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ABSTRACT
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Nanocomposite film composed of bacterial cellulose (10-50 wt%) and poly-
urethane (PU) hased resin was fabricated and utilized as a substrate for flexible
organic light emitting diode (OLED) display. The performance of the nanocomposite
satisfied the criteria for the substrate of OLED with an additional feature of
flexibility. The visible light transmittance of the nanocomposite film was as high as
80 %. Its thermal stability was stable up to 150 °c while its dimensional stability in
terms of coefficient of thermal expansion (CTE) was less than 20 ppm/K. Moreover,
SI-O film and ferrofluid solution were employed to protect nanocomposite substrate
from moisture and to reduce the surface roughness, respectively. Water vapor
transmission rate (WVTR) and surface roughness must be lower than 10'6 g/m Yday
and 5 nm, respectively. Consequently, in order to fabricate OLED circuit, we
investigated PEDOT: PSS, silver nanoparticle and ZnS nanoparticle were
investigated for being as anode, cathode and emissive layer, respectively. The use of
desktop inkjet printer was employed to use as instrument in order to deposit OLED
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