DEVELOPMENT OF PROTEIN DELIVERY SCAFFOLDS WITH A SEPARATE DRUG CARRIER SYSTEM FOR BONE TISSUE REGENRATION

Parintorn Hariraksapitak

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2009

Thesis Title:	Development of Protein Delivery Scaffolds with A Separate
	Drug Carrier System for Bone Tissue Regeneration
By:	Parintorn Hariraksapitak
Program:	Polymer Science
Thesis Advisors:	Assoc. Prof. Pitt Supaphol
	Assoc. Prof. Prasit Pavasant

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

... Dean

(Assoc. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Pomthong Malakul) (Assoc. Prof. Pitt Supaphol)

...../

Prosit Pira I. Ratana Rujirananit

(Assoc. Prof. Prasit Pavasant) (Assoc. Prof. Ratana Rujiravanit)

S. Komburtyali

(Asst. Prof. Suttatip Kamolmatyakul)

ABSTRACT

4892002063: Polymer Science Program

Parintorn Hariraksapitak: Development of Protein delivery Scaffolds
with a Separate Drug Carrier System for Bone Tissue Regeneration.
Thesis Advisor: Assoc. Prof. Pitt Supaphol and Assoc. Prof. Prasit
Pavasant, 183 pp.

Keywords: Bone scaffolds/ Controlled release/ Bone protein/ Gelatin microspheres/ Poly(butylene succinate)/ α-chitin whisker

This study aimed to develop new drug delivery scaffolds to be used in tooth socket and investigate fabricating parameters which affect the desired characteristics of scaffold. Scaffolds of hyaluronan-gelatin (HA-Gel) blends and 1,6diisocyanatohexane extended poly(1,4-butylene succinate) (PUSu-DCH) were fabricated by freeze-drying and particulate-leaching technique respectively. The α chitin whiskers reinforced HA-Gel scaffolds exhibited variable behaviours by the different amount of whiskers adding. 2, 10, and 20-30% of whiskers improved strength, growth of bone cells, thermal resistance and biodegradation respectively whereas internal architecture and water absorption capability were not affected. The scaffold decelerated the release of crude bone protein at ~30-40% for the first 24 h when gelatin microspheres were integrated as a separate delivery device though the ionic interaction between molecule of protein and gelatin was not occurred by the absorptive protein loading method. The PUSu-DCH scaffold fabricated with salt particles of 200-400 µm at 35 wt% exhibited better mechanical, physical and biological properties than those at 25, 30 or 40 wt%, and controlled the release of serum protein as low as 20% of total within the first 24 h, under the condition of direct mix the protein with gelatin during the process of microspheres fabrication. The controlled release was simultaneously influenced by ionic interaction between molecules of gelatin and protein, proportion of HA and gelatin in the HA-Gel coating matrix and scaffolds' pore sizes. The designed scaffolds promisingly illustrated both scaffolding and controlled releasing functionalities for bone tissue regeneration.

บทคัดย่อ

ปรินทร หริรักษาพิทักษ์ : การพัฒนาโครงเนื้อเยื่อปลดปล่อยโปรตีนชนิดแยกด้วนำยา เพื่อใช้ช่อมสร้างเนื้อเยื่อกระดูก (Development of protein delivery scaffolds with a separate drug carrier system for bone tissue regeneration) อ. ที่ปรึกษา: รศ. ดร. พิชญ์ ศุภผล และ รศ. ดร. ประสิทธิ์ ภวสันต์ 183 หน้า

