
C H A P T E R  I I

T H E  S T A N D A R D  M O D E L

In this chapter a brief review of the Standard Model of particle physics is 
given. We begin with the gauge groups of the Standard Model in the first section 
and then provide, in Section 2.2, the construction of the Lagrangian whose form 
is dictated by gauge invariance. We next discuss the mechanism of electroweak 
symmetry breaking and the particle spectrum in Sections 2.3 and 2.4 respectively. 
The properties of fields under discrete symmetries (parity p, charge conjugation c , 
and the combined CP) are then investigated in Section 2.5. Finally, the electric 
dipole moment of the electron in the context of the Standard Model will be 
reviewed in the last section. The notations used in this chapter follow the book 
by Peskin and Schroeder [12].

2.1 The Standard Model gauge groups

The Standard Model (SM) of particle physics is the gauge field theory which 
successfully describes the nature of electromagnetic, weak and strong interactions 
among elementary particles. It combines Quantum Chromodynamics (QCD) with 
the Glashow-Weinberg-Salam model of electroweak interactions, and is based on 
the gauge group รบ(ร)c X รบ (2)l X บ (1)y - The รบ(ร)c group, the symmetry 
group of QCD which describes the strong interactions among colored quarks, 
is believed to be an exact symmetry of the SM. On the other hand, รบ(2)L X 

บ ( 1 ) y , the symmetry group of the standard electroweak theory which describes 
the electromagnetic and weak interactions among quarks and leptons, must be 
broken spontaneously via the so-called Higgs mechanism to the บ ( l )e m  group of 
electromagnetism.

In the strong interaction sector, the generators of the รบ(ร)c group



4

ta(a — 1 , . . . ,8 )  are related to the 3x3 Gell-Mann matrices A° by ta ะ= Xa/2, 
and obey the commutation relations

[ta,tb} = i f abctc (2.1)

where f abc are the antisymmetric structure constants of รบ(ร)c- The non­
vanishing f abc are given by the permutations of / 123 =  1, f ur =  / 246 =  f 257 — 
/ 345 =  J516 = / 637 =  1/2 , / 458 =  / 678 =  y/3 /2. Here are the explicit forms of the
eight traceless hermitian Gell-Mann matrices:

/  0 1 0 \  /  0 —i 0 \  /  1 0 0 \
A1 =  1 0 0 , A2 =  i 0 0 , A3 =  0 - 1  0 ,

\  0 0 0 /  \  0 0 0 /  \  0 0 0 /
/ 0 0 1 \ / 0 0 -Î \ / 0 0 0 \

A4 =  0 0 0  , A5 =  0 0  0 , A6 =  0 0  1 ,
V 1 0 0 / V i 0 0 / \ 0 1 0 /

/ 0 0 0 \ 1 / 1 0 0 \
A7 =  I 0 0 - i  1 , A8 = —= 0 1 0 .

\ 0  i 0 J V 3 \  0 0 - 2  J
(2.2)

For each generator, there is a corresponding gauge boson, called a gluon and de­
noted by G“ , which mediates the strong interactions. W ith the รบ(3)c coupling 
constant ฐ3 , the field strength tensor of the gluon field is defined by

G“ =  dpGav — dvGa +  g3f abc/ๆ bG b„ G l . (2.3)

In the electroweak sector, before the symmetry is broken, there are four 
gauge bosons, พ “(a =  1,2,3) and B 11, associated with the three รบ (2)L weak 
isospin generators, T a , and the บ[l)Y weak hypercharge generator, Y, respec­
tively. The รบ(2)l generators are related to the 2x2 Pauli spin matrices by 
Ta =  (ja/2  and satisfy the commutation relations

- [ra, T b ]  = ieabcTc (2.4)

where eabc is the totally antisymmetric structure constant with e123 =  +1. We 
will see later tha t the hypercharge generator is related to the third component of



ทอสม«กลาง «ถาบ’นาทยบา การ 
«พาลงกรณบทาวทยาลไเ

5

the weak isospin T 3 and the electric charge Q in units of the positron charge +e 
by

Y  = Q - t 3.

