by:

E(j) = VEV(r) = M)(r) (2.21)

While the vector of slot width direction (V) is shown in (2.3). Substituting (2.21)

into (2.20), the variational equation becomes a simpler form in terms of the scalar
unknown 4>( ).

V = 1Iff (’)_}’)[**.**_
// // §(F) cos @ @ - Giny(F, ') - @ §(F) cos o/ ds'ds
_// // &(7) cosau.Gm (7, 7) - ' ¢(F) cosa’ ds'ds

/ H™ .4 ) cos a ds (2.22)
JWGO



Where
6, ronthe broad-wall 0.23)
_{ 0, f on the narrow-wall |

The unknown electric field distribution (>in the above variational equation can be
solved with finite element method which is coupled with moment method to calcu-
|ate the field in the boundary surface si and se. The explanation of this method is
separated in terms of field inside the cavity which is denoted by the first integration
and the field on both boundary surfaces.

2.3.3 The formulation offields in cavity region

The cavity region that exists due to the finite wall thickness is occupied by six
surfaces on its boundary. Four surfaces are the waveguide wall in which the slot is
cut. The inner and outer surfaces are the prefect electric conductor sheet taken from
the assumption of field equivalence principle.

A partof the formulation regarding the fields in the cavity region is expressed
in the first integral of RHS of (2.20). Based on the assumption of the narrow slot
case, the unknown field () is constant across the width of the slot. Therefore, the
volume integral can be simplified into surface integral as follows:

/f/ # ~ 5 (V6 V6~ (- V9)") a0 (2.24)
= / n¢2_—[v¢ V6 — (- V)] dAq

— / ¢2dAQ — —//A Vo -VodAq + — 2 //4 V- V¢ 2dAQ

where is the width of the slot and A n is the area of side surfaces of the  region.
These fields are calculated by the finite element method with the procedure
consisting of the following basic steps [21]:

* Discretization or subdivision of the domain
» Selection of the interpolation functions

» Formulation of the system of equations
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Figure 2.5: The domain is divided into elements

* Solution of the system equations

The first step, the domain is divided into layers, with each layer divided
into 2~ small triangular cylinder, as shown in the Fig. 2.5. Hence, the total number
of elements N — 2N b+ Nn, wWhich N b and n n represent the number of elements
in the broad wall and narrow wall, respectively. After discretization, we get the
formulation in terms of small element.

»..Uf¢2 AV A V0-(«.V§)2dQ

E LEE«?

where

Ggp> =

Fesip o VE)sIVA> M) (2'25)
The second step, a standard interpolation based on triangular area coordinate
Is chosen. The unknown of the electric field is expanded as:

Hr) = A2 (e)Li{r) (2.26)

where <" are the unknown fields at the nodes 1,2, and 3 of the e-th element. The
coefficient Li is the shape function of node i that is defined by
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Figure 2.6: The linear characteristic of the area coordinate shape function

= pp 8+ biX + Ciy) =123 (2.27)
in which
ar = xy3- 238 = xyi - £iB ad= xy2- x2yx
bi=y2- B b2=y3- 1 &= -2 (2.28)
cl x3 2 c2  Xi  x3 c3 X2 X\

and Ae is the area of element given by

1 1 El 21
Ae:= L2 W - aer - men (2-29)
1 X3

It is worth noting that this shape function has linear characteristic as depicted in Fig.
2.6

The third step is substituting the expanding function to (2.25). It is analyzed
separately for each integral. The first integral can be evaluated analytically by using
the basic formula for triangle area integration

13" ), (Lirdirdxdy = ( (2.30)

tm+ +2) e



resulting in
JJ Sifbioke = J| Li(f)Lj(f)dAe= K (2.31)

where V- —A™ s the volume of the e-th element.
The second integral is evaluated using the relations

uu, vLg

Li: Qg
v + 5,

o1
oL; 8 1
oz Oz (2A (a‘+bz+c‘y)> 54"
Fl
By

oL; 1
3y ( (a,+bz+qy))

2A?

thus it yields

N ! f bibj + 4Cj
I£Evo VOCLde = AZ1a[viLi'vijdae_ MV  4Ae (2.32)

The last integral is equal to zero since the vector v is always perpendicular to the
areaAethusv-vii —o.

