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CHAPTER I

INTRODUCTION

Recently there have been many end stage renal disease treatments such as 

hemodialysis, peritoneal dialysis and kidney transplantation. Hemodialysis is one of the

acceptable methods that have the objectives to replace the kidney functions in case of 

removal uremic toxins and to keep balance of water, mineral, acid and base in the 

human body. However, hemodialysis cannot absolutely replace the kidney functions

therefore the adequacy index is specified to assess the quality of hemodialysis. 

Hemodialysis adequacy can be shown by various indexes such as Kt/v, Urea Reduction 

Ratio (URR), etc. In the past, many researchers had proposed equations to calculate 

those indexes, but each model still has the errors. Supporting report from E.A. 

Fernandez et al (2005) found that it has an error 23.81%, 22.22% and 17.46% from 

calculation of the standard URR, the Syme and the Cheng equation respectively by 

comparing with the gold standard index (GSI). Kovavic, et al (2003) compared the 

calculation value (Kt/V) of many formulas with gold standard index (Formal Urea Kinetic 

Modeling), the results show significantly different from GSI, the Daugirdas 1.66%, Barth

2.66%, Jindal 3.49%, Keshaviah 6.65%, Basile 6.73%, kerr 9.65%, and Lowrie formulas

19.63%. For this reason, the model has been developed for exactly prediction to reduce 

an error. One of the popular and efficient methods is Artificial Neural Networks (ANNs).

ANNs based on mechanisms of human brain including structure, processing, learning, 

and adaptation for the error that difference from the empirical models is proposed by 

previous researches. Since some major variables that affect the system have not been 

investigated therefore it has an error when used. Therefore, ANNs have been used 

successfully to solve complex and stochastic problems without the need of 

mathematical models and a precise understanding of the mechanism involved. The 

application of ANNs is known as a powerful tool to simulate various non-linear systems

and many fields of clinical medicine such as Pharmacodynamic analysis (Veng-

Pedersen P. and Modi N.B., 1992), heparin pharmacokinetics during hemodialysis 
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(Smith B.P., 1998), time-course and diagnosis of chronic nephropathy (Geddes C.C. et 

al, 1998)

The aim of the study is to create the model of the prediction hemodialysis 

adequacy by using clinical data pre and post dialysis urea concentration, net 

ultrafiltration, body weight, blood flow rate and dialysate flow rate from hemodialysis unit, 

Chulalongkorn hospital. For this research work, modeling is performing by MATLAB 

program and compares the results from ANNs model with the other models proposed by 

nephrologists. 

1.1 Objective of this research 

The objective of this research is to create mathematical model for prediction the 

hemodialysis adequacy.

1.2 Scopes of this research

1.2.1 The data of 30 patient in duration 6 month to 12 month are collected from 

medical record in hemodialysis unit, Chulalongkorn hospital.

1.2.2 All of the patients are treated by means of hemodialysis three times a

week.

1.2.3 The MATLAB program is used to train, test and validate the networks to 

create a model.

1.3 Contributions of this research

1.3.1 Apply neural network process in medical field study. 

1.3.2 Hemodialysis adequacy assessment is more accurate.

1.4 Procedures of this research 

1.4.1 Define variables to study.

1.4.2 Collect patient data from medical record, chulalongkorn hospital.

1.4.3 Study feed-forward neural network with back-propagation learning.
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1.4.4 Training network with a set of known input-output patterns.

1.4.5 Testing and validation network.

1.4.6 Create model for the prediction hemodialysis adequacy.

1.4.7 Compare the result with other models.

1.4.8 Discuss the results and conclusion



CHAPTER II

LITERATURE REVIEWS

Hemodialysis is the most common method used to treat advanced and 

permanent kidney failure. The kidney could be replaced by simple diffusive removal of 

solute from the blood. Hemodialysis allowed life to continue and patients to prosper 

even after total loss of the kidneys that a minimum dose of dialysis is required to 

optimize both the duration and the quality of life. The dose of hemodialysis is best 

described as the fractional clearance of urea as a function of its distribution volume 

(Kt/V), standard minimum for adequate dialysis is 1.2. This is the standard adopted by 

the Dialysis Outcomes Quality Initiative (DOQI) group. 

2.1     Hemodialysis

Gotch and Sargent, 1985 analysis the National Cooperative Dialysis Study 

(NCDS) and suggested that most treatment failures, defined as hospitalization and/or 

the appearance of de novo clinical abnormalities or worsening of residual morbidity in 

any organ system, occurred at Kt/V < 0.8 and concluded that a Kt/V of 1.0 was fully 

adequate.

Prado, et al, 2000 present a new hemodialysis prescribing procedure which 

calculates the adequate dialyzer clearance to obtain a target time averaged 

concentration (TAC) of urea. This procedure is supported by a new model that 

developed: the normalized single-pool urea kinetic model which is able to calculate a 

good approximation to the real Kt/V based in dialyzer clearance.

Kemp, et al, 2001 review a measure of dialysis adequacy. In this paper 

presented basic concept of hemodialysis and the calculation of kt/V and Normalized 

Protein Catabolic Rate using Urea kinetic Modeling.

Kovacic, et al, 2003 demonstrated significant differences between Kt/V 

Daugirdas (single-pool and equilibrated) and other delivered and prescribed Kt/V 

values. Additionally, the Daugirdas Kt/V values and Daugirdas Kt/V equilibrated values 
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were statistically different from all other calculated Kt/V values (p<0.05). And found the 

least difference (i.e., the least mean of the absolute values of the differences) to be

between the Barth Kt/V values and the Daugirdas Kt/V values (both single-pool and 

equilibrated).

Depner, 2005 presented the basic essentials and practical points for the 

nephrologists in training. In this work focus on the prescription of dialysis, methods of 

measuring the dose and expressing it in a way that best reflects its therapeutic effect.

2.1 Neural Network

Artificial Neural Network (ANN) is a type of mathematical model that simulates 

the biological nervous system and draws on analogues of adative biological learning. 

The most popular ANN is the multi layer perceptron that generally trains the input-output 

relationship using a back-propagation algorithm. ANN learns when the difference 

between observed and predicted outputs is minimized by iteratively adjusting

connection weights. ANN has been applied to numerous problems of considerable 

complexity in many fields including engineering and medical science. 