The field strength tensors for พ  and B  bosons are defined by

พ ;, =  d ,พ ; - d ,w ;  +  geabcพ ;พ ;,
B, 1,  =  d 11ร , -  duB 11, (2.5)

with g being the รบ(2)l gauge coupling constant.

2.2 Lagrangian of the Standard M odel

Before proceeding to  consider the Lagrangian of the Standard Model, we first 
look at the particle content of the model. The field content of the SM consists 
of three generations of quarks and leptons, together with the gauge and Higgs 
bosons as listed in Table 2.1.

Each fermion field is conventionally decomposed into its left-handed and 
right-handed components as

= ( à 0 )  Afe = ( o  (2-6)

The reason for this, besides their difference in the transformation properties under 
the Lorentz group, is th a t they couple differently to gauge bosons. As seen in 
the table, the left-handed fermions and the complex Higgs scalars form weak 
isodoublets while the right-handed fermions are weak isosinglets. Note th a t the 
neutrinos are assumed to be massless and exist only with left-handed components. 
Moreover, each quark flavor is a color triplet under the รบ (3)c gauge group, while 
all other particles are color singlets and do not experience the strong interactions.

The Lagrangian density of the Standard Model can be decomposed as 
[13]

£sm = £i + £2 + £3 + £4 (2.7)
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where
(1)

£ 1  = - - G l uG a^  -  l- W ; vW ,HW -  - B ^  (2.8)

describes the pure gauge interactions, and contains the kinetic terms and self 
interactions of the vector gauge fields;
(2)

£ 2 = บ +  11 +

+tfR( i i lD 11)น1R + ëR(i 'ๆ1D11)éR (2.9)

is the m atter Lagrangian which consists of the kinetic terms and gauge inter­
actions of the fermion fields. The index i is summed over the three families of 
fermions. The covariant derivative of a quark field, for example, is defined by

D11 = (d 11 -  ig3c ; ta -  i g W y  -  ig'YB 111); (2.10)

(3)
C3 = {D,<t>)\D^ ) -V(<j>) (2.11)

is the Higgs boson Lagrangian which contains the kinetic term , gauge interactions, 
and self interactions of the Higgs boson. The Higgs potential is w ritten as

+ A(̂ V)2; (2.12)

and (4)
£ 4  =  -A r ^ R  -  A j?Q i<K  -  A +  h.c. (2.13)

is the generalization of the Yukawa interactions which couple the Higgs field to 
fermions. Here, (f) =  i a 2 (p* is the Higgs isodoublet with hypercharge Y  =  —1. 
The dimensionless couplings Ag-7, Ajf and \)j are general 3 x 3  complex matrices 
which are not necessarily symmetric or hermitian.



T a b l e  2 .1 :  P a r t i c l e  c o n t e n t  o f  t h e  S t a n d a r d  M o d e l .

Names Notations spin SU(3)c,SU(2)L, บ(l)y

quarks, Q (นL dL ) (CL รL ) (tL bL ) 1/2 (3, 2, I)
(3 families) UR CR til 1/2 (ริ, 1 ,1 )

dR Sr  bn 1/2 (ริ. 1, - 1 )

leptons, L (ve eL ) (นแ f lL ) (vT t l ) 1/2 (1 ,2 .  - 1 )
(3 families) Gr  Hr  Tr 1/2 (1. 1, - 1 )

Higgs, 4> (01 02 ) 0 (1 .2 , 1)

gluon 9 1 (8, 1, 0)

พ  bosons พ 1 พ 2 พ 3 1 (1, 3, 0)

B boson B 1 (1, 1, 0)

The Lagrangian (2.7) is invariant under the local รบ (3)c X รบ(2)l X 

บ ( l ) y  gauge transformations under which the fields transform as follows:

1. For left-handed quarks QL:
Q l  _ O '  =  e H a { x ) t a + i a a (x )T a + i f 3 ( x ) Y Q ^

2. For left-handed leptons Ll and the Higgs scalar 0:

Ll - »  UL =  บ ่ » a ( x ) r - + i P ( x ) Y  L l  ̂ 0  บ ่  =  e i a a ( x ) ^ + i P ( x ) Y  ̂

