REFERENCES

- Arabatzis, I.M., Stergiopoulos, T., Andreeva, D., Kitova, S., Neophytides, S.G., and Falaras, P. (2003). Characterization and photocatalytic activity of Au/TiO₂ thin films for azo-dye degradation. <u>Journal of Catalysis</u>, 220, 127-135.
- Carneiro, J.O., Teixeira, V., Portinha, A., Magalhaes, A., Coutinho, P., Tavares, C.J., and Newton, R. (2005). Iron-doped photocatalytic TiO₂ sputtered coatings on plastics for self-cleaning applications. <u>Materials Science and Engineering B</u>, 138, 144-150.
- Carp, O., Huisman, C.L., and Reller, A. (2004). Photoinduced reactivity of titanium dioxide. <u>Progress in Solid State Chemistry</u>, 32, 33-177.
- Choi, W., Termin, A., and Hoffmann, M.R. (1994). The role of metal ion dopants in quantum-sized TiO₂: Correlation between photoreactivity and charge carrier recombination dynamics. <u>Journal of Physical Chemistry</u>, 98, 13669-13679.
- Deng, X., Yue, Y., and Gao, Z. (2002). Gas phase photo-oxidation of organic compounds over nanosized TiO₂ photocatalysts by various preparations.

 <u>Applied Catalysis B: Environmental</u>, 39, 135-147.
- Ding, X., and Liu, X. (1998). Correlation between anatase-to-rutile transformation and grain growth in nanocrystalline titania. <u>Journal of Materials Research</u>, 13, 2556-2559.
- Fuerte, A., Hernandez-Alonso, M.D., Maire, A.J., Martinez-Arias, A., Fernadez-Garcia, M., Conesa, J.C., and Munuera, G. (2002). Nonosize Ti-W mixed oxides: effect of doping level in the photocatalystic degradation of toluene using sunlight-type excitation. Journal of Catalysis, 212, 1-9.
- Grätzel, C.K., Jirousek, M., and Grätzel, M. (1989). Decomposition of organophosphorus compounds on photoactivated TiO₂ surfaces. <u>Journal of</u> <u>Molecular Catalysis</u>, 60, 375-387.

- Hachem, C., Bocquillon, F., and Bouchy, M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. <u>Dyes and Pigment</u>, 49, 117-125.
- Hague, D.C., and Mayo, M.J. (1994). Controlling crystallinity during processing of nanocrystalline titania. Journal of American Ceramic Society, 77, 1957-1960.
- Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis. <u>Chemical Reviews</u>, 95, 69-96.
- Ishizaki, K., Komarneni, S., and Nanko, M. (1988). <u>Porous Materials Process</u>

 <u>Technology and Applications</u>, Kluwer Academic Publisher, London.
- Kamat, P.V. (1995). Tailoring Nanostructured Thin Films, Chemtech.
- Konstantinou, I.K.., and Albanis, T.A. (2003). TiO₂-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review. <u>Applied Catalysis B: Environmental</u>, 49, 1-14.
- Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elimame, E., Guillard, C., and Herrmann, J.M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39, 75-90.
- Li, F.B., and Li, X.Z. (2002). The enhancement of photodegradation efficiency using Pt-TiO₂ catalyst. <u>Chemosphere</u>, 48, 1103-1111.
- Liu, Y., Chen, X., Li, J., and Burda, C. (2005). Photocatalytic degradation of azo dyes by nitrogen-doped TiO₂ nanocatalysts. Chemosphere, 61, 11-18.
- Mahmoodi, N.M., Arami, M., Limaee, N.Y., and Tabrizi, N.S. (2006). Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO₂ photocatalytic reactor. <u>Journal of Colloid and Interface Science</u>, 295, 159-164.
- Mary H. G., (1991). <u>Encyclopedia of Chemical Technology Vol.3</u>. New York: A Wiley-Interscience Publication.
- Mills, A., Lee, S.K., and Lepre, A. (2003). Photodecomposition of ozone sensitised by

- a film of titanium dioxide on glass. <u>Journal of Photochemistry and</u> Photobiology A: Chemistry, 155, 199-205.
- Mugglie, D.S., and Ding, L. (2001). Photocatalytic performance of sulfated TiO₂ and Degussa P-25 TiO₂ during oxidation of organics. <u>Applied Catalysis B:</u> Environmental, 32, 181-188.
- Murakami, Y., Matsumoto, T., and Takasu, Y. (1999). Salt catalysts containing basic anions and acidic cations for the sol-gel process of titanium alkoxide:

 Controlling the kinetics and dimensionality of the resultant titanium oxide.

 Journal of Physical Chemistry B, 103, 1836-1840.
- Ollis, D.F., Pelizzetti, E., and Serpone, N. (1991). Destruction of water contaminants.