Now, we get the expression of the integral for the cavity region as expressed
in (2.30) and (2.32) that can be calculated with simple programming. The value
of each element from the integration is arranged in the matrix, simply notated as
matrix G.

2.34 The formulation of fields on the inner surfaces

The fields on the inner surfaces of the slot consist of the incident field from
the waveguide and the field due to the magnetic current density on the surface.
They are expressed by the second and fourth integrals of right hand side of equation
(2.22). For simplification, these integrals are called as incident wave and magnetic
current integral, respectively. These equations are basically derived from the mag-
netic field integral equation for the inner surface as mentioned in (2.13). The nature
of the finite element is not suitable for solving the integral equation, thus it must
be combined with the moment method to evaluate it. The segmentation and basis
function of the moment method must be compatible with the finite element method
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for the cavity region. The characteristic of area coordinate shape function used in
the cavity region is linear. Thus, it becomes triangular basis function on the surface
integrals.

Initially, the surface is discretized into surface elements following the mesh-
ing of the cavity and expanding the unknown () into basis function. To ease the
program development, it is expressed as follows.

m = £ Nik (2.33)

with

AM«) = (234)

where 12is the coordinate of node points to the slot directions.
Substituting (2.33) into the integrals, we get

_noJJ Trad) cosads =122 g4t (2.35)
: // // cosa - Gint(r,f9- * <bffcosa'ds'ds
: 2 iN tN E%Jieim)yriijﬂinurl_gcin (2.36)

e>"= Letint=1 -t=1

where

H (in)

; on!lH [ QNi( ) CBads (2.37)
J‘«] (Vi( )cosa -Gint{r,Y) - " Ni( Ycos ds'dsi2.38)

The notation of ejnf denotes the element on the internal surfaces. Equation (2.38)
may be interpreted as the  directed magnetic field on the element eint due to all
magnetic current source in the element e'nt. The parameters related with the source
are signed with prime notation.

Y i
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2341 Integral ofincident wave

The incident wave is dominant mode TE10 that its magnetic field can be ex-
pressed as follow with the coordinate system is shown in Fig. 2.1.

Hx = Hosin ’|7aT_')" “kioz
Hy = 0

Hr = JL-HOcog(™e-k™ (2.39)

where Ho denotes the amplitude of the incident wave which is normalized to unity,
a is the width of the waveguide and kio is the wave impedance of the dominant
mode in the waveguide

x4 =) \ 1 k%
where K is the free space wave number). i\

The direction of the slot is varied along the slot, as shown by the vector in
(2.100). Thus, the coefficient H,nc in (2.37) can be divided in terms of the slot
parts.

Hue= H iuboton — Hi on the bottom part

H™ = 7Tnct sike =Hzsin9  on the side part (2.40)
H™ = Tc. 1B =HI on the top part

Using the expressions (2.40), the integral of the incident wave (2.37) can be evalu-
ated in each slot part.

The slot on the top wall has direction = x. Thus, H\nc in (2.37) can be
expressed as

Tj(eint) — T“— HxNi .
Lo [L xNi( )cosa ds (2.41)
= J__ijf sin (kxx)e~kIOZNAx) cosa ds (2.42)
€o
To get more detail derivation, the integral is evaluated for Ni and N-
Hlent) = jueoj % It sin (kxx)e~k'OZ(()>(<2~_ &Ibdzdx (2.43)
leing  00SO dzdx  (244)

jojto
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The coefficients £ 12 are the coordinate of two successive nodes in the inner surface
and is the slot width.
Initially, the first integration over the 2 axis is evaluated

cos f T2 . (I - 331) |: e—kloz] zi+w
_— sin (k,z ™ dz
Jweég ) ( )(.’172 o .'121) kw %
— e—kwow 3 ==
c'os() (1 € )e—kloz/ sin (kxz)u dz (245)
jweg k1o -'cl (@2 — 1)
. - ! —k10z zitw
H (eint) c.osﬂ / sin (k.2) (z2 — x) [_e dz
Jweg Jo, (z2 — 1) k1o zi
_—kiow T2 -
c.osH (1% )e—kmz/ sin (k,z) (=2 — 7) dz (2.46)
Jweg k1o z (2 — 1)