การศึกษานี้มีวัตถุประสงค์เพื่อพัฒนาโครงเนื้อเยื่อปลคปล่อยยาชนิคใหม่ สำหรับใช้ซ่อม สร้างกระดูกเบ้าฟื้น และศึกษาถึงปัจจัยในการผลิตที่ส่งผลต่อคุณสมบัติของโครงเนื้อเยื่อที่ได้ โดย ผลิตโครงเนื้อเยื่อจากวัสคุผสมไฮยารูโนแนน-เจลาตินค้วยวิธีแช่เยือกแข็ง-ระเหิด และจากโพลี 1,4 บิวที่ลืนซัคซิเนทเชื่อมต่อด้วยไดไอโซไซยานาโตเฮคเซนด้วยวิธีกำงัดอนุภาคเกลือ พบว่าโครง เนื้อเยื่อไฮยารูโนแนน-เจลาตินที่เสริมแรงด้วยผลึกไกตินชนิดอัลฟ่า แสดงกุณสมบัติแตกต่างกันไป ตามปริมาณผลึกไคตินที่เติม โดยผลึกไคตินปริมาณ 2, 10, และ 20-30% ทำให้คุณสมบัติของโครง เนื้อเชื่อดีขึ้นในด้านความแข็งแรง การเอื้อต่อการเจริญเติบ โตของเซลล์กระดก อณหสมบัติ และการ ย่อยสลายทางชีวภาพ ตามลำดับ แต่ปริมาณผลึกไคตินไม่มีผลต่อลักษณะโครงสร้างภายในโครง เนื้อเยื่อและความสามารถในการคคซึมน้ำ โครงเนื้อเยื่อชนิดนี้สามารถควบคุมการปลดปล่อย โปรตีนที่สกัคจากกระดูกให้ช้าลง ~30-40% ภายใน 24 ชม.แรกได้ เมื่อสอดแทรกอนุภาคเจลาติน ไมโครสเฟียร์ซึ่งเป็นตัวนำโปรตีนชนิดแยกส่วนไว้ภายใน ถึงแม้ว่าการบรรจุโปรตีนด้วยวิธีแพร่เข้า ้สู่อนุภาคเจลาตินไมโครสเฟียร์ภายหลังขึ้นรูปนั้น จะไม่เอื้อต่อการเกิคปฏิกิริยาอิออนิกระหว่าง โมเลกุลของโปรตีนกับเจลาตินก็ตาม ส่วนโครงเนื้อเยื่อโพลี 1,4 บิวทีลีนซักซิเนทเชื่อมต่อด้วยไค ไอโซไซยานาโตเฮคเซนที่ผลิตด้วยอนุภาคเกลืองนาด 200-400 ไมครอนในสัดส่วน 35% โดย น้ำหนักนั้น มีกล กายภาพ และชีวสมบัติที่ส่งเสริมการซ่อมสร้างกระดูกได้คีกว่าสัคส่วน 25, 30 หรือ 40% และสามารถควบคุมการปลดปล่อยโปรตีนได้ในอัตราที่ต่ำกว่า 20% ของปริมาณโปรตีน ้ทั้งหมดภายใน 24 ชม. แรก เมื่อบรรจุอนุภาคเจลาตินไมโครสเฟียร์ที่ผสมด้วยซีรั่มโปรตีน ก่อนขึ้น รูปเป็นอนุภาคเข้าไปภายในโครงเนื้อเยื่อ ทั้งนี้การควบคุมการปลคปล่อยโปรตีนเป็นผลร่วมกัน ระหว่างการเกิดปฏิกิริยาอิออนิกระหว่างโมเลกุลของโปรตีนกับเจลาติน สัดส่วนขององค์ประกอบ ในเมตริกวัสดุผสมไฮยารูโนแนน-เจลาตินที่ใช้ยึดอนุภากเข้ากับโครงเนื้อเยื่อ และขนาดของรพรุน ในโครงเนื้อเชื่อ โครงเนื้อเชื่อที่ผลิตขึ้นสามารถทำหน้าที่เป็นทั้งตัวโครงเนื้อเชื่อและตัวปลดปล่อย ยาสำหรับการซ่อมสร้างกระดูกได้ในเวลาเดียวกัน

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. First the author gratefully acknowledges his advisor, Associate Professor Pitt Supaphol and Associate Professor Prasit Pavasant, a debt of gratitude. They provide beneficial knowledge, suggestion, and counsel for the research. Their belief in my ability helped me study and work confidently right through success.

He gratefully acknowledges all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistance. Moreover she would like to give his special thanks to all members in his research group and all of his friends for their kind assistance

Asst. Prof. Pomthong Malakul, Assoc. Prof. Pitt Supaphol, Assoc. Prof. Prasit Pavasant, Assoc. Prof. Ratana Rujiravanit and Asst. Prof. Suttatip Kamolmatyakul are further acknowledged for being her dissertation committees, making valuable comments and suggestions.

He wishes to express her deep gratitude to her family for their unconditioned love, understanding and very supportive during all these years spent for his Ph.D. study.

Finally, he is grateful for the partial fund by the National Excellence Center for Petroleum, Petrochemicals, and Advanced Materials, the Ratchadaphiseksomphot Endowment Fund Chulalongkorn University and Prince of Songkla University. I hereby express my appreciation for all valuable financial support.