Chow, et al, 1997 determined the applicability of using a neural network 

approach to analyze population pharmacokinetic data. The data were collected 

retrospectively from pediatric patients who had received tobramycin for the treatment of 

bacterial infection. The information collected included patient-related demographic 

variables (age, weight, gender, and other underlying illness) the individual’s dosing 

regimens (dose and dosing interval), time of blood drawn, and the resulting tobramycin 

concentration. Neural networks were trained with this information to capture the 

relationships between the plasma tobramycin levels and the following factors: patient-

related demographic factors, dosing regimens, and time of blood drawn. The data were 

also analyzed using a standard population pharmacokinetic modeling program, 

NONMEM. The observed versus predicted concentration relationships obtained from the 

neural network approach were similar to those from NONMEM. The residuals of the 
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predictions from neural network analyses showed a positive correlation with that from 

NONMEM. Average absolute errors were 33.9 and 37.3% for neural networks and 39.9% 

for NONMEM. Average prediction errors were found to be 2.59 and -5.01% for neural 

networks and 17.7% for NONMEM.

Nazario, et al, 1999 presented an artificial neural network is used to model and 

control the pH of the erythromycin acetate salt which Thirty hours of real data were used 

to generate the input and output patterns to identify a neural network model and the last 

60 observations were used to fit a neural network model by computer program to control 

the pH of the erythromycin acetate salt.

Basheer and Hajmeer, 2000 has an aims to familiarize the reader with ANN-

based computing and to serve as a useful companion practical guide and toolkit for the 

ANNs modeler. An also review of the various types of ANNs and the related learning 

rules is presented, with special emphasis on backpropagation (BP) ANNs theory and 

design. A generalized methodology for developing successful ANNs from 

conceptualization, to design, to implementation, is described. The most common 

problems that BPANNs developers face during traning are summarized in conjunction 

with possible causes and remedies. Finally, as a practical application, BpANNs were 

used to model the microbial growth curves of S. Flexneri. The developed model was 

reasonably accurate in simulating both training and test time-dependent growth curves 

as affected by temperature and pH.

Fernandez, et al, 2001 propose a supervised neural network to predict the 

equilibrated postdialysis blood urea (eqU) at 60 min after the end of hemodialysis. The 

use of this model is new in this field and is shown to be better than the currently 

accepted methods (Smye for eqU and Daugirdas for eqKt/V). With this approach 

achieve a mean difference error of 0.22 +/- 7.71 mg/ml (mean % error: 1.88 +/- 13.46) 

on the eqU prediction and a mean difference error for eqKt/V of -0.01 +/- 0.15 (mean % 

error: -0.95 +/- 14.73). The equilibrated Kt/V estimated with the eqU calculated using the 

Smye formula is not appropriate because it showed a great dispersion. The Daugirdas 

double-pool Kt/V estimation formula appeared to be accurate and in agreement with the 

results of the HEMO study.
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Hoo, et al, 2002 study on the ability of a neural network to predict the behavior of 

a nonlinear system accurately ought to be improved if there was some mechanism that 

allows the incorporation of first-principles model information into their training. This is 

accomplished by modifying the objective function so as to include an additional term 

that is the difference between the time derivative of the outputs, as predicted by the 

neural network, and that of the outputs of the first-principles model during the training 

phase. The performance of a feedforward neural network model that uses this modified 

objective function is demonstrated on a chaotic process and compared to the 

conventional feedforward network trained on the usual objective function that give a 

good result.

Gaweda, et al, 2003 present a presents a pharmacodynamic population analysis 

in chronic renal failure patients using Artificial Neural Networks (ANNs). In pursuit of an 

effective and cost-efficient strategy for drug delivery in patients with renal failure, two 

different types of ANN are applied to perform drug dose-effect modeling and their 

performance compared. Applied in a clinical environment, such models will allow for 

prediction of patient response to the drug at the effect site and, subsequently, for 

adjusting the dosing regimen.

Yamamura, 2003 used ANN modeling to evaluate the pharmacokinetics of 

aminoglycosides (arbekacin sulfate and amikacin sulfate) in severely ill patients. The 

plasma level was predicted by ANN (peak and trough level, r = 0.825 and 0.854 

respectively) modeling using parameters related to the severity of the patient’s condition 

and the predictive performance was shown to be better than could be achieved using 

multiple regression analysis (peak and trough level r = 0.037 and 0.276 respectively).

Gabutti, et al, 2004 studied ANN in predicting the dialysis quality (Kt/V), the 

follow-up protein catabolic rate (PCR) and the risk of intradialytic hypotension. The ANN 

were built and then prospectively compared with the ability of six experienced 

nephrologists to predict the Kt/V and follow-up PCR and to detect a Kt/V < 1.30, a 

follow-up PCR < 1.00 g/kg/day and the occurrence of hypotension. The result show ANN 

can achieve a better prediction of follow-up PCR than experienced nephrologists.

Turner, et al, 2004 determine the human pharmacokinetics of known and 

unknown drug-like compounds is a much sought-after goal in the pharmaceutical 
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industry. The current study made use of artificial neural networks (ANNs) for the 

prediction of clearance, fraction bound to plasma protein, and volume of distribution of a 

series of structurally diverse compounds. Models were trained on one set of compounds 

and validated with another. Absolute predicted ability was evaluated using a further 

independent test set of compounds. Correlations for test compounds ranged from 

0.855-0.992. Predicted values agree closely with experimental values for total clearance, 

renal clearance, and volume of distribution, while predictions for protein binding were 

encouraging.

Strik, et al, 2005 applied the highly energetic biogas from anaerobic digestion 

into fuel cells will result in a significantly higher electrical efficiency and can contribute to 

an increase of renewable energy production. The experiments concluded that ammonia 

in biogas can indeed be present up to 93 ppm. Hydrogen sulfide and ammonia 

concentrations in biogas were modeled using the MATLAB Neural network Toolbox. The 

resulted determination coefficients (R2) were for hydrogen sulfide 0.91 and ammonia 

0.83.

Chiu et al, 2005 applied an Artificial Neural Network to Predict Total Body Water 

in Hemodialysis Patients. The predictive value of TBW based on ANN and five 

anthropometric equations (58% of actual body weight, Watson formula, Hume formula, 

Chertow formula, and Lee formula) was evaluated. The results showed the predictive 

TBW values derived from anthropometric equations were significantly higher than TBW-

BIA (31.341   6.033 liters). The only non-significant difference was between TBW-ANN 

(31.468   5.301 liters) and TBW-BIA (p   0.639). ANN had the strongest Pearson's 

correlation coefficient (0.911) and smallest root mean square error (2.480). Its peak 

centered most closely to zero with the shortest tails in an empirical cumulative 

distribution plot when compared with the other five equations.



CHAPTER III

KIDNEY AND ARTIFICIAL KIDNEY MACHINE

3.1    Kidney 

The kidney performs numerous regulatory functions in addition to manufacturing 

important biochemical. The key separation functions of the kidney are:

 Remove nitrogenous end-products of protein metabolism

 Regulate the volume of body water

 Maintain acid-base and electrolyte composition and get rid of the excess 

electrolytes

 Assist in red blood cell production (erythropoiesis)

Renal function is provides by paired, fist-sized organs, the kidneys located 

behind the peritoneum against the posterior abdominal wall on both sides of the aorta. 

