ผลของสารลคแรงตึงผิวร่วมต่อการเตรียมอิมัลชั้น ใขมัน เพื่อให้ทางหลอดเลือดคำ

นางสาว ธนพรรณ สกุลชัยเจริญ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีเภสัชกรรม คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2548 ISBN 974-14-2447-7 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

VIIC

EFFECT OF COSURFACTANTS ON THE PREPARATION OF INTRAVENOUS LIPID EMULSIONS

Miss Thanaphan Sakulchaijaroen

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Pharmaceutical Technology

Faculty of Pharmaceutical Sciences

Chulalongkorn University

Academic Year 2005

ISBN 974-14-2447-7

Copyright of Chulalongkorn University

Thesis Title	Effect of cosurfactants on the preparation of intravenous lipi
	emulsions
Ву	Miss Thanaphan Sakulchaijaroen
Field of Study	Pharmaceutical Technology
Thesis Advisor	Assistant Professor Warangkana Warisnoicharoen, Ph.D.
Thesis Co-advisor	Pongsakornpat Arunothayanun, Ph.D.
Accepted b	the Faculty of Pharmaceutical sciences, Chulalongkorn
University in Partia	l Fulfillment of the Requirements for the Master's Degree
	Pharmaceutical Sciences
(Assoc	iate Professor Pornpen Pramyothin, Ph.D.)
THESIS COMMIT	TEE
	When Mig Nimmanuit Chairman
(As	ociate Professor Ubonthip Nimmannit, Ph.D.)
••••	Mungh Marinum Thesis Advisor
(As	istant Professor Warangkana Warisnoicharoen, Ph.D.)
	Thesis Co-Advisor
(Por	gsakornpat Arunothayanun, Ph.D.)
	Pomohic Raysitthisouls_ Member
(Por	nchai Rojsitthisak, Ph.D.)
	hat Watnasirichaikul, Ph.D.)
(Suc	nat waniashicharkui, fil.D.)

ชนพรรณ สกุลชัยเจริญ: ผลของสารลดแรงตึงผิวร่วมต่อการเตรียมอิมัลชันใขมันเพื่อให้ทางหลอดเลือด ดำ (EFFECT OF COSURFACTANTS ON THE PREPARATION OF INTRAVENOUS LIPID EMULSIONS) อ.ที่ปรึกษา: ผศ.ดร. วรางคณา วารีสน้อยเจริญ, อ.ที่ปรึกษาร่วม: ดร. พงศกรพัฒน์ อรุโณทยานั้นท์, 175 หน้า. ISBN 974-14-2447-7