3. For right-handed quarks:
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4. For right-handed leptons:

5. For gauge bosons:

B,{x)Y

e - ท ่ a( x) t a

6-ia„(ร:)ร0

So far, all gauge fields and fermion fields in the theory are still massless. In 
order to generate masses for these fields, the รบ(2)I  X บ{บ)Y symmetry must 
be spontaneously broken and the Higgs mechanism, explored by Higgs, Kibble, 
Guralnik, Hagen, Brout, and Englert, will subsequently generate masses for the 
particles.

2.3 Spontaneous symmetry breaking

To discuss sponteneous electroweak symmetry breaking, we now consider the 
scalar potential of the Higgs field in Eq. (2.12). For positive A and แ2 < 0, the 
minimum of the potential occurs at

The ground sta te  of the theory must be chosen such th a t only the neutral com­
ponent of the Higgs doublet acquires a vacuum expectation value (VEV)

if we assume th a t the physical vacuum is electrically neutral. The field configura­
tion of this non-vanishing VEV lies along a certain direction in the รบ {2)l x U {บ)Y 
representation space, and is invariant only under the [ / (1) rotation about tha t

(2.15)



9

preferred direction. Therefore, the electroweak symmetry is spontaneously broken 
down to the บ (1)em symmetry.

In general, the Higgs doublet (p is conveniently expressed in the form

m  = V i
,— พ + * พ  \ = 1 6 1 0 \

V (t> +  h(x)Y -  ICI2 -  Kz{x) )V2 V +  )
(2.16)

where (a{x) and h(x) are real scalar fields with vanishing VEVs, and <f is related 
to f] by Ç =  sin(|??|/2)(u +  h)fj/\f]\. This was done by first shifting the magnitude 
of (p by h/yj2 and then rotating it to other direction in the รบ(2) space. Using 
the gauge invariance of the Lagrangian, it is possible to fix gauge to the unitary 
gauge in which only the physical Higgs field h(x) is left, by performing a local 
รบ(2) rotation on (p,

(p(x) -iVa{x)Ta(p(x) = - (  0y/2 \  V +  h(x) (2.17)

so th a t the three remaining scalar fields Ça get absorbed into the รบ(2) gauge
bosons through

พ ; (x)ra -►  eir?a(x)ra ( พ ^ x)ra +  l-d ^ j  e~l71a(x)Ta. (2.18)

2.4 The mass spectrum of the Standard Model

We will begin this section with the Higgs boson mass. From the scalar potential 
(2.12), substituting (2.17) into it yields

V = Ç ( o v + h ) ( v l h ) + 4 " + ,1)
= y(v + fi)2 + (̂u + fi)4.

Using the relation fj? =  —Au2, then

=  i  (2Au2) h2 +  Avh3 +  ^ fi4 — ^Au4.บ (2.19)
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From the potential above, the Higgs boson mass reads

mh =  V2Xv. (2.20)

We see th a t the magnitude of the Higgs mass depends on its vacuum expectation 
value and the coupling constant A.

Next, we consider the mass spectrum of gauge bosons. Since the Higgs 
particle interacts with gauge bosons only via the covariant derivative, D11 <j), then 
by evaluating the kinetic terms of the Higgs field a t its vacuum expectation value,
the gauge boson mass terms can be obtained. The relevant terms are

A £s =  I (  0 V) ( g w y  +  g'YB„)+ f  ° V  (2.21)

Substitute Ta = <jaเ 2 and Y  =  1/2, then we get

A £ 3  =  J  [ร2(พ ,1)2 +  g2(พ ;)2 +  ( -g พ1 + g'B, ) 2] . (2.22)

Define the mass eigenstate fields พ;, Y 11 and A , as follows

พ''* =  W h o  (2-23)

^  =  ๆ7  U K - m  (2-24)

A “  = ~ ^ T 7 - (9'K  + i B f ) - (2,25)
In terms of these new fields, A £ 3  becomes