Each kidney is made up of over million parallel mass transfer units which receive their 

common blood supply from the renal arteries, return the processed blood to the 

systemic circulation through the renal veins, and collect the waste fluids and solutes 

through the calyx of each kidney into the ureter and from there into the urinary bladder. 

Figure 3.1: Schematic diagram illustrating the kidney ability to separate particles in the 

blood in order to maintain optimal body chemistry (http://www.chemistry.wustl.edu)
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These functional units are called nephrons which is the most basic functional 

unit of the kidney.

Figure 3.2: Components of nephron (http://www.venofer.com)

In the nephron, capillaries (tiny blood vessels) are intertwined with tubules 

(urine-carrying tubes) that carry away wastes and water. Blood enters the nephron 

through the glomerulus, a tuft of capillaries where filtration occurs. During filtration, 

blood fluid is forced from capillaries into the tubules. As the fluid passes through the 

tubules, substances needed by the body, including water, sodium, phosphorus, 

potassium, and glucose, are selectively reabsorbed into the blood by the intertwined

capillaries. In this way, the kidneys regulate the level of these vital substances in the 

blood. The blood exits the nephron through the renal vein. The fluid remaining in the 

tubules after reabsorption exits as urine into the collecting duct, which eventually leads 

to the ureter.
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3.2     Diagnosis and Treatment of Renal Failure

When the kidneys do not function properly, dialysis must be performed

artificially. Without this artificial kidney dialysis, toxic wastes build up in the blood and 

cannot be filtered out by kidneys. If the kidneys stop working completely, the body fills 

with extra water and waste products. This condition is called uremia which means 

literally “urine in the blood”. Hands or feet may swell. Patients will feel tired and weak 

because body needs clean blood to function properly. Untreated uremia may lead to 

seizures or coma and will ultimately result in death. Patients will need to undergo dialysis 

or kidney transplantation to prolong their life. Dialysis is a mechanical filtering process 

used to cleanse the blood of waste products, draw off excess fluids and regulate body 

chemistry. 

Table 3.1: Uremic solutes with potential toxicity (The biomedical engineering 

handbook, 1995)

Urea

Guanidines

       Methyguanidine

       Guanidine

      -guanidinipropionic acid

       Guanidinosuccinic acid

       Gamma-guanidinobutyric 

acid 

      Taurocyamine 

       Creatinine 

       Arginic acid 

       Homoarginine 

       N-alpha-acetylarginine 

Phenols

       O-cresol    

       P-cresol    

       Benzyl alcohol    

       Tyrosine 

       Hippuric acid

Benzoates

Polypeptides

2 -microglobulin

Indoles

       Indol-3-acetic acid 

       Indoxyl sulfate 

       5-Hydroxyindol acetic acid 

       Indol-3-acrylic acid 

       5- Hydroxytryptophan 

      N-acetyltryptophan 

       Tryptophan 

Middle molecules 

Ammonia 

Alkaloids 

Trace-metals (brommine) 

Uric acid 

Cyclic AMP 

Hormones

       Parathormone

       Natriuetic factor

       Glucagon

       Growth hormone

       Gastin

       Prolactin

       Cateecholamines

Xanthine

Hypoxanthine

Furanpropionic acid

Amines

       Putrescine

       Spermine

       Spermidine

       Dimethylamine

       Polyamines

Endorphins
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Phenolic acids: 

       P-hydroxyphenylacetic acid 

      -(m hydroxyphenyl)-                                    

hydracrylic acid

Hippurates

p-(OH)hippuric acid

o-(OH)hippuric acid

Amino acids

Myoinositol

Mannitol

Oxalate

Glucuronate

Glycols

Lysozyme

Pseudouridine

Potassium

Phosphorus

Calcium

Sodium

Water

Cyanides

In the diagnosis of renal function, the glomerular filtration rate (GFR) is 

traditionally considered the best overall index of renal function in health and disease. 

The Modification of Diet in Renal Disease (MDRD) study proposed the equations to 

estimate GFR based on ages, genders and ethnicities (Andrew S. Levey et al., 1999):

                           
)21.1(                 

)742.0()()(186        203.0154.1

AmericanAfricanif

femaleifAgeSGFR Cr


 

           (3.1)

Table 3.2: Levels of GFR and state of kidney disease (The Nephrology Society of 

Thailand, www.nephrothai.org)

Level State GFR (mL/min/1.73 m2)

1
Kidney damage with normal 

or increased GFR
= 90 

2
Kidney damage with mild 

decrease in GFR
60-89

3 Moderate decrease in GFR 30-59

4 Severe decrease in GFR 15-20

5 Kidney Failure < 15 or dialysis

An also considered the estimation of creatinine that show how well your kidneys 

are working. Creatinine is excreted entirely by the kidneys, and therefore is directly 

related to renal function. When the kidneys are functioning normally, the serum 
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creatinine level should remain constant and normal. A high creatinine level may mean 

your kidneys are not working properly. The Cockcroft-Gault had developed equation to 

predict creatinine clearance (Cockcroft DW and Gault MH, 1976):

           CrCl         
CrS

femaleifkginweightyearsinage




72

)85.0()()140[(
       (3.2)

Table 3.3: Level of creatinine compared with kidney damage (Wallach J., 1996)

Renal Status Creatinine clearance (ml/min)

normal (males) 90 – 130

normal (females) 80 – 125

slight 52 - 62.5

mild impairment 42 – 52

moderate impairment 28 – 42

severe impairment < 28

anuric 0

There are two major types of dialysis:

1) Hemodialysis

2) Peritoneal dialysis

3.2.1 Hemodialysis

Hemodialysis is the process of filtering blood through a device known as an 

artificial kidney or dialyzer. The blood is continually circulated through a dialyzer by an 

artificial kidney machine. The patient is connected by a tube to the dialysis machine, 

which continuously draws blood out, cleanses it, removes excess fluid, and returns the 

blood back to the patient.  Hemodialysis must be performed for 3-4 hours at least three 

times a week.
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Figure 3.3: Hemodialysis with the artificial kidney machine (http://kidney.niddk.nih.gov)

3.2.2 Peritoneal dialysis

Peritoneal dialysis, a fluid is put into your abdomen. This fluid, called dialysate 

captures the waste products from your blood. After a few hours, the dialysate containing 

your body's wastes is drained away. Then, a fresh bag of dialysate is dripped into the 

abdomen. Patients can perform peritoneal dialysis themselves. Patients using 

continuous ambulatory peritoneal dialysis (CAPD), the most common form of peritoneal 

dialysis, change dialysate four times a day. Another form of peritoneal dialysis, however, 

can be performed at night with a machine that drains and refills the abdomen 

automatically.