ความคงตัวของอิมัลชั้นใขมันเพื่อให้ทางหลอดเลือดดำเป็นสิ่งสำคัญสำหรับผู้ป่วยที่ต้องการอาหารทาง หลอดเลือด จึงมีแนวคิดที่จะนำสารลดแรงตึงผิวมาใช้เพื่อปรับปรุงความคงตัวของอิมัลชันให้ดีขึ้น ในการเตรียม อิมัลชั้น น้ำมันที่ใช้คือน้ำมันถั่วเหลืองในความเข้มข้นร้อยละ 10 และ 20 สารก่ออิมัลชั้นที่ใช้ได้แก่ฟอสโฟลิปิด จากไข่ (ไลปอย อี80) เพียงชนิคเคียวหรือใช้ร่วมกันระหว่างฟอสโฟลิปิคจากไข่และสารลคแรงตึงผิวร่วมซึ่งได้แก่ ทวีน 80 วิตามินอีทีพีจีเอสและโซเคียมโอลิเอต ในขั้นตอนการเตรียมได้มีการปรับเปลี่ยนตัวแปรที่มีผลต่อ อิมัลชั้นอันได้แก่ เวลาในการปั่นผสมด้วยเครื่องปั่นผสมความเร็วสูง ความดันและจำนวนรอบในการผ่านสารเข้า สู่เครื่องปั่นผสมชนิดความดันสูง จากนั้นนำตำรับที่เตรียมได้ไปผ่านกระบวนทำให้ปราศจากเชื้อโดยใช้หม้อนึ่ง อัดไอและตรวจสอบคณสมบัติทางเคมีกายภาพ ผลการศึกษาพบว่าตำรับที่ประกอบด้วยฟอสโฟลิปิดจากไข่ผสม กับวิตามินอีทีพีจีเอส และฟอสโฟลิปิคจากไข่ผสมกับทวีน 80 สามารถเตรียมอิมัลชันไขมันที่คงตัวได้ อิมัลชัน ไขมันที่ประกอบค้วยน้ำมันถั่วเหลืองร้อยละ 10 ฟอสโฟลิปีคจากไข่ร้อยละ 1 และวิตามินอีทีพีจีเอสร้อยละ 0.5 เป็นตำรับที่เหมาะสมเนื่องจากใช้สารก่ออิมัลชันในปริมาณต่ำ และมีคุณสมบัติทางเคมีกายภาพตามข้อกำหนด ของผลิตภัณฑ์เพื่อให้ทางหลอดเลือดคำ โดยอิมัลชันที่เก็บที่อุณหภูมิห้องและในสภาวะเร่ง (4°C และ 40°C) มี ความคงตัวนานถึง 4 สัปดาห์ ขนาดอนุภาคก่อนและหลังผ่านหม้อนึ่งอัดไอมีค่า 0.201 และ 0.199 ไมโครเมตร ตามลำคับ หลังจากเก็บไว้เป็นเวลา 24 ชั่วโมง ค่าความเป็นกรค-ต่าง ค่าออสโมแลลิตี และค่าความต่างศักย์ที่ผิว อนภาคของอิมัลชันที่ผ่านหม้อนึ่งอัดไอมีค่า 6.97, 324 มิลลิออสโมลต่อกิโลกรัม และ -41.77 มิลลิโวลท์ ตามลำคับ ค่าความเป็นกรด-ค่างมีค่าลดลงเล็กน้อย ในขณะที่ค่าความต่างศักย์ที่ผิวอนุภาคมีค่าสูงขึ้นเมื่อเก็บไว้ใน ทุกสภาวะที่ศึกษา นอกจากนี้พบว่าเมื่อใช้ทวีน 80 แทนวิตามินอีทีพีจีเอส อนุภาคของอิมัลชันที่ได้มีขนาดใหญ่ ้ขึ้นเล็กน้อย อย่างไรก็ตามตำรับที่ได้มีความคงตัวได้นานถึง 4 สัปดาห์ เมื่อเก็บที่อุณหภูมิห้อง กล่าวโดยสรุป ปัจจัยที่เกี่ยวข้องในการเตรียมอิมัลชันได้แก่ ขบวนการผ่านสารเข้าส่เครื่องปั่นผสม และความคงตัวหลังผ่านความ ร้อน รวมถึงชนิดและปริมาณของสารลดแรงตึงผิวที่ใช้ สารลดแรงตึงผิวร่วมชนิดไม่มีประจุสามารถเพิ่มความคง ตัวของอิมัลชันหลังกระบวนการทำให้ปราศจากเชื้อด้วยหม้อนึ่งอัดไอและเก็บไว้ได้นานถึง 4 สัปดาห์ โดยใช้ หลักการที่ทำให้คงตัวด้วยแรงสเตอริกของสายพอลิเมอร์ของสารลดแรงตึงผิว

สาขาวิชา เทคโนโลยีเภสัชกรรม	ลายมือชื่อนิสิต ขึ้นพรรณ ศาลอัยเจริส	
ปีการศึกษา2548	ลายมือชื่ออาจารย์ที่ปรึกษา 🌆 🦰 🧥	
	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม	

477 68510 33: MAJOR PHARMACEUTICAL TECHNOLOGY (INTERNATIONAL PROGRAM)
KEY WORD: LIPID EMULSION / COSURFACTANT / VITAMIN E-TPGS /
PHYSICOCHEMICAL PROPERTIES

THANAPHAN SAKULCHAIJAROEN: EFFECT OF COSURFACTANTS ON THE PREPARATION OF INTRAVENOUS LIPID EMULSIONS. THESIS ADVISOR: ASSIST. PROF. WARANGKANA WARISNOICHAROEN, Ph.D., THESIS COADVISOR: PONGSAKORNPAT ARUNOTHAYANUN, Ph.D. 175 p.p. ISBN 974-14-2447-7