TABLE OF CONTENTS

			PAGE
Title	e Page		i
Abs	tract (in English)		iii
Abs	tract (in Thai)		iv
Ack	nowledgements		v
Tab	le of Contents		vi
List	of Tables		viii
List	of Figures		xii
Abb	previations		xix
СНАРТЕ	g	•	
I	INTRODUCTION		1
II	LITERUTURE REVIEW	2 - -	5
III	EXPERIMENTAL		18
VI	MECHANICAL PHYSICAL AND BIOLOGIC	CAL	
	PROPERTIES OF SCAFFOLDS OF α -CHITI	N	
	WHISKERS REINFORCED HYALURONAN	-	
	GELATIN NANOCOMPOSITES		19
	4.1 Abstract		19
	4.2 Introduction		19
	4.3 Experimental Section		22
	4.4 Results and Discussion		27
	4.5 Conclusion		36
	4.6 Acknowledgements		36
	4.7 References		36

V	DELIVERY OF CRUDE BONE PROTEIN	
	FORM GELATIN MICROSPHERES AND	
	MICROSPHERES INTEGRATED HYALURONAN-	
	GELATIN BLENDED SCAFFOLD FOR BONE	
	TISSUE REGENERATION	59
	5.1 Abstract	59
	5.2 Introduction	59
	5.3 Experimental Section	62
	5.4 Results and Discussion	67
	5.5 Conclusion	75
	5.6 Acknowledgements	75
	5.7 References	76
VI	EFFECTUAL DRUG-RELEASING POROUS	
	SCAFFOLDS FROM 1,6-DIISOCYANATOHEXANE-	
	EXTENDED POLY(1,4-BUTYLENE SUCCINATE)	
	FOR BONE TISSUE REGENERATION	
	6.1 Abstract	91
	6.2 Introduction	91
	6.3 Experimental Section	93
	6.4 Results	99

6.5 Discussion

6.6 Conclusion

6.8 References

6.7 Acknowledgements

• • •

.

PAGE

102

106

107

VII	GELATIN MICROSPHERES IMPREGNATED	
	POROUS SCAFFOLDS OF 1,6-DIISOCYANATOHEXANE-	
	EXTENDED POLY(1,4-BUTYLENE SUCCINATE)	
	FOR CONTROLLED RELEASE OF PROTEIN	129
	7.1 Abstract	129
	7.2 Introduction	130
	7.3 Experimental Section	132
	7.4 Results and Discussion	137
	7.5 Conclusion	145
	7.6 Acknowledgements	146
	7.7 References	146
VIII	CONCLUSION AND RECOMMENDATIONS	167
	REFERENCES	170

CURRICULUM VITAE	183
------------------	-----

LIST OF TABLES

TABLE

CHAPTER II

2.1 Growth factor commonly used in bone regeneration

CHAPTER IV

4.1	Pores size of the α -chitin whiskers reinforced HA-Gel scaffolds	
	determined from the transversal and longitudinal sections.	
	a,b,c,d,e,f compared between sections of an individual	
	specimen only at $p < 0.05$; One-Way ANOVA with Tukey	
	HSD, n = 50	42
4.2	Mechanical properties of the α -chitin whiskers reinforced HA-	
	Gel scaffolds. a,b,c,d compared among groups of specimen for	
	a single property at $p < 0.05$; One-Way ANOVA with Dunnett	
	T3, $n = 5$	43
4.3	Temperature (°C) at 5, 25 and 50% weight loss (T-5%, T-25%	
	and T-50% respectively) of the α -chitin whiskers reinforced	
	HA-Gel scaffolds and the residual weight at 550 °C	44
4.4	Indirect cytotoxicity evaluation of the as-prepared 0%CW and	
	30%CW HA-Gel scaffolds using human osteoblast cell line	
	(SaOS-2). *p < 0.05; One-Way ANOVA Tukey HSD, n = 4	45

CHAPTER V

5.1	Swelling ratio of the gelatin microspheres prepared with gelatin	
	types A (a) and type B (b) at various pH	80

PAGE

- 5.2 Encapsulating efficiency of the CBP and Loading capacity of the gelatin microspheres. a,b,c,d are significantly different at p
 < 0.05; One-Way ANOVA with Tukey HSD (Mean ± SD, n=3)
- 5.3 Constant (k), releasing exponent (n) and correlation coefficient (r2) of CBP release from gelatin microspheres and microspheres integrated HA-Gel scaffolds at three releasing intervals (n1,n2, and n3). k and n values were calculated with the least squares method

CHAPTER VI

6.1	Porosity, pore volume, and pore size of the as-prepared PBSu-	
	DCH scaffolds	111
6.2	Mechanical properties of the as-prepared PBSu-DCH scaffolds	112
6.3	Indirect cytotoxicity evaluation of the as-prepared 35xNaCl	
	scaffolds using mouse calvaria-derived, pre-osteoblastic cells	
	(MC3T3-E1)	113
6.4	Indirect cytotoxicity evaluation of the as-prepared 35xNaCl	
	scaffolds using mouse calvaria-derived, pre-osteoblastic cells	
	(MC3T3-E1) assessed with the LCH cytotoxicity assay	115