Figure 3.4: Peritoneal dialysis (http://kidney.niddk.nih.gov)
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Table 3.4: Standard value of solute concentration in plasma (Handbook of 

bioengineering, 1987)

Substance Normal range Uremic range

Sodium, meq/L 133-144 138(135-150)

Potassium, meq/L 3.5-5.5 5(4-6)

Phosphorus, inorganic, mg/dL 2.7-4.3 4(3-5)

BUN, mg/dL 7-18 67(50-150)

Creatinine, mg/dL 0.7-1.5 13(5-16)

Uric acid, mg/dL 3.0-6.1 5(4-6)
 Patient undergoing hemodialysis 12 to 15 h/week

3.3     Artificial kidney machine 

The artificial kidney is a device which can partially simulate the kidney in three 

functions:

 Remove nitrogenous metabolic waste products, primarily small molecular 

weight solutes such as urea, uric acid, and creatinine

 Remove excess body water

 Partially reestablish appropriate plasma acid-base and electrolyte 

composition and concentrations.

Upon failure of the kidney, the patient’s blood must be treated on the artificial kidney for 

4 to 5 h per treatment, 3 days a week; the treatment is called hemodialysis.

The artificial kidney is composed of two primary components: a hemodialyzer in 

which all mass transport takes place, and an automatic dialysate delivery system which 

continuously supplied an aqueous solution called a dialysate to the hemodialyzer. The 

dialysate carries away the waste products removed by the hemodialyzer.
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3.3.1 Types of dialyzers

The dialyzer consists of a chamber with a support system for a semipermeable 

membrane which separates blood and dialysate. The semipermeable membrane used 

in early dialysis systems was cellophane which is still used in some dialyzers. 

Regenerated cellulose acetate and Cuprophane are new membranes with improved 

performance characteristics and probably the most used membranes at the present 

time. Dialyzer is divided in three basic configurations:

3.3.2 Flat –plate hemodialyzer

This dialyzer is composed of multiple layers of two sheets of membrane and 

plastic spacers. The blood flows between the two sheets of membrane, whereas the 

dialysate flows on both sides of the blood membrane channel between the membrane 

and spacer. The plastic spacer has a pattern molded onto its surface to enhance 

dialysate and blood mixing.

3.3.3 Coil hemodialyzer

In the coil dialyzer, the blood flows through a flattened tubing which is wound, 

together with a plastic mesh, around a cylindrical core. In operation, blood flowed inside 

of the cellophane tubing around the coil, while dialysate flowed axially through the 

space formed by the plastic mesh.

3.3.4 Hollow fiber hemodialyzer

The hollow-fiber dialyzer is the most recent development in dialyzer design. The 

structure of hollow fibers is composed of; a bundle of hollow fibers is contained in 

housing and encapsulated at each end forming tubesheets. The blood flows in and out 

of the lumens of the fibers. Adjacent to each tubesheet is a circumferential header, 

which directs dialysate flow in and out of the shellside space. The device is 

geometrically similar to a shell-and-tube heat exchanger.
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Table 3.5: Typical values of clearance for standard 1-m2 dialyzer (Handbook of 

bioengineering, 1987)

Substance Molecular weight
Approximate 

clearance, mL/min

Approximate

variation, mL/min

Urea 60 125  15

Creatinine 113 100  15

Uric acid 168 80  10

Vitamin B12 1355 25  6


  ,iBQ  200 mL/min,   ,iDQ   560 mL/min,   vQ  10 mL/min, 0    , iDc  and 

C37    T

3.3.5 Dialysate

 Dialysate is composed of appropriate concentrations of sodium, potassium, 

chloride, magnesium and calcium, and buffer to develop ideal plasma water. The 

quantity of each of the constituents of dialysate may vary considerably and the range 

available is listed in table 3.6 below.

Table 3.6: Range of solute concentrations in dialysate solution 

Substance Normal range

Sodium 130-140 mEq/l

Potassium       0-4   mEq/l

Chloride   96-112 mEq/l

Acetate    33-45 mEq/l

Magnesium   1- 2.5  mEq/l

Calcium 2.0 -3.5 mEq/l

Dextrose  0-250  mg/dl
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3.3.6 Mass transfer in dialyzer

In artificial kidney, the removal of water (solvent) and uremic toxin (solute) from 

the blood stream is achieved by

 Solute diffusion in response to concentration gradients

 Water ultrafiltration and solute convection in response to hydrostatic and osmotic 

pressure gradients.

 Water migration in response to osmotic gradients

In most cases, these processes occur simultaneously and in the same exchange 

device, rather than sequentially as they do in the natural kidney with the cascade of 

glomerular filtration, tubular reabsorption, and final in the collecting duct.

3.3.6.1 Diffusion

  Diffusion refers to the process which molecules of substances move from high 

concentration to low concentration by used concentration gradient as driving force.

Figure 3.5: Diffusive mass transfer across an element of a membrane of length 

dz and area dA

Diffusive mass transfer rate, dJ transferred across an element of membrane of 

length dz and area dA per unit time:

dACKdJ )(          0             (3.3) 

Where C is the logarithm mean of the concentration differences prevailing at 

the inlet and at the outlet

DialyzerDialyzer
DoC

BoC

DiC

BiC

Dialysate flow

Blood flow 
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The parameter AK 0 is represent the efficiency of dialyzer that divided in 3 levels

1. AK 0 <500 ml/min is low efficiency dialyzer

2. AK 0  500-700 ml/min is moderate efficiency dialyzer

3. AK 0 >700 ml/min is high efficiency dialyzer

3.3.6.2 Convection

  Convection is the process used pressure as driving force to remove solute from 

solution that difference from diffusion and called this pressure as transmembrane 

pressure (TMP) that equal pressure difference between two sides of semipermeable 

membrane.

 )(         db PPTMP            (3.5)

TMP is regulating transportation of water (solvent) across membrane. Each types 

of membrane have difference property in permeability therefore membrane with large 

pore allow water transfer across membrane easier than small pore (use higher TMP).

