
C hapter 4
D erivation of the  Clocked SE 

Using th e  N orm al SE

4.1 Straightforward Substitution
In this section, we present the direct derivation of the clocked SE from the 

normal SE b y  straight forward substitution. Let US consider the traversal wave 
function of Sokolovski which gives the probability amplitude for the particle in X  

to spending in โ! =  [a, b] prior to time t, a net time duration r,

rjj(x,t\r) = J  dx0 J  D[x{t)]5{T -  tcalb[x})elS[x{t)]/hp’o(x0) (4.1)

where 6 is the Dirac-delta function, ร  is an action of the particle and ipo(xo) is 
the initial wave function at t = 0. Summation of all values of r, the wave function 
ไb{x,t) must be restored,

t
Ip(x,t) =  j drif}(x, t |t ) . (4.2)

0
Exactly the restored wave function il>(x,t) must satisfy the normal SE

พ ^ (^^) +  V{x)w(x,t) -  ih^-MxJ.)  =  0. (4.3)2m oxz ot
We substitute Eq.(4.2) into Eq.(4.3) to obtain

h 2 d 2

2  m  d x 2
+ V ( x ) d T ' i p ( x .  t | r )  — i

4 J
d T X p ( x .  f | r )  —  0 . (4.4)

Now a theorem of differential calculus (See Appendix B) is used. Let 4>(A) =U(A I
I d x f ( x . X )  where น(A) and บ( A) are differentiable functions in a. closed interval



(A0. Ai); f ( x .  A) and f ' ( x ,  A) are continuous in the region A() < A < A 1 . น < X < V  

. then

J ^ (A) = g \ f { x ' u)-  a \ f {  +  ( : t A) - (4-5)
1;(A)

By the properties of the traversal wave function. x b { x . t \ r )  and §-t ip ( x .  f|r) are 
continuous at time t (see Appendix c  ). Following the theorem of differential 
calculus, the last term of Eq.(4.4) becomes

t
/ ^ M r )  =  - i n ( | w x , t | r  = 0  + if t(g )^ (x ,t |r  =  0)
0

-  J  dxih(^)ril>(x,t\T)
0

t

/
dd x i h (  —  )T ip(x .  t \ r )

0
where (■ §-1)T is the partial differential with respect to t at constant T.

2G

So Eq.(4.4) can be written as

d r L L ^ { x - t i T ) + v ^ x ^ x a \ t ^ ~ i h  ( f t ) T ̂  (;Ĉ IT) =  i h v j ( x 1 t \ r  =  t ) .

(4.6)
Now we consider the exact integral

d
d r - ^ - i l ' ( x . t \ T )  =  ■ พ่( x . t \ r  =  t )  -  w ( x . t \ T  = 0). (4.7

Then, multiplying Eq.(4.7) by —i h Q r, b[ x] .  we have
I

- j dTQ„b\x \ih ^ -w (x . t \ r )  =  — i h O „ b [ x ] w ( : ไ:. t \ r  — t )  +  i h . Q oh[ x ] v . ' ( x .  t \ r  =  0).

(4.8)
Adding Eq.(4.8) into Eq.(4.6). we obtain

t I
f โ I r  d 2 /■ cT 11 d  1/ ( It

: L L + V U )  1
t \ r ) + 1 ( I t -/7/.( —)r -  /7i.0n(,[.r] -^1 i i ' ( x .  t \ r )
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= ih[  1 -  Q ab[x]]-tp(x: t \ r  =  t )  +  i h Q ab[x]ip(x  1 t \ r  =  0). (4.9)
Using the meaning of the traversal wave function Eq.(4.32). we obtain the bound­
ary conditions at T =  0 and T  =  t .

( i ) x p ( x . t \ r  =  t ) is the probability amplitude for the particle at X to have 
spent in the given region f t  =  [a, 6] prior to time t ,  a net time duration T  =  t. 

Then it is only possible that the particle is in f t  for all t. If the particle is outside 
f t ,  it is impossible for the particle to have a net time duration T =  t  in f t .  For the 
traversal wave function Ip (x ,  t \ r  — £), it is impossible to find the particle outside 
f t .

( ท )  y j ( x . t \ r  = 0) is the probability amplitude for the particle at X  not to 
have been in f t  prior to time t .  If the particle is inside f t  it is impossible for the 
particle to have a net time duration T =  0. For the traversal wave function the 
น ! ( x . t \ r  — 0). it is impossible to find the particle inside f t .