 Environmental Science and Technology. 25, 1523-1529
- Parks, G. A. (1965). The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. <u>Chemical Reviews</u>, 65(2), 177-198.
- Rajeshwar, K. (1995). Photoelectrochemistry and the environment. <u>Journal of Applied</u> Electrochemistry, 25, 1067-1082.
- Rao, K.V.S., Lavédrine B., and Boule P. (2003). Influence of metallic species on TiO₂ for the photocatalytic degradation of dyes and dye intermediates. <u>Journal of Photochemistry and Photobiology A: Chemistry</u>, 154, 189-193.
- Robertson, P.K.J. (1996). Semiconductor photocatalysis: an environmentally acceptable alternative production technique and effluent treatment process.

 <u>Journal of Cleaner Production</u>, 4(3-4), 203-212.
- Rouquerol, F., Rouquerol, J., Sing, K. (1999). <u>Adsorption by Powders and Porous Solid: Principle, Methodology and Applications</u>, Academic Press, San Diego.
- Rupa Valentine, A., Manikandan, D., Divakar, D., and Sivakumar, T. (2007). Effect of deposition of Ag on TiO₂ nanoparticles on the photodegradation of Reactive Yellow-17. <u>Journal of Hazardous Materials</u>, In Press.
- Savage, N., Chwieroth, B., Ginwalla, A., Patton, B.R., Akbar, S.A., and Dutta, P.K. (2001). Composite n-p semiconducting titanium oxides as gas sensors. <u>Sensors</u> and Actuators B: Chemical, 79, 17-27.

- Selvam, K., Muruganandham, M., and Swaminathan, M. (2005). Enhanced heterogeneous ferrioxalate photo-fenton degradation of reactive orange 4 by solar light. Solar Energy Materials and Solar Cells, 89, 61-74.
- Smith, J.V. (1960). X-ray Powder Data File. American Society for Testing Materials.
- Sökmen, M., and Özkan, A. (2001). Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis. <u>Journal of Photochemistry and Photobiology A: Chemistry</u>, 147, 77-81.
- Spurr, R.A., and Myers, H. (1957). Analytical Chemistry, 29, 760-762.
- Sreethawong, T., and Yoshikawa, S. (2006). Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO₂ prepared by single-step solgel process with surfactant template. <u>International Journal of Hydrogen</u> Energy, 31, 786-796.
- Sun, J., Qiao, L., Sun, S., and Wang, G. (2007). Photocatlytic degradation of Orange G on nitrogen-doped TiO₂ catalysts under visible light and sunlight irradiation. Journal of Hazardous Materials, In Press.
- Vamathevan, V., Tse H., Amala R., Lowb G., and McEvoy S. (2001). Effects of Fe³⁺ and Ag⁺ ions on the photocatalytic degradation of sucrose in water. <u>Catalysis</u> <u>Today</u>, 68, 201-208.
- Wang, C.C., and Ying J. (1999). Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. <u>Chemistry of Materials</u>, 11, 3113-3120.
- Wang, Y. M., Liu, S. W., Lü, M. K., Wang, S. F., Gub, F., Gai, X. Z., Cui, X. P., and Pan, J. (2004). Preparation and photocatalytic properties of Zr⁴⁺-doped TiO₂ nanocrystals. Journal of Molecular Catalysis A: Chemical, 215, 137-142.
- Wu, J.C., and Chen, C.H.. (2004). A visible-light response vanadium-doped titania nanocatalyst by sol-gel method. <u>Journal of Photochemistry and Photobiology</u> A: Chemistry, 163, 509-515.
- Yang, Y., Guo, Y., Hua, C., Wang, Y., and Wang, E. (2004). Preparation of surface modifications of mesoporous titania with monosubstituted Keggin units and

- their catalytic performance for organochlorine pesticide and dyes under UV irradiation. Applied Catalysis A: General, 273, 201-210.
- Yao, W. F., Xu, X. H., Wang, H., Zhou, T. J., Yang, N. X., Zhang, Y., Shang, X. S., and Huang, B. B. (2004). Photocatalytic property of perovskite bismuth titanate. Applied Catalysis B: Environmental, 52, 109-116.
- Ying, Y., Jun, L.X., Tao, C.J., and Yan, W. L. (2004). Effect of doping mode on the photocatalytic activities of Mo/TiO₂. <u>Journal of Photochemistry and Photobiology A: Chemistry</u>, 163, 517-522.
- Zhang, H.Z., and Banfield, J.F. (2000). Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO₂. <u>Journal of Physical Chemistry B</u>, 104, 3481-3487.
- Zhang, X., Zhang, F., and Chan, K.Y.. (2005). The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating, their characterization and visible-light photocatalytic properties. <u>Materials Chemistry and Physics</u>, 97, 384-389.
- Zhang, Z., Wang, C.C., Zakaria, R., and Ying, J.Y. (1998). Role of particle size in nanocrystalline TiO₂-based photocatalysts. <u>Journal of Physical Chemistry B</u>, 102, 10871-10878.

APPENDICES

Appendix A N_2 Adsorption-Desorption Analysis of Pt-Loaded Mesoporous-Assembled TiO_2

Figure A1 N_2 adsorption-desorption isotherms of the synthesized 0.2 wt.% Pt-loaded mesoporous-assembled TiO₂ calcined at 500°C for 4 h (Inset: Pore size distribution).