3.3.6.3 Diffusion resistance

C

Y

C1b
C1m

C2m

C2d

MembraneBlood Dialysate

BR mR DR

C

Y

C1b
C1m

C2m

C2d

MembraneBlood Dialysate

BR mR DR

Figure 3.6: Concentration profile and resistance in dialysis



19

The overall mass transfer resistance R can be expressed as the sum of the 

resistances associated with each phase:

DmB RRRR                    (3.6)

So the overall mass transfer coefficient K is defined as reciprocal of R :

R
K

1
        0 

Thus,

DmB KKKK

111
             

1

0

            (3.7)

3.3.6.4 Dialyzer mass transport coefficient

     As blood and dialysate flow rates increase, the clearance increases in a 

curvilinear fashion that eventually reaches a plateau as shown in Figure 6. This 

maximum clearance at infinite blood and dialysate flow rates is the dialyzer mass 

transfer area coefficient ( AK 0 ), sometimes called the intrinsic clearance of the dialyzer 

for the measured solute (usually urea). It is a property of the solute and of the dialyzer 

and is independent of flow rates and concentrations, so it is often used to compare 

different dialyzers and dialyzer models. AK 0 can be measured as a function of

clearance and flow rates of blood ( BQ ) and dialysate ( DQ ) using an equation that can 

be derived mathematically for countercurrent flow:
















)(

)(
ln        0

DDB

DBD

DB

DB

KQQ

KQQ

QQ

QQ
AK            (3.8)

Clearance is usually measured instantaneously from pre and post dialyzer blood 

concentrations as described above. From knowledge of the dialyzer’s K0A, the expected 

clearance can be calculated from a rearrangement of Equation 8 at any dialysate and 

blood flow:
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Equation 9 is often helpful to calculate the prescribed or predicted VKt / at achievable 

flow rates for the particular patient, blood access device, and dialyzer.

3.4 Hemodialysis adequacy

           Adequacy of hemodialysis is assessment on patients after treatments that have

several ways. The most common acceptable methods are: formal urea kinetic model 

(UKM), Kt/V natural logarithm formula, urea reduction rate (URR), and normalized 

protein catabolic rate (nPCR) 

3.4.1 Formal Urea Kinetic Model (Formal UKM)

Formal kinetic modeling provides a quantitative method for developing a 

treatment prescription for a specific patient. Because of the complexity of the formula

that provides the information for calculation of Kt/V by UKM, computational software is 

necessary to compute Kt/V using formal UKM. Formal UKM can be used to calculate the 

exact treatment time required delivering a particular hemodialysis dose at specified 

blood and dialysate flows with a particular dialyzer. Formal UKM calculates the volume 

of distribution of urea by a complicated mathematical iteration of two formula that share 

common terms. The first formula solves for the end dialysis volume, V. The other formula 

calculates the urea generation rate (G) between consecutive hemodialysis sessions

(Sargent JA and Gotch FA, 1980):
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Figure 3.6: Diagram of urea mass balance

The rate of change of urea  urea generation rate – removal rate
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Integration and rearrange thus 
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The standard value for VKt /  should equal or more than 1.2 (DOQI guidelines, 

2000) for the patients under dialysis treatment 3 time per week. Another formula to 

calculate VKt /  directly without the need for computer program developed by 

Daugirdas (Daugirdas JT, 1993):

W

UF
RtRKt/V  )5.34()008.0ln(             (3.13) 

Where 
BUNdialysispre

BUNdialysispost
R     

And Barth equation:

   
 

66.01000.031     
1

21 
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








C

CC

V

Kt
         (3.14)

3.4.2 Urea Reduction Ratio

The reduction in urea as a result of dialysis, or the URR , is one measure of how 

effectively a dialysis treatment removed waste products from the body. The URR stands 

for urea reduction ratio, but it is commonly expressed as a percentage (Owen WF, et al., 

1993):











Bunpre

Bunpost
URR 1100        (%)          (3.15)

For the patients that treatment 3 times per week URR should higher 65% (DOQI 

guidelines, 2000).

3.4.3 Normalized Protein Catabolic Rate

The protein catabolic rate ( nPCR ), also called the protein equivalent of nitrogen 

appearance is the parameter used in hemodialysis units to assess dietary protein intake 

in patients that correlates with the mortality risk. The nPCR may be calculated by (Borah 

MD, et al., 1978):
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   VGnPCR 294.035.9                  (3.16)

The poor nutrition has shown as PCR below 1 g/kg/day and recommended this 

value should between 1.0-1.2 1 g/kg/day (DOQI guidelines, 2000).
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3.5 Neural network

Neural network approaches are inspired by biology with components loosely 

analogous to the dendrites, cell body and the axon of a living thing. The dendrites are 

tree-like receptive networks of nerve fibers that carry electrical signals into the cell body. 

The cell body effectively sums and thresholds these incoming signals. The axon is a 

single long fiber that carries the signal from the cell body out to other neurons. The point 

of contact between an axon of one cell and a dendrite of another cell is called a 

synapse. It is the arrangement of neurons and the strengths of the individual synapses, 

determined by a complex chemical process that establishes the function of the neural 

network. 

          

Figure 3.7: Schematic diagram of biological neurons and artificial neural network

A neural network is a parallel distributed processing system (Other names for 

the field include connectionism, artificial intelligence, and neural computation) 

composed of processing entities called neurons, the connection strengths between 

which are weights which are adjusted to store experiential knowledge and make it 

available for later use in prediction and classification. The goal of a neural network is to 

map a set of input patterns onto a corresponding set of output patterns. The network 

accomplishes this mapping by first learning from a series of past examples defining sets 
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of input and output correspondences for the given system. The network then applies 

what it has learned to a new input pattern to predict the appropriate output.

The first development of artificial neural networks came in the late 1950s, with 

the invention of the perceptron network and associated learning rule by Frank 

Rosenblatt. Rosenblatt and his colleagues built a perceptron network and demonstrated 

its ability to perform pattern recognition. This early success generated a great deal of 

interest in neural network research. It was later shown that the basic perceptron network 

could solve only a limited class of problems. At about the same time, Bernard Widrow 

and Ted Hoff introduced a new learning algorithm and used it to train adaptive linear 

neural networks, which were similar in structure and capability to Rosenblatt’s 

perceptron. The Widrow-Hoff learning rule is still in use today.

An application of neural networks in many fields such as electronics, financial, 

medical, robotics, and engineering. In bioprocessing and chemical engineering the first 

application papers was by Hoskins and Himmelbrau (1988), who applied a neural 

network to the fault diagnosis of a chemical reactor system.

3.5.1 Components of a node

  The foundation of a neural network is the neuron, or node that in many scientific 

and engineering applications, this node is frequently called a processing element.     



Figure 3.8: Components of node
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 Inputs and outputs

The inputs to the thJ node are represented as an input vector, with components 

ia (i   1 to n). The node manipulates these inputs, or activities, to give the output, jb , 

which can then form the part of the input to other nodes.

 Weight factors

Weights, ijw  determine the relative strength of the connection from an input 

neuron to the neuron under consideration. Weights inputs must be aggregated by the 

neuron through a summation function which computes the net input. That is, for target 

neuron j, the basic summation is simply the sum of the path weights from all its neurons i 

time the outputs of these i neurons:

Net inputi     



n

1i
iij )(     aw                                                 (3.15)      

Weights factor can have either an inhibitory or an excitatory effect. Weights are 

positive if the connection is excitatory and negative if the connection is inhibitory.