Next, the integration over the x axis is solved by the partial integration and we get
= cosq(l- e-f® c file

1 jutd -~ kiQ
(X-- x1) cos (kxx) 1 sin (kxx) * (2.41)
(x2-x1) - Kkx (Xx2- X« |
tr(etmt) _ COsb{l - p_'kIOW\>,,-fcioz
juto  kio | "
(x2-%) cos(KXX) 1 sin (kxx) (2.49)

(E2- xn X (x2- x0) « 3y
The portion of the slot on the bottom wall has direction U= _ x. thus it can be
evaluated in the similar way to the top slot. Itis noted thatxi <e;_1andxi > es1,
S0 we get
cos™(l -e - KOWc_k1)
jiuto  kio
(X - £i) cos (kxX) 1 sin (kxx) ™

S S r o (2.49)
£2 - Ei X2
juto ko
(@—x) cos(kx) 1 sin(kn) g
(2 - £1) kX (E2- £i) — - '

The direction of the slot on the side wall is inclined with 6angle, G = y cos 0+
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25in 0, so the expression of the incident wave integration can be written as

f{airt) in ONi
- jutes |;|ZSIr(l)9NI{U)C03adS (2.51)
= ]UtO [ lE?—cos {kxx)e~KloZNi{ ) ds (2.92)

Taking analogous to the step on the broad !, the first integral over the 2 axis is
firstly solved and we get

1 (L- e~*0™ r 2Trsinfl
juto kio  Jul kioa

Based on the needs on the programming, it is derived for each Ni' .

asiiiig:a;:;

Remembering that 2 — U sin 6 the integrals on and H2'" can be evaluated
using the formulae of partial integration. So we get the final form of both integrals
as follows

cos (kxx)e~kIOZNi{ ) du (2.53)

> = fto k0 Mo oot {2-M)
1 (l-e-~)"N g cosfei)
juto ko KQQ
2 — lij g-fcioksin0 2 g—fciousing " «2
(2 — M) J0ginG + (2- 1) (fciosing)2 ul (2-56)
("in) jutta)( Ykﬁmmh;{gfcos 9<xx gfuotgs‘**q T }J du

1 (1- e-fd™ 7Tsin0
jwed a0 kita cos(kex)
{ - wl) e-fciousind ) g—Aciousing " L2

((2—M) feiosing  { 2—MI) (fciosin#)2 |, (2.57)
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2.34.2 Internal Green'sfunction and its integral

The internal Green’s function is natural to use the waveguide dyadic Green’s
function which is formulated as follows
0 i}
Gint(r,7 - 2k, (

- XX 1 xCyCly + yy CxCxSySYy + 2z CxCxCyCy

(m, ) # (0,0)or(1,0) (2.98)
oot ft, =ty
kmn -\k|k+x(ky)z- f 21 /é fr )
C* = COS KX X = €0s kxx'
Sx = sin kxx 1 =sin (2.59)
Cy = coskyy Cy —cos kyy'
Sy —sinkyy Sy = sinkyy'

where | = XX + Yy + 2z is the unit tensor, a and b are the waveguide dimen-
sions and em is the Neumann factor such thatem —1ifm = Oandcm = 2ifm 70
To simplify the expression, it can be presented in the matrix form as follows

Gil
o G (2.60)
8/}’ Gz

Noting that the operator V'V in the dWIC expression can be derived as

1T -

therefore, the dyads can be expressed as follows
. ( - Id
= VY oank, 1+ ) S*SA C >

v 'CCY 262
=0 ¢ Zabkmr 5) (262)

. - zabkmnln \ kAZdyZ}Mb*S fcmn|z |
0
LIRS Eé)cXcX3vsye-kTM\z-z'\ (263

‘‘‘‘‘‘

(2.64)
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Table 2.1 Vector multiplication for all combination of slot part