The stability of intravenous lipid emulsions is important for patients requiring parenteral nutrition. The use of cosurfactant is thought to improve the emulsion stability. For the emulsion preparation, the oil used were 10% and 20% soybean oil, the emulsifier were used either egg phospholipids (Lipoid® E80) alone or combined with a cosurfactant, Tween® 80, Vitamin E-TPGS or sodium oleate. The methods of preparation were varied in homogenization time, pressure and cycles through high pressure homogenizer. formulations were sterilized by autoclaving and the physicochemical properties were investigated. The results illustrated that the formulations composed of a combination of egg phospholipids with either Vitamin E-TPGS or Tween® 80 could form the stable emulsions. The lipid emulsion containing 10% soybean oil emulsified by 1.0% egg phospholipids and 0.5% Vitamin E-TPGS was suggested due to low amount of emulsifier used and proper physicochemical properties complied with parenteral product requirements. The emulsion could remain stable for 4 weeks both at room temperature and in accelerate condition (4°C and 40°C). Its particle size (D[4,3]) of such formulation before and after autoclaving were 0.201 and 0.199 µm, respectively. The pH, osmolality and the value of zeta potential of the autoclaved emulsion after 24 hours were 6.97, 324 mOsm/kg and -41.77 mV, respectively. The pH was slightly decreased during storage while the zeta potential was increased as a function of time in all conditions. When Tween® 80 replaced Vitamin E-TPGS, the slightly larger in particle size of emulsion was observed, however the formulation still remained stable up to 4 weeks after storage at room temperature. It was concluded that the factors involved in the emulsion preparation were the process of homogenization, heat stabilization as well as the type and amount of surfactants used. The nonionic cosurfactant could improve the formation of emulsion which was stable after autoclaving and storage for at least 4 weeks by possibly the steric stabilization of the polymeric surfactant layer.

Field of study Pharmaceutical Technology	Student's signature
Academic year2005	Advisor's signature Watersk Harranon Co-advisor's signature
	Co-advisor's signature

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my advisor, Assist. Professor Dr. Warangkana Warisnoicharoen and Dr. Pongsakornpat Arunothayanun as my coadvisor for superb guidance, advice, patience, kindness, encouragement and understanding throughout my graduate years.

Special word of thanks is extended to Government Pharmaceutical Organization which provides a laboratory facility for me to executing the tests and gather result data.

I am obliged to Associate Professor Dr.Poj Kulvanich, Department of Manufacturing Pharmacy for the Emulsiflex machine. I would also deeply thank for Lipoid GMBH, Germany for their kindly support of purified soybean oil.

I would like to thanks all staff members of the office International Graduate studies, Faculty of Pharmaceutical sciences for their assistance and encouragement.

Above all, I would like to express my deep appreciate to my parents, my brothers and my sister for cheerful living life of integrity and all-round supports, both emotionally and financially.

Last but not least, I would like to say a big thanks to my lovely husband who sometime have to be my production assistance in preparing this material and thanks to his patience in providing good services during the whole process.

Finally, my appreciation goes to my friends and other persons whose name have not been mentioned for helping me in anyway during the time of my study.

CONTENTS

	Page
ABSTRACT [THAI]	iv
ABSTRACT [ENGLISH]	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xxiv
CHAPTER	
I INTRODUCTION	1
II LITERATURE REVIEW	8
1. Definitions	8
2. Selection of compositions	10
3. Stability of emulsion	16
4. Manufacturing process	20
5. Emulsion characterization	25
6. Safety	30
III MATERIALS AND METHODS	32
1. Materials	32
2. Methods	34

	viii
IV RESULTS AND DISCUSSION	53
1. Preparation of lipid emulsions	53
2. Study on the emulsion compositions	65
3. Sterility test	90
4. Hemolysis study	92
5. Transmission electron microscopy	93
V CONCLUSION	95
REFERENCES	99
APPENDICES	108
APPENDIX A	109
APPENDIX B	167
APPENDIX C	172
VITA	175