 Internal threshold

The internal threshold or bias for the thJ  node, denoted jT , controls activation 

of that node. The node calculates all its iij aW  sums the terms together and then 

calculates the total activation, jx , by subtracting the internal threshold value:

Total activation         jx         jTaw 


n

1i
iij )(                   (3.16)

If jT  is large and positive, the node has a high internal threshold, which inhibits node-

firing. Conversely, if jT  zero (or negative, in some cases) is, the node has a low internal 

threshold, which excites node-firing and if no internal threshold jT  is to be zero.
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 Transfer functions

The summed weights are forwarded to the next layer of neurons by an activation 

function, also called transfer function. The node calculates the dot product of vector jw

  [ jw1 , jw2 ... njw ] with vector a, and subtracts the threshold jT  and pass this result to a 

transfer function so, the complete node calculation is:





n

1i

))((        )( jiijjj TawfTawf          (3.17)                                            

Table 3.7: Transfer functions of neural network

Type of functions Relation Characteristic

Step function
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
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x
xf Linear

Ramp Function













1  if       1

1  if         

1  if          1

)(

x

xx

x

xf Linear

Sigmoid Function
xe

xf 


1

1
)( Nonlinear

Gaussian Function
2

2

1

1
)(

x

e

xf




 Nonlinear
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3.5.2 Network Architecture

 Single layer feed-forward neural networks (perceptrons)

The perceptron is the simplest type of neural network that compose of an input 

connected directly to the output layer of neurons so, each output  node is independent 

of the others, each weight affects only one of the outputs.

               
                                     Figure 3.9: A perceptron network

 Multilayer feed-forward networks

A general multilayer feed-forward network is illustrated in figure 3.13. This is a 

forward, fully connected hierarchical network consisting of an input layer, one or more 

middle or hidden layers and an output layer. The internal layers are called hidden 

because they only receive internal inputs (inputs from other processing units) and 

produce internal outputs (outputs to other processing units). Most neural networks 

contain one to three hidden layers and typical three hidden layer feed-forward network 

used in bioprocessing and chemical engineering.

  Input Output
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Figure 3.10: Feed-forward networks with two hidden layer

3.5.3 Learning function

Learning function is the actual process of adjusting weight factors base on trial 

and error. There are many different approaches to training neural networks:

3.5.3.1 Supervised learning

  An external teacher controls the learning and incorporates global information. 

The teacher is able to provide the neural network with desired or target response for that 

training vector. The network parameters are adjusted under the combined influence of 

the training vector and the error. This adjustment is carried out iteratively in a step-by-

step with the aim of eventually making the neural network emulate the teacher. 

Examples of supervised learning algorithm include the Least-Mean-Square (LMS) 

algorithm, Adaptive Linear Neural Element (ADALINE) and Backpropagation (BP) 

algorithm that the backpropagation has widely used and successful algorithm for the 

design of multilayer feed-forward networks.

Hidden layer 1 Hidden layer 2

Output layerInput layer
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3.5.3.2 Unsupervised learning

   In unsupervised or self-organized learning there is no external teacher is used 

and instead, the neural network relies upon both internal control and local information.

That is, networks trained by unsupervised learning cluster input examples according to 

similarity. Kohonen networks, Learning Vector Quantization (LVQ) are example of 

implementation of unsupervised learning.

3.5.4 Performance measure

 In measurement network performance the error function is an importance index 

to choose the optimal network. The smaller the value of error, the better is the model’s 

prediction. The error function has several types but the most common used in process 

modeling are MAE (Mean Absolute Error) MSE (Mean Square Error) or RMSE (Root 

Mean Square Error) and SSE (Sum of Square Error). The definition of these functions is 

given as follows. Let 
^

Y is an estimate of a parameterY

MAE    



N

i

YY
N 1

^1

MSE    








 

N

i

YY
N 1

2^1

SSE      








 

N
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YY
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^
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CHAPTER IV

ARTIFICIAL NEURAL NETWORK FOR HEMOIALYSIS 

ADEQUACY

 This chapter presents method to find mathematical model for predict 

hemodialysis adequacy and post dialysis urea concentration. 

4.1) Collection Data

The 30 patients’ data in duration 6 months to 12 months were obtained from 

hemodialysis units in Kasikorn building, Chulalongkorn hospital. All patients must 

receive hemodialysis treatment three times a week. The group of patients received 

treatment with hemodialysis machine Fresenius model 4008H and used low flux

polysulphone hemodialyzers (F8). The dialysate flow rate is 800 ml/min and 240 min for 

dialysis time. 

4.2) Selection Input Variables

In the prediction of hemodialysis adequacy The parameter is selected base on many 

factors that influenced hemodialysis dose compose of Blood urea nitrogen at the 

beginning  1Pre BUN  and the end  1Post BUN at first hemodialysis session, Blood 

urea nitrogen at the beginning of next treatment  2Pre BUN . Pre  1Pre BW  and 

post  1Post BW  body weight after the first hemodialysis treatment of a week. The pre 

body weight before  2Pre BW the second of treatment. Ultrafiltration volume  UF

and Blood flow rate  BFR . Time and Dialysate flow rate were not included as input to 

model because it fixed at constant value.
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Figure 4.1: Structure of neural network model

jiW ,  denoted weight between thi node of input layer to thj  node 1st hidden layer

jiV ,  denoted weight between thi node of 1st hidden layer to thj  node of 2nd hidden layer 

jiR , denoted weight between thi node of 2nd hidden layer to thj  node of output layer

4.3) Neural Network Procedure

Apply MATLAB Neural Network Toolbox to develop model that has follow each 

steps below

1) Data are divided into three subsets consist of training, testing and 

validation. Looney (1996) recommends 65% of the database to be used for training, 

25% for testing, and 10% for validation. The training data should include all the data 

belonging to the problem domain. The testing data should be different from those used 

in the training for check the performance of the model. The validation data should 

1BUNPre

UF

BIAS BIAS BIAS

2BUNPre

1BWPre

1BWPost

2BWPre

BFR

V

Kt

jiW ,

jiV ,

jiR ,

… …

1BUNPost
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distinct from those two subsets. This validation data is used after selecting the best 

network to confirm the accuracy of the model.

2) Pre processing data by normalize input and output data in a uniform 

range (0,1) for adjust the data has same order of magnitude.

3) Applied feed-forward neural network with backpropagation learning as a 

structure and Choose two hidden layer. The number of neuron in hidden layer may 

varied depend on capability in prediction function. Use sigmoid Transfer function in 1 st

and 2 nd  layer and linear transfer function in output layer.

4) The parameters associated with the training algorithm like error goal, 

maximum number of epochs (iterations), etc, are defined.

5) Initialized weight and bias for training network.