Observed field ~ source ’ -G int(f.f1) -
hottomslot ~ bottom slot —x _x G x
bottomslot ~side slot _x yC0S9+ zSino 0
bottomslot ~ top slot X X - 6 xx

sideslot  bottomslot  ycoso.r zSino —x 0
side slot sideslot  ycoso+zSing yCoS9+zSiNg  COSocyy COS
-|-sins Gzz8in

side slot topslot  ycoso. zSine X :
topslot  bottom slot X X - 6 XX
top slot side slot X yC0S9+ zSino 0
top slot top slot X X 6 1

GZZ mEi"E”MMWH (1+k2d22) CxCxCyC'ly e'EIZ'le

0 0
mE_nE_n 2t (1 + CXcicyc'y e-&"lz- 71 (2.65)

According to the expression of the internal Green’s function, the vector mul-
tiplication on the (2.38) can be evaluated by evaluating the multiplication result for
each variation of the slot part for observed and sources elements. As an example,
both elements lie on the top wall. According to the direction vector = x and

' - x, the vector multiplication can be easily obtained.

i1’ G o o "1
«Gintir,?21) = 'z 0 G 0 0 = 6 xx 2.66
0 0 oyy Gz 0 (280

The result of the vector multiplication for all variations of the slot parts is listed in
the table 2.1.

The table 2.1 shows the non zero results only contains of ¢ 11, except for both
observed field and source are on the side slot part. Thus the explanation can be
focused on the case of both elements on the top slot and on the side slot. While
the other cases can be solved by taking analogous to the top slot case. Proceeding
further, the component of the Green’s function is substituted into the integral then
it can be analyzed for each expression inside the double summation of the Green’s
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function. Firstly, the integral that both observed field and source lie on the top slot

Is evaluated.
J\] J\] (1) cosaGXXN]( ') coso- ds'ds
WIS
) C0s 3 ! XCyCly 'Nj(,)cos  ds'ds (2.67)

Considering the physical inner surface of the slot on the top wall, both surface
integrals consist of the first integral over the x-axis and the second one over the p-
axis. The range of first integration is the coordinate x of the first and second nodes
of the surface element, noted as xi and x 2 for the observed field element and . and
v2 for the source element. The second integral is taken over the slot width, from 2i
and £1+ . Itis noting that the coordinate of bath nodes is similar for the element
on the top slot.

The solution of integral in (2.67) is explained by taking an example in case of

| =; = 1 The integral is rearranged based on the domain of integration.

Y,wt 2%2; — cos {kyj) cos (kyy")
2abk,

rX2
XZ xX ree [\x.2 -~
---------------- cos 6 sin (erx)ax . sin (kxx )— 7 cosggx
e B4 K
(Frvwez[+ |
7ldz'dz 2.68)
Jzoo ]

The first and second integral can be evaluated using the formula of partial integral,
while the third can be alternately derived started from the inner integral over the z".

2w g kmniz 7'l DtW
/ e-kmnlz-z'\dz> (269)

vmn

e A
i I N (270)

’
1

e

Considering the integral of the exponential function yields the exponential function,
the outer integral over 2 can be solved in the same way as over the 2.
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Now, all integral in (2.68) can be solved analytically and we get the analytical
solution of Yu. The other combination of other i and j can be derived using the
same procedures as well.

EEd|t0 )c» M)cos(M ")

6 TGB! x|)s'n 0 &
(4 - X') cos (kxxr) 1 osin(kx) 1

05 L (4 4) k (4~4) kI J]

_p f\c ~femnul-z!l (2.71)

w BRAI(-1) ol o )
Ty éZ—x) gi§(kx)_ 1 sm(kxx)\]]XZ

kx 1 sin (kax') 1
f(4_4><)cos(kx)+(2_ sin (kxx')

e [or-kmniz\-z\\ 272
L % J (212

w- EEdit0-1)a( ol )
N (2- 4 cos (kxx) 1 sin(/Cxx)112
.coSo - (Xz 'XX) -------- RX AT {Xz -_X"].) kI