Figure A3 N₂ adsorption-desorption isotherms of the synthesized 0.8 wt.% Ptloaded mesoporous-assembled TiO₂ calcined at 500°C for 4 h (Inset: Pore size distribution).

Appendix B Example of Time Dependence of UV-Vis Absorption Spectra of MO Solution

Figure B1 UV-Vis absorption spectra of methyl orange solution at various irradiation times (photocatalyst dosage = 2 g/l; initial MO concentration = 5 mg/l; reaction volume = 80 ml)

Appendix C Comparison of Reaction Rate Constants for MO Decomposition under Various Operating Conditions

Table C1 Comparison of effect of photocatalyst dosage on reaction rate constants for both decolorization and degradation of MO by synthesized mesoporous-assembled TiO_2 photocatalyst calcined at 500°C for 4 h (initial MO concentration = 5 mg/l; reaction volume = 80 ml; irradiation time = 4 h).

Photocatalyst dosage	Reaction rate constant, k (h ⁻¹)		
(g/l)	Decolorization	Degradation	
2	0.615	0.363	
· 6	0.779	0.568	
7	1.066	0.681	
. 8	0.849	0.587	
. 10	0.256	0.193	

Table C2 Comparison of effect of initial MO concentration on reaction rate constants for both decolorization and degradation of MO by synthesized mesoporous-assembled TiO₂ photocatalyst calcined at 500°C for 4 h (photocatalyst dosage = 7 g/l; reaction volume = 80 ml; irradiation time = 4 h)

Initial MO concentration	Reaction rate constant, k (h ⁻¹)	
(mg/l)	Decolorization	Degradation
2.5	0.933	0.622
5	1.066	0.681
10	2.561	0.193
15	0.068	0.071

Table C3 Comparison of effect of light intensity on reaction rate constants for both decolorization and degradation of MO by synthesized mesoporous-assembled TiO₂ photocatalyst calcined at 500°C for 4 h (photocatalyst dosage = 7 g/l; initial MO concentration = 5 mg/l; reaction volume = 80 ml; irradiation time = 4 h)

Light intensity (mW/cm ²)	Reaction rate constant, k (h ⁻¹)		
	Decolorization	Degradation	
0.58	0.175	0.113	
1.16	0.309	0.206	
1.74	0.593	0.277	
2.32	1.066	0.681	

Table C4 Comparison of effect of H_2O_2 concentration on reaction rate constant for decolorization of MO by synthesized mesoporous-assembled TiO_2 photocatalyst calcined at 500°C for 4 h (photocatalyst dosage = 7 g/l; initial MO concentration = 5 mg/l; reaction volume = 80 ml; irradiation time = 4 h).

H ₂ O ₂ concentration (M)		ion (M)	Decolorization rate constant, k (h ⁻¹)	
	0		1.066	
	0.1		1.010	
	0.3	Ÿ	1.210	
	0.5		1.974	
	0.7		1.792	
	0.9	•	1.712	

Table C5 Comparison of effect of initial solution pH on reaction rate constant for decolorization of MO by synthesized mesoporous-assembled TiO_2 photocatalyst calcined at 500°C for 4 h (photocatalyst dosage = 0.2 g/l; initial MO concentration = 5 mg/l; H_2O_2 concentration = 0.5 M; reaction volume = 80 ml; irradiation time = 4 h)

Initial solution pH	Decolo	orization rate constant, k (h ⁻¹)
3.1		1.281
4.1	113	1.775
4.7	4.5	1.974
· 7.0		1.010
8.0	1.11	0.985

Table C6 Comparison of effect of Pt loading content on reaction rate constant for decolorization of MO by synthesized Pt-loaded mesoporous-assembled TiO_2 photocatalyst calcined at 500°C for 4 h (photocatalyst dosage = 0.2 g/l; initial MO concentration = 5 mg/l; H_2O_2 concentration = 0.5 M; reaction volume = 80 ml; irradiation time = 4 h)

Pt loading content (wt.%)	Decolorization rate constant, k (h ⁻¹)
0.0	1.974
0.2	1.863
0.4	2.102
0.6	2.159
0.8	0.997

CURRICULUM VITAE

Name: Ms. Piyanud Jantawasu

Date of Birth: September 13, 1984

Nationality: Thai

University Education:

2002-2006 Bachelor Degree of Science, Faculty of Science, King's Mongkut Institute of Technology Ladkrabang, Bangkok, Thailand

Presentations and Proceedings:

Jantawasu, P., Chavadej, S., Yoshikawa, S., and Sreethawong, T. (2007, November 21-24) Photocatalytic Degradation of Azo Dye Using Nanostructured Photocatalyst. Paper presented at <u>The 5th Eco-Energy and Materials Science and Engineering Symposium</u>, Pattaya, Thailand.

Jantawasu, P., Sreethawong, T., Chavadej, S., and Yoshikawa, S. (2008, Apirl 23) Photocatalytic Decomposition of Methyl Orange Azo Dye Using Nanostructured TiO₂ Photocatalyst. Proceeding of <u>The 14th PPC Symposium on Petroleum, Petrochemicals, and Polymers</u>, Bangkok, Thailand,