So we obtain the boundary condition for xl)(x. t \ r  ะ= t )  and ใ/,( x .  t \ r  --- 0) as

Ip (x ,  t \ r  =  t )  =  0 for X  <  a  or X  >  b  (4.10)
xp(x,  t \ r  =  0 )  =  0 for a  <  X  <  b .

By using the boundary condition Eq.(4.10) and the definition of 0„6[:r], the right 
hand side of Eq.(4.9) is zero over the complete region of X .

[1 -  Q ab[x]]ip (x,t\T  =  t )  = 0. (4.11)
©oùN^(x.£|r = 0) = 0.

Then we obtain

j ' h {- iL w  - ท*) + + ท*-*พ = ท- (*-•«
This equation is true for all possible value of t. therefore it implies

Ip(x. £|r) = ช. (4.13)
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Eq.(4.13) is the clocked SE derived by starting with the SE and using the boundary 
conditions in Eq.(4.10). Therefore the SE appears to be capable of analyzing such 
physical quantities and aspects of quantum motion that can be discussed by a 
theory based exclusively on Feynman’s quantum mechanics. This is in contrast to 
what has been claimed by Sokolovski [19].

4.2 The R eduction of the C om posite System
We consider the composite system for the measurement problem. If we want 

to know h o iv  l o n g  a  p a r t i c l e  s p e n d s  i n  a  g i v e n  r e g i o n  o f  s p a c e  then it is necessary 
to use an apparatus which has some interaction with the observed particle. There­
fore. we need to extend consideration of a single system to a combined system. 
This is divided into three parts: i ) the observed system, ท)  the apparatus system 
or the pointer and เ ท )  the actual observer. Therefore, we have chosen the mea­
surement system and the coupling interaction in the form of a weak measurement 
for deriving the clocked SE. The weak measurement interaction coupling operator 
is written ลร

v m t ( t )  =  g ( t )  PA (4.14)

where g ( t )  ะ= g  1 for t  >  0 and 0 otherwise, p  is the generator of translation 
(momentum operator) for the apparatus and A is an operator that we wish to 
measure, acting on an observed state. This form of weak measurement was pro­
posed by V O I1 Neumann [ 2 5 ]  and developed by Aharonov. Albert and Vaidman 
[ 2 4 ] ,  For measuring the traversal time, it, is necessary to turn on the interaction 
for a time interval t .  We use the operator A ะ= 0„b[x] — A( t )  where A( t )  is an 
arbitrary function of time t. The coupling interaction then takes the form

v if„ .(t) =  g(  f ) P ( 0 . b [ x ] - A ( O ) . (4.15)
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The Hamiltonian of the actual observer has coupling in the form of a weak mea­
surement with the apparatus system, where A( t ) is the variable of the actual 
observer, incorporated into coupling interaction. It implies that we assume the 
actual observer to have a very large mass so that the kinetic energy term of the 
observer can be neglected. The quantum variable A  is then changed to the clas­
sical variable A(£). If the state of the actual observer can be represented by a 
wave packet narrow enough in A space, the variable A will move in an essentially 
classical way, very nearly following the definite function A( t ) .  This method was 
discussed by Aharonov and Bohm [26] in the process of time measurement by 
considering the time-measuring variable. The classical variable A( t )  will be used 
to determine the traversal time after we reduce the SE of the whole system. In 
this way, we can derive the clocked SE and the traversal wave function from the 
SE. Let us first derive the clocked SE. Suppose the initial state before t  =  0 is 
known as the (tensor) product:

where \ไPo) and I(/>o) are the initial states of the observed and of the apparatus 
system, respectively. The total Hamiltonian for the whole system is

where H 0 represents the Hamiltonian of the observed particle. H i  represents that 
of the apparatus particle. By following von Neumann, we assume that H . 4  and p  

commute. [ H . 4 ,  p ]  = 0. so that H . 4  may be written as

where M  is mass of the apparatus particle. The total Hamiltonian is time de­

T0(f < 0)) = |<to> & \tPo) (4.16)

H  t o t a l —  H o + H . 4 + V m t ( f ) (4.17)

(4.18)

pendent and the H t o t a l ' s  at different time commute, so that the time-evolution
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operator can be written as
t