J X1

N C —X') cos (kxx') sin (kxx')
(4-4) K (4-4)
: [(1 - Z;k'""w)?A LY (2.73)

i EZ ;'g; (i-p) cos(foyil) cos (foyil)
e (2 —x) cos (fxx) 1 sin (fcj;i)
0T T (x2 %) kx (£2- xx) kI
(4 —2)) cos {kxx") L, 1 sin(&)
(4-4) 4 (4-4)  fx
(L-e v Mg-"mnl"I—ZjI (2.74)

o

-C05 6



2

The second case, both observed field and source are on the narrow- wall slot.
Taking the result of the vector multiplication on the table 2.1, the expression of the
Yjjdlis obtained as follow

Ni( ) [cos OBy C0s 9-1-sin 9GZzsin gNj( ") ds'ds  (2.75)

=EE 5

m=0 =0

k2
[(1 = k—g)/l’lNi(u)cosecxc*wsv e~kmnlz~z'1cos6 N j( ) ds'ds

k> - . \ Nl N
(1+ ]'c';")/A//S‘I‘N,-(u)SlnerCnyCye~kA z-7\SIN9INj(u') ds'ds

The integrals of Gyy and Gzz are derived separately, but using the same pro-
cedures. The four integrals are over the area of observed field element ( and 2)
and source element(n and zJ) * that can be successively derived from the inner to
outer one. The integrals over 2 and 2" has solution as derived in (2.70). While the

and ' are evaluated by considering thaty — cos9,y' = 'c0s6,2 — sin0 and
1= 'sin6. Theintegrals becomes in the form of Ni sin (kyu cos9)e(kmUS  and
Ni cos (kyu cos 9)e(kmnUsin® that can be derived using the formulas of the partial

integral and the integral of the exponential and trigonometric function taken from
[22] as follows

Ieatsin (Bdt —

a2+ 0 (asinf3t —p cosfit) + ¢ (2.76)

e oostdt — L aoos frasafif)ec @)

Finally, the expression of Yij of the second case is obtained. The final expression
fori =] = Lis shown in (2.78) below, while the others variation of i and j can be
obtained by using the same procedures.
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with
Al() = (" 1) (a2+ 2)(asm )— cos( )
(2- N(az+ gy, @SN ). s )
T
A) = ((2_— I!))(aZE s )- s )
(2- 1) (a2s 2)Z(asin( )- Cos( )
(2_1 ) (azfgz)z(acou )+ sing ) (2.80)
1() = ATAQ( A )(n; D+
£ (P
(L ) aae pBNC ) QB ) (28
O (Y
«7l «f) (@’ ' W (“CDS(/JU) +1Ssin (/% »
(@ PT &2 -an )+0ccs ) e
where
a = -fcm,sin0 (2.83)
= Ky C0SQ (2.84)

Hence, the expressions are on the form that are ready for writing into computer

program. The required order of the summations (m, ) is investigated and the result

is shown in Fig. 2.7. The graph shows that it need about 200 iteration both m and
to obtain an acceptable result.
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Figure 2.7 Convergent value of integral calculation on the internal surface.

2.35 The formulation of fields on the outer surfaces

The field on the outer or scattering surface is shown on the third integral of
(2.22). Ithas the same form as the integral on the inner surface but it uses a different
kind of Green’s function . The initial procedure to derive is similar to the inner
surface and we get the formulation in terms of integral over the external surface

element.
//// r)cosa -Gex(f, £~ ' () coso’ ds'ds
. e e EEAMVI 2.8

eext eext

where eext is the element on the outer surface and coefficient of Y- % is given by
Y*jXt - JJ J Ni( yamsa -Gext(ry) - INj(U') coso' dS'dS  (2.86)

with 1and | are the local nodes of the surface element.