6) Training network until the error between the estimated value and the

desired output is minimized. The criteria used to stop training are Mean Square Error 

(MSE). 

7) Given the optimum weight, bias and number of neuron in hidden layer 

under stopping criteria.

8) Create neural network model and test network with unseen data

10) Compare the result with Formal Urea Kinetic modeling, Daugirdas 

equation and Barth equation.

11) Analysis output from Neural Network Model with principle of Statistics by 

SPSS 16.0 program



34

Figure 4.2: Schematic for Neural network

Divided input and output data 
into three groups for training, 

testing and validation

Preprocessing data

Select structure of network

Initialized weight and bias

Training network

NOTesting and 
Validation network

Test with unseen data

Suitable

Given Neural Network model

YES



CHAPTER V

RESULTS AND DISCUSSION

To develop Neural Network (NN) Model the dataset is divided into 8 groups, 4 

groups for training set, 2 groups for testing set, 1 group for validation set and the last 

group to confirm network accuracy before the end of process. Before training the 

network number of hidden layer and number of hidden node must be specified. No any 

rules for the determination of these sizes. Trial and error process is applied to find 

suitable network parameters. In this work based on 2 hidden layers and the numbers of

hidden node are varied in the Table 5.1 to choose the optimal structure.

Table 5.1: Neural Network configuration varied by the number of hidden node

No. of node in hidden layer 1 No. of node in hidden layer 2 MSE SSE

7 8 0.0094 0.3009

4 10 0.0098 0.3143

5 10 0.0106 0.3396

6 6 0.0135 0.4318

4 8 0.0144 0.4594

6 10 0.0160 0.4172

5 5 0.0177 0.5654

8 8 0.0189 0.6044

8 10 0.0211 0.6759

3 6 0.0269 0.8616
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From Table 5.1 select the number of nodes in 1st and 2nd hidden layer equal to 7

and 8 respectively that give the minimum value of MSE . So the optimum network is 8-7-

8-1.

5.1) Neural Network Modeling

From the previous section the selection structure of network by training network 

under stopping criteria to give optimum network composed of the number of hidden 

node, weight and bias. The information of neural network model that used for training

are showed in Table 5.2. The weights and biases after select suitable network are given 

in Table 5.3-5.6 and the schematic of neural network model with 8-7-8-1 structure 

showed in Figure 5.1.

Table 5.2: Basic information of neural network model

No. of Input 8

No. of output 1

No. of Hidden layer 2

No. of nodes in Hidden layer 1 7

No. of nodes in Hidden layer 2 8

Transfer function in Hidden layer 1 Sigmoid

Transfer function in Hidden layer 2 Sigmoid

Transfer function in output layer Linear

Learning rule
Supervised learning

- Backpropagation learning

Training algorithm Gradient Descent
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Table 5.3: Weight from input layer to 1st hidden layer of neural network model

1 2 3 4 5 6 7 8

1 0.6129 -0.8360 2.4215 1.9517 -1.6358 -1.0156 -1.3701 0.5633

2 -3.2986 3.5691 0.7811 0.4931 -1.0166 1.3853 0.3111 -0.3323

3 -3.2628 0.0794 -2.7680 1.4318 0.5891 -0.6052 1.6909 0.2610

4 -0.1563 3.9092 0.6972 -0.5348 -1.7081 0.5675 -1.1315 0.8020

5 3.4935 2.9929 -0.0801 -1.9192 -0.2058 0.4993 1.2288 0.4546

6 1.3741 -0.3391 0.0302 -1.8433 1.6531 -1.6572 -1.5925 1.1953

7 2.4201 -2.3817 -1.2577 -0.4696 -0.1562 1.6780 -1.4688 1.3196

Table 5.4: Weight from 1st hidden layer to 2nd hidden layer of neural network model

1 2 3 4 5 6 7

1 -0.8342 4.3767 1.5855 3.5602 2.4039 -3.7289 -1.7152

2 -0.2073 -2.6109 0.0088 -2.4899 1.9942 2.9751 -5.6389

3 -2.0787 1.8701 -1.2241 -5.2675 2.4089 2.0542 3.1093

4 4.1155 3.4301 0.0739 2.4505 -3.8242 -0.1409 -2.7355

5 -0.3055 -0.0428 3.7701 -2.9532 -1.1863 -5.6682 0.4905

6 -3.6093 -2.4683 2.0408 -3.0775 -1.0027 -3.3004 3.5183

7 -3.3160 0.4357 -1.8309 3.9711 -1.1991 -5.0221 -0.1351

8 1.1020 0.2400 4.5941 -0.3503 1.0350 -3.9839 -4.1387

Table 5.5: Weight from 2nd hidden layer to output layer of neural network model

1 2 3 4 5 6 7 8

1 -1.1149 0.9123 0.5622 -0.3981 0.4381 0.1341 -0.0359 -0.3933

i
j

j
i

i
j
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Table 5.6: Bias added to 1st, 2nd hidden layer and output layer of neural network model

BIAS

1st hidden layer 2nd hidden layer Output layer

-2.7478 1.1945 -0.3109

1.2509 5.4171

-1.0828 1.1434

1.4534 -2.1477

3.4821 2.0222

2.9897 2.2016

3.6674 0.6913

4.5086

Figure 5.1: Neural Network Model with the structure 8-7-8-1



39

5.2 Compare the results

In this section used Neural Network model to predict hemodialysis adequacy 

(
V

Kt ) with group of data not used in training to check the performance of network. The 

results from Neural Network model are compared with Formal Urea Kinetic Model 

(Formal UKM), Daugisdas equation and Barth equation shown in figure 5.2. The plot 

between outputs forms neural network model and Formal UKM from Figure 5.3 showed

the correlation coefficient (R) equal to 0.955.

Comparison Kt/V calculated from Neural Network model and Other models

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

No. of samples

K
t/

V

Formal UKM

Neural Network Output

Daugirdas Equation

Barth

Figure 5.2: Compared the prediction of 
V

Kt from Neural Network model,

            Formal Urea Kinetic Model and Daugirdas equation
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Figure 5.3: Comparison between outputs calculated from Neural Network model 

and Formal Urea Kinetic model

Figure 5.4: Residual plots, the difference between Neural Network outputs with Formal

                     Urea Kinetic Model
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From Figure 5.2 Neural Network model has ability in the prediction value of 
V

Kt

close to Formal Urea Kinetic Model more than Daugirdas equation and Barth equation. 

Moreover, the residual plot from Figure 5.4 showed with no trend or systematic pattern in 

the error. The residuals randomly distributed around the line of the error   0.