A £ 3 =  ^ ( พ ; พ - ๆ  +  (g2 +  g,2) j ( z , ) 2. (2.26)

Since and พ ~ are hermitian conjugate to each other, then the first term  in 
(2.26) can be rewritten as

~  (เพ';ฯ2 + เพ,; ! 2)- (2.27)

Thus after electroweak symmetry breaking, three gauge vector bosons acquire
masses via the Higgs mechanism; พ ^  and พ ~ are mass degenerate states with 
mass

(2.28)
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and Z y  gets its mass equal to

mz = \/g2 + gl27,- (2.29)

The gauge boson A y ,  in contrast, remains massless and is identified with the 
unbroken บ ( 1 ) e m  gauge boson, the photon.

From the mixing of พ 3 and B y in Eqs. (2.24) and (2.25), it is convenient 
to introduce the weak mixing angle 9 \v , also known as the Weinberg angle, such 
that

f  Z y  \  _  /  cos 9 พ — sin 9พ พ ^ )  
\  A y  )  ~   ̂ sin 9 พ cos 9 พ )  \  B y  )

where
cos 9  พ  —

v V  + g'2' sin#w =
ฟ t ; (2.30)

Now, if we rewrite the electroweak covariant derivative in terms of mass 
eigenstates (2.23)-(2.25), it becomes

= a, -ifyw îr*  + พ;T-) -  > ÿ = gพ T3 - 9"

■ 9sf - ; A y ( r 3 +  Y ) (2.31)

where
T* =  ( r 1 ±  i r 2) =  ^ ( ct1 ±  la2). (2.32)

Since we have identified A y, with photon, then we identify the electromagnetic 
coupling in the last term of Eq. (2.31) as the positron electric charge

e = gg‘
\ เ9 2 + g'2 =  g sin 9 พ

and the unbroken generator
Q  =  t 3 +  Y

(2.33)

(2.34)

as the electric charge; this formula was mentioned earlier in Section 2.1.
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We now turn  our attention to the fermion mass spectrum. The fermion 
mass terms can be obtained by replacing the Higgs field (j) in the Lagrangian 
(2.13) with its VEV. The result is

A £ 4 =  - ^ =  y jv e lrje>R -

This gives rise to the fermion mass and flavor mixing matrices

.. i j _ 1 \ i jmi =  — = A  i
f  V 2  f

where /  denotes e, น, d.  Since these mass matrices need not be diagonal, then 
the mass eigenstates need not necessarily be identical to the gauge eigenstates 
but are linear combinations of them instead. In order to diagonalize the mass 
matrices, we perform biunitary transformations as follows. In the quark sector, 
define the unitary matrices บน, U d, พน and W d  such tha t

ul(A„Aj,) บ. = พ'. (A* A„) พ . =

บ\(ฬ )  บ* =  พ'* ( a'A j)  พ* =  (2.37)

where D l  and D l  are diagonal matrices with positive eigenvalues. From the 
relations above, we have

D u  =  UiKWu, D d = u \ \ dw d (2.38)

(2.36)

พ
\ ij v d iLd:'R  +  h.c.. (2.35)

where D u and D d  are diagonal matrices whose diagonal elements are the positive 
roots of the eigenvalues of Dl and Dl respectively.1 W ith these constructions,

W hat such a diagonalization procedure is possible can be understood as follows. For any 
ท X ท matrix A, the matrices AAÏ and AW are unitary and therefore can be diagonalized by 
unitary transformations. Let |a) be an eigenvector of AW with a non-zero eigenvalue a . Then it 
can be seen easily that A|a) is non-zero and is an eigenvector of AAt with the same eigenvalue a. 
Thus At A and A At have the same set of eigenvalues, so they are equal after the diagonalization. 
Moreover, from 0 < (a|AtA|a) = Q(a|a), we see that all their eigenvalues are non-negative. 
Therefore, there exist the unitary matrices บ  and พ  such that f/t(AAt){7 = lyt(AtA) พ  = D 2 
with D 2 being a diagonal matrix with non-negative eigenvalues. Let M  =  L/t\ w ,  then =
M A ft = D 2. As M  and A/t commute, M  itself must be a diagonal matrix. By adjusting the 
บ (1) factor of either บ  or พ ,  we can make M  real and positive, so M  is a positive root of D 2.
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the gauge eigenstates are related to the mass eigenstates (expressed with prime) 
by the transformations