The external Green’s function uses the 90° wedge Green’s function that has
been introduced in [8]. This special Green’s function is derived to take into account
the scattering effect of a single comer around the field and the source regions. The
detail formulation is conducted in the next subsection.
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2.35.1  The formulation of 90° wedge Green’s function

In order to account the effect of the waveguide comers in the edge slot analy-
sis, Jan et al. introduced the 90° wedge Green’s function [8]. They derived from the
dyadic Green’s function for a perfectly conducting wedge that formulated in [19]
chapter 9 . It has been derived in [8] specified for 90° wedge. The formulation is
rearranged in more compactly form as follows

Qrro = -AP>-<s»)(£)"

re{Qu-1 +9v+1)/2 + 220V - (2.87)

Ju=213n
where . is the free space wave-number, € is unity as. = 0 while zero for other
.. The 1 means that it is equal to +1 when . and. . lie on the same side of the
wedge, while equal to (—L)" when . and. . lie on the different sides of the wedge.
The functions..., - . =1, or, -f 1) are defined by

9{rrzz) = 2J JNgrr) } cosh\z- Z\dh (288
[m=min(r,r'), rM= max(r,r' (2.89)

isrelated tothe h by 2= k2—h2.  andH  are the Bessel function and
the Hankel function of second kind respectively. The coordinates system has to be
adapted in the calculation with relation as an example on Fig. 2.8. Simplifying the
expression of the, 1 Jan .. al. has rewritten it in normalized form as

M 17d) " Jyle2  1*m)
- 1fM) cos {hza)d( (2.90)
( = (2.91)
™M
Im T = (292)
o= - A (2.93)

The application of this external Green’s function can be explained by consid-
ering the source and field points which is shown by four case in Fig. 2.5. In the case
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Figure 2.8: Modeling the field caused by magnetic current on the external surfaces
of slot.

of one lies in the broad wall, while the other lies in the side wall as shown in Fig.
2.9.a, the field from source to the field point is scattered by the between comer is
derived using those 90° wedge Green’s Functions. The scattering field from other
comer is neglected.

Fig. 2.9.b, both points lie in on the broad  !. In this case, although the
conventional half space Green’s function may Serve as a crude approximation, but
the wedge Green’s function should have better result, especially when both points
are close to the waveguide comer.

In case of Fig. 29.C, both points lie on the side wall, therefore the scattering
effect from both comer must be considered, The Green’s function is evaluated by
the summation of the wedge Green’s function from two comers minus the half space
Green’s function,

In case of Fig. 2.9.d, one point lies on bottom wall and the other is on top

I of waveguide. The contribution is now due to the consecutive scattering from
the two comers. It is neglected in the calculation.

The half space Green’s function used in couple with the wedge Green’s func-
tion in case of Fig. 2.9.b is expressed as

G(rr) = (k2t ) G (2.94)
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Figure 2.9: Example of source and field point in the coordinates system used in
wedge Green’s function calculation.

where f — yj(x —x')2+ (y —=y') + {£—1') is the distance between the source
and the observed field points.

23.5.2  The solution of integral on the external surface

The shape domain of the integral in (2.86) is similar to the integral on the
internal surface that contains the internal Green’s function. The domain can be de-
composed into ,z, “andZ'. The first two parameters are the area of the observed
field element and the rests are the source element.

Y 1—J[J\JE J [ul Ni( ) cosor U-Gext(f, )+, Nj(u") cosc/ dz'du’dz du

(2.95)
The vector multiplication inside the integration is evaluated in the same way as in
the internal surface and considering the transformation of the rectangular coordi-
nates system to the cylindrical one as used in the calculation of the external Green’s
function. The result of this operation is listed on Table 2.2.

The complicated form of the external Green’s function causes the integral in
(2.95) can not be solved analytically, thus it is calculated using the Gauss quadra-
ture integral approximations. Since the shape of the area of the element on the
side slot is inclined, it is more convenient to solve by four successive ling integral
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Table 2.2: Vector multiplications for all combination of slot part

Observed field ~ source e intiry) ®
bottomslot  bottom slot  «  « -
bottomslot ~ sideslot ~ » 'y GrrCoSs
bottomslot ~ topslot  x neglected
sideslot ~ bottomslot y  « 6 rr COS's
side slot sideslot 'y 'y cOSoc i COSs
+ SINgc zzSINs
side slot topslot  y « 6 rr COSs
topslot  bottomslot x  x neglected
top slot sideslot —x 6 rr COS s
top slot topslot  x « 6 rr

approximations rather than two area integral to simplify the programming.