CHAPTER VII

7.1	Encapsulating efficiency of the BSA-Rhod and Loading	
	capacity of the as-prepared gelatin microspheres	153
7.2	Constant (k), kinetic exponent (n) and correlation coefficient	
	(r2) of the BSA-Rhod release for 24 h from gelatin	
	microspheres	154

PAGE

81

7.3 Constant (k), kinetic exponent (n) and correlation coefficient (r2) of the BSA-Rhod release for 10 h from gelatin microspheres and BSA-Micros impregnated PBSu-DCH scaffolds

LIST OF FIGURES

FIGURE

PAGE

CHAPTER II

2.1	Process of gelatin production	13
2.2	Chemical structure of gelatin	14
2.3	Tetrasaccharide fragment of hyaluronan showing the	
	disaccharide repeat units	14
2.4	Chemical structure (a) of chitin poly(N-acetyl-b-D-	
	glucosamine) and (b) of chitosan (poly(D-glucosamine) repeat	
	units	15
2.5	Chemical structure of Poly(1,4-Butylene Succinate) extended	
	with 1,6-Diisocyanatohexane	17

CHAPTER IV

4.1	Selected TEM images presenting the as-prepared chitin	
	whiskers	46
4.2	Histogram illustrating distribution of the as-prepared chitin	
	whiskers' length (a) and width (b)	47
4.3	The α -chitin whiskers reinforced HA-Gel nanocomposites	
	scaffolds (The numbers symbolize wt% of chitin whiskers)	48
4.4	4.4.1 SEM images illustrating internal structure of the α -chitin	
	whiskers reinforced HA-Gel scaffolds viewed on the	
	transversal (1,3,5) and longitudinal section (2,4,6): (1,2) 0%	
	CW, (3,4) 2% CW, (5,6) 5% CW	49
	4.4.2 SEM images illustrating internal structure of the HA-Gel	
	scaffolds viewed on the transversal (7,9,11) and longitudinal	
	section (8,10,12): (7,8) 10% CW, (9,10) 20% CW, (11,12) 30%	
	CW	50

xiii

4.5	Water absorption capability of the α -chitin whiskers reinforced	
	HA-Gel scaffolds, at room temperature	51
4.6	Remaining weight of the α -chitin whiskers reinforced HA-Gel	
	scaffolds after having been immerged in PBS or collagenase in	
	various condition for 24 h. a,b,c, * at p < 0.05; One-Way	
	ANOVA with Tukey HSD, $n = 4$	52
4.7	Infrared spectra of the gelatin, HA, α -chitin whiskers, and the	
	α -chitin whiskers reinforced HA-Gel nanocomposites	53
4.8	TGA thermograms of the α -chitin whiskers reinforced HA-Gel	
	scaffolds having different whisker contents, at 30-600°C, rate	
	of temperature increase 10 °C/min, under N2 gas	54
4.9	DSC thermograms of the α -chitin whiskers reinforced HA-Gel	
	scaffolds having different whisker contents, at 25-60°C, rate of	
	temperature increase 10 °C/min, under N2 gas	55
4.10	Selected SEM images illustrating morphology of SaOS-2 that	
	were seeded on the surface of the 30%CW HA-Gel scaffolds	
	for 24 h. White arrows show the cytoplasmic processes of the	
	cells	56
4.11	Selected SEM images illustrating morphology of SaOS-2 that	
	were seeded on the surface of the 30%CW HA-Gel scaffolds	
	for 7 days. White arrows show cells that fuse into the scaffolds	57
4.12	Evaluation of the SaOS-2 proliferation on the as-prepared	
	30%CW HA-Gel scaffolds *, +, $\#$, 1 p < 0.05; One-Way	
	ANOVA Tukey HSD, n = 4	58

ABBREVIATIONS

HA	Hyaluronan, Hyaluronic acid	
Gel	Gelatin	
PBSu-DCH	poly(1,4-butylene succinate) extended with	
	1,6-diisocyanatohexane	
EDC	1-ethy-3-(3-dimethylaminopropyl)carbodiimide	
CW	Chitin whisker	÷1.
BSA-Rhod	Albumin from bovine serum conjugated with	
	tetramethylrhodamine	44
CBP	Crude bone protein	1
IEP	Isoelectric point	
PBS	Phosphate buffer saline	
DMEM	Dulbecco's modified Eagle's medium	
FBS	Fetal bovine serum	÷
SFM	Serum-free medium	1
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-	ť.
	diphenyltetrazolium bromide	-
DSC	Differential scanning calorimetry	
TGA	Thermogravimetric analysis	
SEM	Scanning electron microscope	
TEM	Transmission electron microscope	