U M )  =  e x p { ~  /(H o+ H ,4+-v m t ( t ' ) ) d t ' }
0

“ A J(H o + H .4 + g P (0 n6[x)-A ((')))dt'= e 0

(4.19)

The total state evolves with time as

k io iak)) = บ ( t , 0) ko) ® ko)
■ ft ./ (Ho+H.4+gP(0a6[x]-A(t')))</«'

(4.20)
= e ko) & ko) ■

Let, p' be the eigenvalue of the momentum operator p  of the apparatus system 
with the eigen kets Ip')

p  \ p )  =  p 1 พ )  . (4.21)
We can express the total state at t. Eq.(4.20) by using the completeness relation 
1 = 1  d p 1 |p') (p 'I . We obtain

t o t a l i t y  =  J  d p  I p )  (p'I บ (TO) ko) ®  ko) 

= I  d p 1 |p') ( p \ e  *1

(4.22)
4 ,/ (Ho+H.4+gP(0„t[x]-A((')))d(' ko) 8 k'o) •

By using the Baker-Hausdorf lemma [43], e(A+B) = eAeBe k lABl for [[A. B] . A] ะ= 
[[A. B] . B] =  0 and [H 4.H 0 + pp(0„b[x] — A(t'))] =  0 and the completeness 
relation I  =  J  d p 1 |p') (p'l . Eq.(4.22) can be written as

ktota/(0> =
- i J H - * j < H „ +9P<e.tI*|-A,«'»>*' 

d p  |p ) (p k  ° " ko) X K’o)

= I  d p ' \ 0 ( p ) . t )  ® เ พ - 7'- 0  - (4.23)

where k //- T.  t) is given by

I(/’,/. T. t.) = k '" ' Te
-(£) l(H(, +<///©„6[x])(//'

t i l ) (4.24)
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and the phase factor is defined as

(4.25)

We multiply e%gp‘T with the time evolution of the observed system, so the state of 
the apparatus in time is of the form

Eq. (4.26), represents an entangled state of the whole system. The variable A( t )  

defines the phase factor for the apparatus state but we can choose to associate this 
phase factor with the observed state. Then Ixjjp',T. t )  is dependent on the arbitrary 
function r. Here Ivy. T.  t) is regarded merely as the coefficient of the expansion of 
the total state into a series of pointer states |</>o(p'), t ) . Usually, the total state in 
the form Eq.(4.23) satisfies the SE for t  >  0,

We define the SE for the observed particle, which contains the effects of the mea­
surement, by eliminating the apparatus system using the identity

By using Eq.(4.28), we can reduce the SE for the whole system into an effective 
SE for the observed particle. Straight forward substitution of the total state in 
Eq.(4.23) into Eq.(4.28) and differentiation by t  leads to (see in Appendix D)

\4>{p'), t ) =  1 p ')  (p'\ 4)0). (4.26)

H /o t a ;  |Ü it o « a / ( £ ) )  =  i f i - Q -  เ^ , t o t a i ( t ) )  - (4.27)

(4.28)

Without loss of generality we integrate over all p  — s p a c e  and obtain

H„ - i h ^ - e nb[x] -  i h ( ~ t ) ip. f| r) = 0 (4.30)



32

where |-0 ,i|r) ะ= 2̂  f  d p  e i 9pre 

function can be written as

( ft ) . /  ( H  0 + S P © « 6  [ x ]  )d t' |t/>o) and the effective wave

^ ( x ,  t \ r )  =  -

2

(4.31)

This is equivalent to Sokolovski’s definition of the traversal wave function. We 
can show by inserting the completeness relation of the coordinate of the observed 
system, I  =  f  d x k |zfc) ( x k \ , in each time segment, say between t k and t k+1. leads 
to

with ร  = f  H 0d t '  being the action of the observed system and rl>o(x0 ) being the
initial wave function of the observed system. Eq.(4.30) is the clocked Schroedinger 
equation and Eq.(4.32) is the traversal wave function, so that we have shown that 
it is possible to derive the clocked SE and the traversal wave function by directly 
using the SE for the composite system. After the SE for the whole system is 
reduced to the effective SE for the observed particle, then the phase factor or 
the variable A(t) appears as a constraint for the evolution of the observed state. 
Those paths of the observed particle which give the value of 0 afc[.x(f)j in the time 
period t, synchronizing with A(i). are the same as the constrained paths of the 
observed system which have spent a duration r  in the region a < X <  b. In this 
way the measurement, system is used to constrain the evolution of the observed 
system, just as the Dirac-delta function in the derivation of Sokolovski. This also 
implies that we can obtain the propagator with constraint by reducing the total 
propagator for the whole system into the effective propagator. Let น.ร consider the 
propagator of the whole system which is written as

i b ( x . t \ T )  =  j d x 0 J D [ x ( t ) ] S ( r - t ĉ [ x ] ) e lS[xW]/hVJ o ( x 0 ), (4.32)