4  = บ ร 1 , 4  = u ' l 4 ,  (2.39)
4  = พ ร L  =  (2.40)

Similarly, in the lepton sector we diagonalize the mass m atrix Ae by

De = u \ \ ew e (2.41)

and make the transformations on the lepton fields as follows:

4  = u ? 4 ,  4  = บ ร l  (2.42)

Observe th a t UL transforms in the same way as e£. This is possible because we 
have assumed th a t neutrinos are massless and have no right-handed components. 
Under the transformations (2.39), (2.40), and (2.42), the Lagrangian (2.35) be­
comes

= - ^ = บ - บ ๕1fi Jieh - 72
D ÿ û 1 4  - ^ «  +  h.c..

This is the mass terms which are already diagonal in flavor and thus we have 
fermion masses for the ith  generation

m) =  -ะ1

Before proceeding further to the next section, we should ask whether 
transforming fermion fields into their mass eigenstates, which are the observable 
states, affects the form of the Lagrangian (2.9). The answer is yes; indeed, it 
affects only the charge-changing weak interactions, terms th a t fermions couple 
to charged พ  bosons. In terms of the fermion gauge eigenstates, the charged 
current interactions can be written as

C c c  =  g { K J w + W ^ J w ) ( 2 . 4 4 )
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where

Jw = ■ =̂ ipL' f e L + uL' f d L) (2.45)

J\v = ■ =̂ (êL'fvL + à.L'fuL)- (2.46)

It is clear tha t under the transformations (2.39) and (2.42), the second terms of 
both weak currents get extra factors

ท บ 1 ^ 4 4 ,  (2.47)

\ $ L ท \  =  - ^ 4 ท บ l บน)'14 -  (2.48)

It is customary to define a unitary rotation matrix

V  =  u \u d (2.49)

operating on down-type quark mass eigenstates. Explicitly
(  d "  \  (  d ' \  (  vud vus vub พ  d ' \
I ร" =  K I ร, I =  I Vcd Vcs Va, ) [ ร' I . (2.50)
\ b "  )  \ v  J \  v td v ts vtb )  \  v  )

The marix V  is well-known as the Cabibbo-Kobayashi-Maskawa (CKM) quark
mixing matrix [14, 15]. Since it is a general 3 x 3  unitary m atrix, then it can be
parameterized by three real rotation angles (the Euler angles which parameterize
the 5 0 (3 ) subgroup of (7(3)) and six complex phases. However, not all of these
phases are physical as they can be removed by performing phase rotations of the
quark fields. At first, it seems one can remove all six phases by changing phases
of all six quarks, but since V is invariant under the rotation of all quarks with
the same phase, only 5 complex phases can be removed. So we are left with one
physical phase which cannot be removed. There are several param eterizations of
the CKM matrix. The standard one is parameterized by the angles 012,023,013
and a phase 5 as [16, 17, 18, 19]

/ I  0 0 พ  e-iS'2 0 0 \  /  C13 0 ร13 \
V  = 0 c23 ร23 0 1 0 0 1 0

V  0  - ร 2 3  C23 /  V  0  0  ๙ '5 /2  )  \  - ร 1 3  0  C13 J
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/ ๙*/2 0 0 พ  €12 ร12 0 \
XI 0 1 0 I I — ร12 Cl 2 0 I

\  0 0 e~iS//2 /  V 0 0 1 /
( C1 2C13 ร1 2<น3 ร 13̂ ~iS \

—  S 12C23 —  c 1 2 ร 2 3 ร 1 3 6 * *  C 12C23 —  ร 1 2 ร 2 3 ร  1 3 ^ * *  S 23C 13 I ( 2 . 5 1 )

s 12s 23 — C12C23S13C* ~<น2ร23 — ร12023ร136*5 C23C13 /

where Cij  — cos 6 1J and ร 13 =  sin 6 13. It was shown by Jarlskog [20] th a t for an ar­
bitrary unitary m atrix V, the combinations of the m atrix elements (VijVkiV^jVa) 
with i  ะ/ะ k and j  ะ /l is invariant under the transformation