LIST OF TABLES

Ta	ble	Page
1.	Compositions of egg and soy lecithins	13
2.	The relationship between HLB numbers and surfactant properties	15
3.	Compositions of 10% and 20% lipid emulsions	35
4.	Morphologic characteristics of Staphylococcus aureus, Pseudomonas	
	aeruginosa, Samonella species and Escherichia coli on selective agar	
	media	50
5.	Physical appearance of coarse emulsions after 24 hours at room	
	temperature	55
6.	Particle size of Rx1-22 before and after autoclaving	68
7.	Zeta potential of Rx1-22 before and after autoclaving	69
8.	pH of Rx1-Rx22 before and after autoclaving	70
9.	Particle size of lipid emulsions containing various emulsifiers at room	
	temperature	72
10	. Zeta potential of lipid emulsions containing various emulsifiers at	
	room temperature	76
11	. pH of lipid emulsions containing various emulsifiers at room	
	temperature	77
12	. Osmolality of lipid emulsions containing various emulsifiers at room	
	temperature	78
13	. Physicochemical properties of 20% lipid emulsion containing various	
	surfactants	80

Table	Page
14. Physicochemical properties of 10% lipid emulsions containing EPC to	
Tween [®] 80 at 2:1 at room temperature	84
15. Physicochemical properties of emulsions containing EPC to Tween®	
80 at 2:1 at 4 and 40 ^o C	85
16. Physicochemical properties of emulsions containing EPC to Vitamin	
E-TPGS at 2:1 at room temperature.	86
17. Physicochemical properties of emulsions containing EPC to Vitamin	
E-TPGS at 2:1 at 4 and 40°C	86
18. Physicochemical properties of emulsions containing EPC to Vitamin	
E-TPGS at 3:1 at room temperature.	87
19. Physicochemical properties of emulsions containing EPC to Vitamin	
E-TPGS at 3:1 at 4 and 40°C.	87
20. Microbial limit test of 10% emulsion containing various emulsifiers	91
21. The hemolysis induced by the different types of emulsion	92
a1. Particle sizes of lipid emulsions formulated using 10% oil with	
various cycles of homogenization (15,000 psi) by Emulsiflex C-50	109
a2. Particle sizes of lipid emulsions formulated using 10% oil with	
various pressures of homogenization (5 cycles) by Emulsiflex C-50	110
a3. Particle sizes of lipid emulsions formulated using 10% oil with	
various cycles of homogenization (15,000 psi) by Emulsiflex C-5	111
a4. Particle sizes of lipid emulsions formulated using 10% oil with	
various pressures of homogenization (5 cycles) by Emulsiflex C-5	112

Table	Page
a5. Particle sizes of lipid emulsions formulated using 10% oil with	
various surfactants after storage at 25°C	113
a6. Particle size of lipid emulsions formulated using 10% oil emulsified	
with 2:1 Lipoid E80 to Tween® 80 at various total emulsifier	
concentrations	115
a7. Particle size of lipid emulsions formulated using 10% oil emulsified	
with 2:1 Lipoid E80 to Vitamin E-TPGS at various total emulsifier	
concentrations	116
a8. Particle size of lipid emulsions formulated using 10% oil emulsified	
with 3:1 Lipoid E80 to Vitamin E-TPGS at various total emulsifier	
concentrations	117
a9. Zeta potential of lipid emulsions formulated using 10% oil with	
various surfactants after storage at 25°C	118
a10. Zeta potential of lipid emulsions formulated using 10% oil	
emulsified with 2:1 Lipoid E80 to Tween® 80 at various total	
emulsifier concentrations	119
al 1. Zeta potential of lipid emulsions formulated using 10% oil	
emulsified with 2:1 Lipoid E80 to Vitamin E-TPGS at various total	
emulsifier concentrations	120
a12. Zeta potential of lipid emulsions formulated using 10% oil	
emulsified with 3:1 Lipoid E80 to Vitamin E-TPGS at various total	
emulsifier concentrations	121

Table	Page
a13. Osmolality of lipid emulsions formulated using 10% oil with various	
surfactants after storage at 25°C emulsified with EPC and Vitamin	
E-TPGS at 3:1	122
a14. Osmolality of lipid emulsions formulated using 10% oil emulsified	
with 2:1 Lipoid E80 to Tween® 80 at various total emulsifier	
concentrations	123
a15. Osmolality of lipid emulsions formulated using 10% oil emulsified	
with 2:1 Lipoid E80 to Vitamin E-TPGS at various total emulsifier	
concentrations	124
a16. Osmolality of lipid emulsions formulated using 10% oil emulsified	
with EPC and Vitamin E-TPGS at 3:1	125
a17. pH of lipid emulsions formulated using 10% oil with various	
surfactants after storage at 25°C	126
a18. pH of lipid emulsions formulated using 10% oil emulsified with 2:1	
Lipoid E80 to Tween® 80 at various total emulsifier concentrations	127
a19. pH of lipid emulsions formulated using 10% oil emulsified with 2:1	
Lipoid E80 to E-TPGS at various total emulsifier concentrations	128
a20. pH of lipid emulsions formulated using 10% oil emulsified with 3:1	
Lipoid E80 to Vitamin E-TPGS at various total emulsifier	
concentrations	129
a21. Particle size of lipid emulsions formulated using 20% oil with	
various surfactants after storage at 25°C	130