CHAPTER VI

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

This research applied Artificial Neural Network (ANN) to predict the hemodialysis 

adequacy (
V

Kt ) and compared the performance of the ANN with Formal Urea Kinetic 

Model (Formal UKM) and Daugisdas natural log equation. The network model is 

selected after training, testing and validation process by considering the minimum mean 

square error (MSE). The selected ANN model is the Multilayer feed-forward with 

backpropagation learning and the structure of network is 8-7-7-1. The result showed the 

ANN model is an ability in prediction of the hemodialysis adequacy as same as Formal 

UKM although unseen data are given to test the neural network model. The predictions

of 
V

Kt between Neural Network model and Formal UKM showed that the predicted 

values from Neural Network model are closed to Formal UKM with correlation coefficient 

equal to 0.955.

6.2 Recommendation

In the future work the ANN model in this research should be test with patient 

data from the other hemodialysis unit. Moreover, the data will be added more data to 

train ANN model to improve the accuracy.  The ANN model will take the data from other 

Hemodialysis unit to training process and testing validation from another. 



APPENDICES
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APPENDIX A

A.1 Expand of backpropagation learning

The backpropagation learning method can be applied to any multilayer network 

that uses differentiable functions and supervise learning. This is an optimization 

procedure based on gradient descent that adjusts weights to minimize error or cost 

function. The name backpropagation arises from the method in which corrections are 

made to the weights. During the learning phase, input patterns are presented to the 

network in some sequence. Each training pattern is propagated forward layer by layer 

until an output pattern is computed. The computed output is then compared to a desired 

or target output and an error value is determined. The errors are used as inputs to 

feedback connections from which adjustments are made to the weights layer by layer in 

a backward direction. Figure 3.11 illustrates multilayer feed-forward network with 

backpropagation learning. The backward linkages are used only for the learning phase, 

whereas the forward connections are used for both the learning and the operational 

phases.

   

Figure A.1: Multilayer feed-forward with backpropagation learning

Hidden layer Output layer

e

e

Target 

values

e

Input layer
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To simplify the derivation of backpropagation, begin with a multilayer feed-

forward having a single hidden layer. Weight connections between input layer unit i and 

hidden layer j are denoted by ijv , ni ...,1,2, , hj 1,2,...,  while weight connections 

between hidden layer unit j and output unit k are designated as jkw , mk 1,2,..., . The 

n-dimensional input training pattern p is denoted as pa , Pp 1,2,..., and the output of 

the hidden layer unit j for input pattern pa is denoted as p
jy . Likewise, the output from 

unit k of the output layer for input pattern pa is p
kz , whiles the desired or target output is 

denoted as p
kt and also use he same nonlinear activation function f for each of the 

hidden layer and output layer units.

Figure A.2: Multilayer feed-forward network connections and variables

Define the following terms:


i

iijj avH                         hj ...,2,,1      (A.1)


j

jjkk ywI                        mk ...,2,,1                       (A.2)

where jH is the combined net input to hidden layer unit j

                         kI is the net input to unit k of the output layer 

Outputs computed by unit j of the hidden layer and unit k of the output layer are given 

by

)(        jj Hfy                  hj ...,2,,1                          (A.3)

1a

2a

3a

1I

2I

3I

1H

2H

11v
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21v

23v

1y
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1z
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3z

11w
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21w
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31w

32w
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)(        kk Ifz                    mk ...,2,,1      (A.4)

so,

)(        )(        j
j

jkkk ywfIfz 









 

j
jjk Hfwf )((    





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










  

j i
iijjk xvfwf         (A.5)

For the initial development of backpropagation, the error function pE , 

Pp ...,21, can be defined in the sum of squared error over all training pattern:

2

1

)(
2

1
        p

k

m

k

p
k

p ztE  


                                                (A.6)

Thus, at step 1n  of the training process, the weight adjustment by used 

optimization technique, gradient descent should be proportional to the derivative of the 

error pE , computed on iteration n . This can be written as:

)(
        )1(

nw

E
nw

p




                                               (A.7)

Where  is a learning rate

 For weight between hidden layer and output layer, jkw :
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Apply the chain rule then,
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Using the chain rule again,
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And defined,

)()(        kkkk Ifzt                                                   (A.11)

Combining (A.8), (A.9), and (A.11) then

jkjk yw                                                                  (A.12)

Therefore 

)()(        kkkj
old
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jk Ifztyww                                (A.13)

 For weight between input layer and hidden layer, ijv :
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Can use the chain rule repeatedly to relate the output errors to these weights
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Differentiating 
j

p

y

E


 directly now we obtain (from (A.2), (A.4), and (A.6))
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And defined

    )()(        kkkk Ifzt                                               (A.18)

Then
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APPENDIX B

B.1 MATLAB Neural Network Toolbox

In this research used Neural Network Toolbox with Backpropagation algorithm

that the MATLAB commands used in this procedure are newff , train  and sim . The 

MATLAB command newff generates a Multi Layer Perceptron (MLP) network neural 

network, which is called net .

    ),,,,...2,1,,...2,1,(  PFBLFBTFTFNTFTFSNSSPRnewffnet        
(B.1)

PR   Rx2 matrix of min and max values for R input elements

iS   Size of the thi layer

TFi   Activation (or transfer function) of the thi layer, (default   ' tansig ')

BTF   Network training function, (default = ' trainlm ')

BLF  Backpropagation weight/bias learning function (default = ' learngdm ')

PF  Performance function (default = ' mse ')

After initializing the network, the network training is originated using 

train command. The resulting MLP network is called net .

  ),,,,,,(, TVVVAiPiTPnettraintrnet        (B.2)

P  Network inputs

T  Target outputs

Pi  Initial input delay conditions (default = zeros)

Ai  Initial layer delay conditions (default = zeros)

VV  Structure of validation vectors (default = [ ])

TV  Structure of test vectors (default = [ ])
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To test the result sim command is applied. The output of the MLP network is 

called a .

),( Pnetsima       (B.3)

The measured output T and the output of the MLP network a  can now be 

compared to see how good the result is.
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APPENDIX C

C.1 Training algorithm

Training algorithm functions are mathematical procedures used to automatically 

adjust the network's weights and biases. Neural Network Toolbox supports a variety of 

training algorithms, including several gradient descent methods, conjugate gradient 

methods, the Levenberg-Marquardt algorithm (LM), and the resilient backpropogation 

algorithm (Rprop). This research used gradient descent as training algorithm for training 

the network. A MATLAB command used in this procedure is traingd .

The method of gredient descent is given by the following expression:

kkk xxx 1 (B.1)

        kkk sx        (B.2)

For minimization, the search direction ( ks ) is the negative of the gradient

)( kk xfs  (B.3)

Therefore

)(1 kkkk xfxx   (B.4)

Where
kx     vector from kx  to 1kx

   ks   search direction, the direction of steepest descent

  k   scalar that determines the step length in direction ks
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