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ABSTRACT
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Thesis Advisors: Asst. Prof. Hathaikarn Manuspiya and Prof. Amar
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In this research, the effect of induced internal bubble shapes on dielectric
behavior and piezoelectric properties in polyvinylidene fluoride (PVDF) was studied.
The bubbles were created inside PVDF films by thermal phase inversion and AZDC
blowing agent techniques. Subsequently, internal bubble shapes were observed using
SEM and OM. The dielectric constant and the loss tangent of porous PVDF films
were measured as a function of frequency range, 1 kHz-10 MHz, at room temperature
by an impedance/gain-phase analyzer in different % porosities, sizes, structures, and
shapes of bubbles. It was found that at high frequency the ellipsoid bubble shape
showed more promising data, including a higher dielectric constant, less relaxation
with frequency, and lower dielectric loss than spherical shaped. Also, the measured
dielectric constant is fitted well with the Yamada model indicating 0-3 connectivity
in PVDF/air bubble composites. Moreover, the ellipsoid shape can enhance the
piezoelectric properties more than the spherical shape in PVDF films. Consequently,
the PVDF with internal bubbles can be proposed as another candidate to use instead
of ceramic-filled PVDF in lightweight piezoelectric applications.
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