Table	Page
a22. Zeta potential of lipid emulsions formulated using 20% oil with	
various surfactants after storage at 25°C	131
a23. Osmolality of lipid emulsions formulated using 20% oil with various	
surfactants after storage at 25°C	132
a24. pH of lipid emulsions formulated using 20% oil with various	
surfactants after storage at 25°C	133
b1. Composition (% w/w) of egg phospholipids (Lipoid® E80) used in the	
formulations	167
b2. Composition (% w/w) of soybean oil (Lipoid® Purified Soybean Oil)	
used in the formulations	171
c1. Composition of 10% Intralipid® and 20% Intralipid®	172
c2. Composition of Vitalipid® N Infant	172
c3. Particle size of 10% and 20% commercial lipid emulsions	173
c4. Zeta potential of 10% and 20% commercial lipid emulsions	173
c5. Osmolality 10% and 20% commercial lipid emulsions	173
c6. pH of 10% and 20% commercial lipid emulsions	173

LIST OF FIGURES

Figure	Page
1. Schematic cross-sectional view of surfactant adsorption at oil/water	
interface	8
2. Physical changes possible in a lipid emulsion	19
3. Single stage orifice for a high pressure homogenizer	21
4. Diagram of microfluidizer	22
5. General flow diagram for the manufacture of a hypothetical oil-in-water	
parenteral emulsion	24
6. Schematic diagram of the preparation process of a coarse emulsion	37
7. Schematic diagram of total aerobic microbial count	47
8. Schematic diagram of total aerobic mold count	48
9. Volume weighted mean droplet size, D[4,3], of emulsions produced by	
Emulsiflex C-50 after 3, 5, 7 and 10 cycles at 15,000 psi	57
10. Volume weighted mean droplet size, D[4,3], of emulsion produced by	
Emulsiflex C-5 after 3, 5, 7 and 10 cycles at 15,000 psi	58
11. Comparison of particle size, D [4,3], of lipid emulsions produced by	
Emulsiflex C-50 and Emulsiflex C-5 at 15,000 psi and different	
homogenization cycles	58
12. The mean diameter, d (0.5), of lipid emulsions produced by Emulsiflex	
C-50 after 3, 5, 7 and 10 cycles at 15,000 psi	60

Figure	Page
13. The mean diameter d (0.5) of lipid emulsion produced by Emulsiflex C-5	
after 3, 5, 7 and 10 cycles at 15,000 psi	60
14. Comparison of the mean diameter, d (0.5), of lipid emulsions produced by	
Emulsiflex C-50 and Emulsiflex C-5 at 15,000 psi and different	
homogenization cycles	61
15. Volume weighted mean droplet size, D[4,3], of emulsion produced by	
Emulsiflex C-50 after 5 cycles at different homogenization pressure	62
16. Volume weighted mean droplet size, D[4,3], of emulsions produced by	
Emulsiflex C-5 after 5 cycles at different homogenization pressure	62
17. Comparison of particle size D [4,3] of emulsions produced from	
Emulsiflex C-50 and Emulsiflex C-5 after 5 cycles at different	
homogenization pressure	63
18. The mean diameter, d (0.5), of lipid emulsions produced by Emulsiflex	
C-50 after 5 cycles at different homogenization pressure	64
19. The mean diameter, d (0.5), of lipid emulsions produced by Emulsiflex	
C-5 after 5 cycles at different homogenization pressure	64
20. Comparison of the mean diameter, d (0.5) of lipid emulsions produced	
from Emulsiflex C-50 and Emulsiflex C-5 after 5 cycles at different	
homogenization pressure	65
21. Transmission electron micrographs of 10% lipid emulsions	94
a1. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C50 for 3 cycles	134