V i j  _

Applying this result to the CKM matrix, we see tha t if one of such combinations 
associated with the CKM m atrix is complex then it cannot be made real by 
performing phase rotations of the quark fields that multiply V. W ith the above 
param eterization of the CKM matix, it can be checked tha t the nonvanishing 
imaginary parts of such combinations are proportional to the quantity

J  -  C1 2C1 3C2 3 S1 2S1 3S23 sin <5 (2.52)

known as the Jarlskog parameter. As this parameter is invariant under the general 
redefinition of the quark phases

U i  —> eiftiLi, di —> eiaidi (2.53)

and is non-zero only when the CKM matrix is complex, then it serves as an 
appropriate param eter for measuring “how much the CKM m atrix is complex.”

2.5 C P  violation in the Standard M odel

In addition to Lorentz and gauge symmetries, there is also the discrete CPT 
symmetry which is proposed to be the fundamental symmetry of Nature. This 
C PT symmetry is the combined operations of charge conjugation c , parity p, and
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time reversal T. The statem ent th a t a Lorentz-invariant quantum  field theory is 
invariant under C PT  operation is well-known as the C PT theorem which was 
discovered by Pauli in 1955 [21]. For the Standard Model, although the C PT 
theorem is still valid, the separate c, p or T  symmetries can be violated. Actu­
ally, any chiral gauge theory will naturally violate charge conjugation and parity. 
Moreover, the C PT theorem implies, for example, tha t if time reversal is not a 
symmetry of the model, then neither is the combined CP. In this section, we will 
investigate the violation of CP symmetry in the SM. First, we begin with the 
actions of parity and charge conjugation on the Dirac particle.

The parity or space inversion operation, p ,  is the coordinate transforma­
tion which changes (f,x ) to  (f, —x). Under this operation the coordinate axes and 
hence the handedness of space are reversed. Consequently, the momentum of a 
particle is reversed while the particle’s spin is kept unchanged. In the m athem at­
ical language, the unitary operator p  implementing the parity transformation on 
a  spinor is conventionally defined by

p^> (t,x )p  =  7 V (C  - x ) .  (2-54)

Suppose we write ไเ)(t,x) =  ^ ^  ^ (f,x ). Then under parity,

ฬ *. x) -»• Pip(t,x.)P =  (  ^  )  (*. ~ x ) -  V (*1 - x ) .

We can see th a t the left-handed (right-handed) components in the coordinates 
(t, x) become the right-handed (left-handed) components in the new coordinates 
(t, —x). Similarly, the Dirac conjugate spinor transforms as

P'0(t,x)p ะ= P'0t(t,x)P7° = (Pi/>(f,x)P)*7 ° = (̂f,—x)7 °. (2.55)

W ith the above transformations, the transformation rules under parity for the 
bilinear products of spinors, such as or TppIp, can be easily obtained by doing
some algebras on the gamma matrices.
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Now we turn  to consider the c  operation. Charge conjugation is the 
operation which turns a fermion into its antiparticle with the same spin orienta­
tion. Hence, the c  symmetry is also known as the particle-antiparticle symmetry. 
Mathematically, the unitary operator c  implementing charge conjugation on a 
spinor gives the results

Crp(x)C =  = —i j 2( ^ ) T = —i(ï) ๆ 0ๆ 2)T (2.56)

and
Cip(x)C = C x fic ^  = (-Z72V’)T7° = (—*7°72Vj)T (2-57)

which lead to the transformation rules under charge conjugation of the bilinear 
products of spinors. The transformation properties under c, p  and CP  of various 
useful quantities are listed as follows:

ไเ}') M̂ •07/i75'î/> % gauge fields

p + 1 ( - 1  r -1 -(-1Y (-1 r ( - 1  r

c +  1 -1 +1 +1 +1 -1

CP +  1 (-1 r -1 (-1)M -(-I)"

Here the shorthand ( — 1)^ denotes

, 1 y* =  f +1 for [1 = 0
1 ’ =  \  - 1  for แ = 1,2,3.