2.3.6  Matrix Assembly and Finalization

Based on the finite element procedures, the matrix forms of the fields in the
cavity and hoth boundary surfaces are assembled into a global matrix using the
relation of the variational equation in (2.22).

ql

F2 8 £ x>y Vee)

ei,,t=1 gnt=1 L*1

+2 £ £ £ > i“l ‘)l((l”“!/\ “wn

gext=1 gext=1 Lt=I

2
_ N Ajj{eint) M iGint)

i=1

= % omom ] - [BT[hinc] (2.96)

where [ is a vector consisting of the unknowns of all nodes and the superscript T
denotes the vector transpose.
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Proceeding further, the stationary condition of the variational equation is de-
termined by taking the first derivative of (2.96) and considering the boundary con-
dition where the electric field on both ends of slot must be vanished. The expression

hecomes ‘
mw=| (297)

Finally, the last step of the finite element method is solving the linear equation in
(2.97) that can be done by applying the Gaussian Elimination method.

Accomplishing the finite element method, the electric field distribution dong
the slot can be determined and it can be used to calculate the equivalent network
parameter such as the reflection coefficient and the normalized admittance and other
parameter such radiation pattern, resonant length, etc.

2.4 Admittance properties of edge slot

This section explains how to calculate the network equivalent or the admit-
tance properties of an edge slot from the electric field distribution obtained in the
analysis of the combined finite element and moment methods.

Initially, the reflection coefficient I'is calculated from the electric field distri-
bution along the slot with the relation recalled from (2.7) as follows.

(r/a)?
= ————
W toPincab slot

w5+

E,xH_, -nds

where H'C is the forward propagating magnetic field of the TEX) mode, s the
unit vector inward normal to the waveguide wall and Eq is the electric field along
the slot that has direction across the slot width.

Eg =) = —(psin 6 + Z)cos 6 (2.99)

From the result of the analysis, the electric field is known on each node, while on
the other points is calculated by linear interpolation of two closest nodes.
According to the structure of edge slot that has parts on the bottom, narrow



and top walls, the has different direction on each part.

n=Yy sloton the bottom wall
- x sloton the side wall (2.100)
= —y sloton the top wall

The integrand of (2.98) can be evaluated for each slot part by the below relation

{Eg X Hinc)» — - (Eg X [fine)
X Ty, T
0 —(J)éInG g)_cosG 2.101
H inc 0 inc
and we get
(Eg X Hinc)» — () cosb H'x ¢ Sloton the bottom wall

€ ¢ Xliinc) -n = -(f> Sind H™  slot on the bottom wall (2.102)
(Eg X Hinc) « = —() cos6 Hknc Slot on the top wall

Now, the reflection coefficient can be calculated easily by a summation of the in-
tegral on each element. Finally, the admittance parameters can be calculated using
(2.6) and get the equivalent conductance and susceptance of the slot.

2.5 Radiation pattern of edge slot

The radiation patterns of the edge slot antenna are rarely reported in the liter-
ature because the patterns are not easily obtained since the Green’s function for the
specific structure of edge slot is not available.

This research tries to predict the radiation pattern of the edge slot by assuming
the wrapped parts as the extension of the narrow part on the infinite conductor plane
and applying a common half space Green’s function. The coordinate system i
transformed to ease the formulation of the calculation as depicted in Fig. 2.10.

The radiation pattern can be evaluated using the formulation of the far field
pattern for a rectangular aperture [23].

E(f) = f(k sin cos (pksin sin<) (2.103)

Zirr
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Figure 2.10: Coordinate transformation for the calculation of radiation patterns

where

F{bn ky) = [ s et W d oy (2104)

J slot

o SN cos
o) —~Sin__sin If

The ES = X"$is taken from the result of the analysis that has direction across
the slot. The integral is calculated for each element by the similar way as for the
calculation of the admittance properties.
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