Figure	Page
a2. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C50 for 5 cycles	134
a3. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C50 for 7 cycles	134
a4. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C50 for 10 cycles	135
a5. Particle size distribution of 10% oil+EPC + Na oleate unautoclaved	
emulsion passing Emulsiflex C50 for 3 cycle	135
a6. Particle size distribution of 10% oil+EPC + Na oleate unautoclaved	
emulsion passing Emulsiflex C50 for 5 cycles	135
a7. Particle size distribution of 10% oil+EPC + Na oleate unautoclaved	
emulsion passing Emulsiflex C50 for 7 cycles	136
a8. Particle size distribution of 10% oil+EPC + Na oleate unautoclaved	
emulsion passing Emulsiflex C50 for 10 cycles	136
a9. Particle size distribution of 10% oil+EPC + Tween 80 unautoclaved	
emulsion passing Emulsiflex C50 for 3 cycles	136
a10. Particle size distribution of 10% oil+EPC + Tween 80 unautoclaved	
emulsion passing Emulsiflex C50 for 5 cycles	137
all. Particle size distribution of 10% oil+EPC + Tween 80 unautoclaved	
emulsion passing Emulsiflex C50 for 7 cycles	137
a12. Particle size distribution of 10% oil+EPC + Tween 80 unautoclaved	
emulsion passing Emulsiflex C50 for 10 cycles	137

Figure	Page
a13. Particle size distribution of 10% oil+EPC + Vitamin E-TPGS	
unautoclaved emulsion passing Emulsiflex C50 for 3 cycles	138
a14. Particle size distribution of 10% oil+EPC + Vitamin E-TPGS	
unautoclaved emulsion passing Emulsiflex C50 for 5 cycles	138
a15. Particle size distribution of 10% oil+EPC + Vitamin E-TPGS	
unautoclaved emulsion passing Emulsiflex C50 for 7 cycles	138
a16. Particle size distribution of 10% oil+EPC + Vitamin E-TPGS	
unautoclaved emulsion passing Emulsiflex C50 for 10 cycles	139
a17. Particle size distribution of 10% oil+EPC unautoclaved emulsion	
passing Emulsiflex C50 at 10,000 psi for for 5 cycles	139
a18. Particle size distribution of 10% oil+EPC unautoclaved emulsion	
passing Emulsiflex C50 at 20,000 psi for for 5 cycles	139
a19. Particle size distribution of 10% oil+EPC + Na oleate unautoclaved	
emulsion passing Emulsiflex C50 at 10,000 psi for 5 cycles	140
a20. Particle size distribution of 10% oil+EPC+ Na oleate unautoclaved	
emulsion passing Emulsiflex C50 at 20,000 psi for 5 cycles	140
a21. Particle size distribution of 10% oil+EPC+Tween 80 unautoclaved	
emulsion passing Emulsiflex C50 at 10,000 psi for 5 cycles	140
a22. Particle size distribution of 10% oil+EPC+Tween 80 unautoclaved	
emulsion passing Emulsiflex C50 at 20,000 psi for 5 cycles	141
a23. Particle size distribution of 10% oil+EPC+Vitamin E-TPGS	
unautoclaved emulsion passing Emulsiflex C50 at 10,000 psi for 5cycles	141

Figure	Page
a24. Particle size distribution of 10% oil+EPC+Vitamin E-TPGS	
unautoclaved emulsion passing Emulsiflex C50 at 20,000 psi for 5 cycles	141
a25. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C5 for 3 cycles	142
a26. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C5 for 5 cycles	142
a27. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C5 for 7 cycles	142
a28. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C5 for 10 cycles.	143
a29. Particle size distribution of 10% oil+EPC+Na oleate unautoclaved	
emulsion passing Emulsiflex C5 for 3 cycles	143
a30. Particle size distribution of 10% oil+EPC+Na Oleate unautoclaved	
emulsion passing Emulsiflex C5 for 5 cycles	143
a31. Particle size distribution of 10% oil+EPC+Na Oleate unautoclaved	
emulsion passing Emulsiflex C5 for 7 cycles	144
a32. Particle size distribution of 10% oil+EPC+Na Oleate unautoclaved	
emulsion passing Emulsiflex C5 for 10 cycles	144
a33. Particle size distribution of 10% oil+EPC+Tween 80 unautoclaved	
emulsion passing Emulsiflex C5 for 3 cycles	144
a34. Particle size distribution of 10% oil+EPC+Tween 80 unautoclaved	
emulsion passing Emulsiflex C5 for 5 cycles	145