W ith the properties above, CP is a symmetry of every term  in the Stan­
dard Model Lagrangian, except the terms tha t couple quarks to the พ  bosons in
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Eq. (2.44). In terms of quark mass eigenstates, these are the term s tha t involve 
the CKM m atrix

£ cc  ว  ( a i r +  . (2.58)

Under CP, they transform to

£cc -  4=( 6 fo  ท'«น?พ'- + . (2.59)

From two equations above, we can see tha t the charge-changing weak interactions 
are invariant under CP if and only if is real for all i, j. Therefore, the Standard 
Model violates CP symmetry and the source of such violation is the complex phase 
Ô of the CKM quark mixing matrix. As mentioned in the previous section, the 
Jarlskog param eter J  is invariant under the phase transformations of quark fields 
and is non-zero only when the CKM matrix is complex. Thus any physical effect 
whose occurrence is due to CP violation must be an analytic function of J  which 
has a zero at J  =  0.

2.6 The E D M  of the electron in the Standard 
Model

In quantum  field theories, the general form of the electromagnetic form factor of 
a spin 1/2 particle /  of mass m satisfying the Ward identity is [22]

r̂ (<?) = F i iq 2) ^  + F ^ q ^ ia ^ q vj 2m + F A (q2)(ๆ ,1■ๆ ๖q2 -  2 m Ÿ q fJ‘)

+ F j,{q 2) o ^  ๆ 5 qu/ 2 m  (2.60)

where p  and p' are the 4-momenta of the initial- and final-state particles and 
q =  p' — p  is the 4-momentum carried by the photon.

The EDM of a fermion /  is defined as

= - t F
(2.61)
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The reason for this is th a t the last term in Eq. (2.60) with F(q2) evaluated at 
q2 =  0 may be thought of as coming from a low energy effective Lagrangian

£ ed m  =  -^dfipa*''ๆ5xpF^ (2.62)

which gives rise to the EDM interaction Hamiltonian of the form H EDM =  —d -E , 
with d  and E  being respectively the fermion electric dipole moment and an electric 
field. Here d = df ร where ร is the fermion spin.

In a renormalizable theory, if the theory contains a source of CP violation, 
this interaction must be induced by loop diagrams because it is a dimension-5 
operator, which is nonrenormalizable. In the Standard Model, although there 
is no CP violating phase in the lepton sector, the nonzero lepton EDM can be 
induced from the CKM mixing via quark loops. In 1990, the SM prediction for 
the EDM of the electron was obtained by Hoogeveen [23]. It was shown th a t 
the Feynman diagrams contributing to the electron EDM must have at least four 
charged vector bosons coupled to a quark loop. This is because if there are 
only two charged vector bosons in the quark loops, the diagram will depend only 
on the square of the absolute value IP^I2 of the CKM m atrix and therefore be 
independent of the CP-violating phase. However only a year later, Khriplovich 
and Pospelov [24] dem onstrated th a t de is zero even at three-loop order and the 
first non-vanishing result appears below the level of

de < 10-38e cm (2.63)

which is highly suppressed.
It is worth noting tha t the recent experimental discovery of neutrino 

masses makes possible for CP-violating phase to occur in the lepton sector similar 
to tha t in the quark sector. If we assume that neutrinos are Dirac particles, the 
lepton mixing m atrix then contains three rotation angles and one CP-violating 
phase in complete analogy to the CKM matrix. On the other hand, if neutrinos
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are M ajorana particles, two CP-violating phases will be introduced in the lepton 
mixing m atrix [25]. In the latter case, it was shown tha t a non-vanishing contri­
bution to the electron EDM is induced at two-loop level [26]. However, its value 
is still very tiny unless a fine-tuning of the neutrino masses is allowed [27].
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