I<totnl(x. XQ: y. y0-. t) ะ= (y I & (,c| บ (f. 0) |y0) oo U'o) . (4.33)
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We can reduce this propagator into the effective propagator by using the relation

K ef f ( x , x 0. t)  = f  d y  f  d y 0I<to ta l K q,
f  d y  f  d y 0K aK * (4.34)

where K a ( y . y 0; t )  = ( y |e x p { - ^ / H Ad t ' } \ y 0) is the propagator of the pointer0
particle, in the form of a free particle propagator. The meaning of Eq.(4.34) is 
analogous to the probability theorem

P { M )  =  Y J P ( M \ A i ) P { A i ) (4.35)

when the total propagator, Eq.(4.33). is analogous to the conditional probability 
P ( M \ A l ) of an event M  assuming A i .  Straightforward substitution of the total 
propagator of Eq.(4.33) into Eq.(4.34), leads to

K . //(•'■ • -' 0:0 = J d y  j  d y 0 [ (y\  ๏ {x

x ( y o \ e r‘ ° \y) ® k'o) ]

[ - r / f H o + H ^ + f l P t © . 6[x]-A(t')))di']
|yo)

J  d y  J  d y 0 ( y \ e x p { - ^  J  H Ad t ' } \ y 0) (y0|exp{^ J  H.4df'} \y)
0 0

By using the completeness relation I  = J  d y 0 \yo) (y0| , Eq.(4.36) becomes

(4.36)

I<ef f ( x , x 0:t )  =  J  d y ( y \ ® ( x \ e
[ - i / ( H o + SP ( 0 a6[x]-A(«')))dt']

\ y ) ® \ x 0) x J d y ( y \ y )
(4.37)

and by inserting the completeness relation I  =  f  d p  Ip)  (p\ between ( y I and Iy)  . 
leads to (see Appendix E)

K , j f ( x . . v , y t )  =  j  D [ x ] 6 ( t  -  c W ) e ‘s ^ / h / 6 ( 0 )  (4.38)

The effective propagator in the form of Eq.(4.38) corresponds to the propagator 
of Sokolovski[19]. By definition of the initial traversal wave function

n:(x. t = 0 |t ) =  j/;o(.r)d(0) (4.39)
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and the effective propagator Eq.(4.38) we obtain

I p ( x , t \ r )  =  J d x  0 j D [ x ] 6 { t - t ĉb[x])eiS[xW]/liilJo{xo). (4.40)

Thus we can obtain the clocked SE and the traversal time wave function by 
starting from the normal SE in two ways. We have derived the clocked SE in two 
ways by starting with the normal SE. These are (/) straight forward substitution 
and (ท)  reduction of the composite system. By straight forward substitution, we 
use the boundary condition and the wave function in Eq.(4.2) for providing the 
clocked SE. For the composite system which has the coupling interaction in the 
form of a weak measurement, we find an effective SE. Thus we obtain the clocked 
SE and the effective wave function, Eq.(4.31) which is equivalent to defining the 
traversal wave function of Sokolovski. By the use of the conditional probability 
theorem, we have obtained the effective propagator, Eq.(4.38) which is analogous 
to the constraint propagator of Sokolovski. We derive the clocked SE and the 
traversal wave function from the SE by breaking the composite system into three 
parts: the observed system, the apparatus and the actual observer (following the 
measuring process of von Neumann [25]). By assuming the observer to have a very 
large mass and the wave packet being narrow enough, in A space, the quantum 
variable A can be replaced by the classical variable A( t ) .  This leads to a constraint 
on the observed system when we reduce the complete system. The result of the 
reduction is that the observed particle has the value of 0 a/,[;{.'] in the time period 
f. synchronizing with the A( t ) to be selected.
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