Figure	Page
a35. Particle size distribution of 10% oil+EPC+Tween 80 unautoclaved	
emulsion passing Emulsiflex C5 for 7 cycles	145
a36. Particle size distribution of 10% oil+EPC+Tween 80 unautoclaved	
emulsion passing Emulsiflex C5 for 10 cycles	145
a37. Particle size distribution of 10% oil+EPC+Vitamin E-TPGS unautoclaved	
emulsion passing Emulsiflex C5 for 3 cycles	146
a38. Particle size distribution of 10% oil+EPC+Vitamin E-TPGS unautoclaved	
emulsion passing Emulsiflex C5 for 5 cycles	146
a39. Particle size distribution of 10% oil+EPC+Vitamin E-TPGS unautoclaved	
emulsion passing Emulsiflex C5 for 7 cycles	146
a40. Particle size distribution of 10% oil+EPC+Vitamin E-TPGS unautoclaved	
emulsion passing Emulsiflex C5 for 10 cycles	147
a41. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C5 at 10,000 psi for 5 cycles	147
a42. Particle size distribution of 10% oil+EPC unautoclaved emulsion passing	
Emulsiflex C5 at 20,000 psi for 5 cycles	147
a43. Particle size distribution of 10% oil+EPC+Na oleate unautoclaved	
emulsion passing Emulsiflex C5 at 10,000 psi for 5 cycles	148
a44. Particle size distribution of 10% oil+EPC+Na oleate unautoclaved	
emulsion passing Emulsiflex C5 at 20,000 psi for 5 cycles	148
a45. Particle size distribution of 10% oil+EPC+Tween 80 unautoclaved	
emulsion passing Emulsiflex C5 at 10,000 psi for 5 cycles	148

Figure	Page
a46. Particle size distribution of 10% oil+EPC+Tween 80 unautoclaved	
emulsion passing Emulsiflex C5 at 20,000 psi for 5 cycles	149
a47. Particle size distribution of 10% oil+EPC+Vitamin E-TPGS unautoclaved	
emulsion passing Emulsiflex C5 at 10,000 psi for 5 cycles	149
a48. Particle size distribution of 10% oil+EPC+Vitamin E-TPGS unautoclaved	
emulsion passing Emulsiflex C5 at 20,000 psi for 5 cycles	149
a49. Particle size distribution of Rx1 unautoclaved emulsion	150
a50. Particle size distribution of Rx1 autoclaved emulsion	150
a51. Particle size distribution of Rx2 unautoclaved emulsion	150
a52. Particle size distribution of Rx2 autoclaved emulsion	151
a53. Particle size distribution of Rx3 unautoclaved emulsion	151
a54. Particle size distribution of Rx3 autoclaved emulsion	151
a55. Particle size distribution of Rx4 unautoclaved emulsion	152
a56. Particle size distribution of Rx4 autoclaved emulsion	152
a57. Particle size distribution of Rx5 unautoclaved emulsion	152
a58. Particle size distribution of Rx5 autoclaved emulsion	153
a59. Particle size distribution of Rx6 unatoclaved emulsion	153
a60. Particle size distribution of Rx6 autoclaved emulsion	153
a61. Particle size distribution of Rx8 unautoclaved emulsion	154
a62. Particle size distribution of Rx8 autoclaved emulsion	154
a63. Particle size distribution of Rx9 unautoclaved emulsion	154
a64. Particle size distribution of Rx9 autoclaved emulsion	155

Figure	Page
a65. Particle size distribution of Rx10 unautoclaved emulsion	155
a66. Particle size distribution of Rx10 autoclaved emulsion	155
a67. Particle size distribution of Rx11 unautoclaved emulsion	156
a68. Particle size distribution of Rx11 autoclaved emulsion	156
a69. Particle size distribution of Rx16 unautoclaved emulsion	156
a70. Particle size distribution of Rx16 autoclaved emulsion	157
a71. Particle size distribution of Rx17 unautoclaved emulsion	157
a72. Particle size distribution of Rx17 autoclaved emulsion	157
a73. Particle size distribution of Rx18 unautoclaved emulsion	158
a74. Particle size distribution of Rx18 autoclaved emulsion	158
a75. Particle size distribution of Rx19 unautoclaved emulsion	158
a76. Particle size distribution of Rx19 autoclaved emulsion	159
a77. Particle size distribution of Rx20 unautoclaved emulsion	159
a78. Particle size distribution of Rx20 autoclaved emulsion	159
a79. Particle size distribution of Rx21 unautoclaved emulsion	160
a80. Particle size distribution of Rx21 autoclaved emulsion	160
a81. Particle size distribution of Rx22 unautoclaved emulsion	160
a82. Particle size distribution of Rx22 autoclaved emulsion	161
a83. Particle size distribution of 1.5% w/w of 2:1 EPC:Tween® 80	
unautoclaved emulsion	161
a84. Particle size distribution of 1.5% w/w of 2:1 EPC:Tween® 80 autoclaved	
emulsion	161

Figure	Page
a85. Particle size distribution of 1.5% w/w of 2:1 EPC:Tween® 80 autoclaved	
emulsion after 1-week storage at 4°C	162
a86. Particle size distribution of 1.5% w/w of 2:1 EPC:Tween® 80 autoclaved	
emulsion after 1-week storage at 25°C	162
a87. Particle size distribution of 1.5% w/w of 2:1 EPC:Tween® 80 autoclaved	
emulsion after 1-week storage at 40°C	162
a88. Particle size distribution of 1.5% w/w of 2:1 EPC:Tween® 80 autoclaved	
emulsion after 4-week storage at 4°C	163
a89. Particle size distribution of 1.5% w/w of 2:1 EPC:Tween® 80 autoclaved	
emulsion after 4-week storage at 25°C	163
a90. Particle size distribution of 1.5% w/w of 2:1 EPC:Tween® 80 autoclaved	
emulsion after 4-week storage at 40°C	163
a91. Particle size distribution of 1.5% w/w of 2:1 EPC:Vitamin E-TPGS	
unautoclaved emulsion	164
a92. Particle size distribution of 1.5% w/w of 2:1 EPC:Vitamin E-TPGS	
autoclaved emulsion.	164
a93. Particle size distribution of 1.5% w/w of 2:1 EPC:Vitamin E-TPGS	
autoclaved emulsion after 1-week storage at 4°C	164
a94. Particle size distribution of 1.5% w/w of 2:1 EPC:Vitamin E-TPGS	
autoclaved emulsion after 1-week storage at 25°C	165
a95. Particle size distribution of 1.5% w/w of 2:1 EPC:Vitamin E-TPGS	
autoclaved emulsion after 1-week storage at 40°C	165

Figure	Page
a96. Particle size distribution of 1.5% w/w of 2:1 EPC:Vitamin E-TPGS	
autoclaved emulsion after 4-week storage at 4°C	165
a97. Particle size distribution of 1.5% w/w of 2:1 EPC:Vitamin E-TPGS	
autoclaved emulsion after 4-week storage at 25°C	166
a98. Particle size distribution of 1.5% w/w of 2:1 EPC:Vitamin E-TPGS	
autoclaved emulsion after 4-week storage at 40°C	166
c1. Particle size distribution of 10% Intralipid®	174
c2. Particle size distribution of 20% Intralipid®	174
c3. Particle size distribution of Vitalipid® N Infant	174

LIST OF ABBREVIATIONS

BHA Butylatedhydroxyl anisole

BHT Butylatedhydroxyl toluene

EPC Egg phospholipids

et al. et alli (and others)

FFA Free fatty acid

HLB Hydrophile-lipophilic balance

i.e. id est (that is)

kPa Kilo pascal

LCT Long chain triglycerides

Lot no. Lot number

LPC Lysophosphatidylcholine

LPE Lysophosphatidylethanolamine

MCT Medium chain triglycerides

mg milligram

mL milliter

mmHg millimeter of mercury

mOsm/kg milliosmol per kilogram

mOsm/L milliosmol per liter

mV millivolt

N normality

ND not determined

nm nanometer

o/w oil-in-water

PA Phosphatidic acid

PC Phosphatidylcholine

PE Phosphatidylethanolamine

PFEs Parenteral fat emulsions

PI Phosphatidylinositol

PL Phospholipid

PS Phosphatidylserine

psi pound (s) per square inch

w/o water-in-oil

w/w weight by weight

μm micrometer