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Abstract

Multiple hypotheses testing in the context of a correlation matrix is used to compare
the statistical power of the criginal Bonfertoni with six modified Bonferroni procedures which
control the overall Type I error rate. Thiee definitions of statistical power are considered : 1)
de%,ecting at least one true relationship, 2) detecting all true relationships, and 3) the average
power to detect true relationships. Simulation results show no difference between the seven
methods in detecting at least one true relationship; but all six modified Bonferroni procedures
are more powerful than the original Bonferroni procedure to detect all true relationship power
and average power. Among the six midified Bunienoni procedures, small differences were
observed, with the Holm procedure having the lowest power and the Holland-Copenhaver (step-

up) procedure having the highest power.

* Educational Research Department, Faculty of Education, Chulalongkorn University.



Introduction

Whenever an experiment involves collecting data from more than two groups or under
more than two conditions we become involved in the problem of multiple comparisons—the
problem of comparing each group with every other groups or arranging the results in rank
order. This becomes a problem when we wish to assign a level of confidence or significance to
our conclusions about the relationships among all of the populations involved. Classical
methods such as the F test permit us only to reject the overall null hypothesis that all of the
means are equal but they do not provide a procedure for comparing specific means with each
others.

In the older psychological literature, this problem has been dealt with in a haphazard
manner, without recognizing the issues involved. More recgntly, statistical procedures
specifically designed for multiple comparisons have become available and have been discussed
briefly in the psychological journals (McHugh & Ellis, 1995 : Stanley, 1957).

It has not been clear to many researchers, however, that there are several different
methods with different basic assumptions or approaches. There are important questions of
logic involved in the use of these methods and these issues have not been clearly faced in the
behavioral and psychological literature.

Generally, whenever multiple tests are conducted simultaneously for testing individual

hypothesis in a study, the criterion Ol level corresponding to each hypothesis is adjusted to
control the experimeniwise (overall) type I eiror rate. Many studies in this area have been done
in the context of multiple comparisons of means (Hsiung & Olejnik, 1991; Seaman, et. al. 1990).
However, concern for the control of experimentwise Type 1 error rate in other multiple testing
contexts, such as correlation matrix, factorial ANOVA, multiple regression, multiple contingency
tables, multiple experiments, and multiple outcome variable studies, has not received the same
level of attention.

A common situation in behavioral, social, and educational research is to have data on a
number of variables for a single sample of observations and to be concerned with some or all of
the correlations between these variables in the population. For example, the researcher may
have several predictor variables and may be interested in just the correlations of these variables

with a criterion variable. Or, the researcher may have two set of variables—predictor variables



and criterion variables—and be interested in whether any relationships exist between the two
sets. Or, the researcher may have several criterion variables and be interested in the extent to
which these variables are related to one another. Or, in a few instances he/she may have
several variables and an a priori theory about how these variables are correlated with one
another. How should the researcher proceed?

Many researchers conduct a series of bivariate tests on each of the correlation
coefficient in tum, testing in each case the hypothesis that the correlation between a pair of
variables is equal to the hypothetical correlation. But, this procedure has two drawbacks that
all too often are ignored : (a) The probability of making at least one Type 1 error rate increases
with the number of tests performed, and (b) the respective tests in this series of tests are not
statistically independent. (Larzelere & Mulaik, 1977)

R. N. Harris (1967) and Larzelere (1975) have performed Mo;te Carlo studies to evaluate
the effects of dependency among the component tests of a series of bivariate tests of
correlation. Their studies verified that the empirical estimate of the probability of making at
least one Type I emor rate in a family of tests increases substantially as the number of
component tests increases.

When more than one coirelation coefficient is tesied for significance in a study, the
probability of making at least one Type I emor rate rises rapidly as the number of tests
increases, and the probability of making a Type I error rate after a Type I error on a previous
test is usually greater than the nominal significance level used in each test. To avoid excessive
Type 1 erors with multiple tests of correlations, researchers should use procedures that answer
research questions with a single statistical test and/or should use special inultiple-test
procedures.

Several statistical approaches for controlling the overall type I error rate are available,
which could be applied generally in any multiple test situation. The Bonferroni procedure is
one of the most commonly used techniques. Recently, several medified Bonferroni procedures
have been developed. Halland and Copenhaver (1987} reviewed five of them. Since then,
Hochberg (1988) and Hommel (1988) have proposed two additional modified Bonferroni

procedures. In exchange for the higher power, the newer approaches are more complex.



Statistical Power of Modified Bonferroni Methods

There have been several discussions on the issue of controlling the overall Type I error
rate in situations where multiple tests are conducted simultaneously. The simplest and
perhaps the best known approach is to divide the acceptable overall risk of a Type 1 error rate
by the number of hypotheses tested. This approach is known as the original Bonferroni
method. Two advantages of this approach are that it is easy to apply and it can be used in
many different multiple-testing situations (e.g. contrast analyses, univariate ANOVA tests
following a significant multivariate test). A disadvantage of this approach, however, is that the
statistical power to detect individual true differences can be low. A number of modifications to
the original Bonferroni procedure have been developed and applied. Five of these alternatives
were developed by Holm (1979), Holland and Copenhaver (198'7)* Hochberg (1988), Hommel
(1988), and Rom (1990). The objective of these modifications is to increase the statistical power
without increasing the risk of a Type I error rate.

Li, Olejnik, and Huberty (1992) compared the five modified Bohferroni procedures with
the original Bonferroni using 50 correlation matrices reported in the applied research literature.
The results of their study indicated very little difference in the number of hypotheses rejected
by the six methods. A major limitation of their study was that since they used real data sets
the true relationships among the variables could not be known. Consequently, differences
between Type I errors and true relationships could not be distinguished. In addition it was not
possible to study different definitions of power {Einot & Gabriel, 1975) : all true relationships, at

least one true relationship, and average power.

Applications of six Modified Bonferroni Procedures

Dunnett and Tamhane (1992) categorized these procedures for adjusting significance
levels into three groups : single-step {SS), step-down (SD), and step-up (SU), The SS procedure
(original Bonferroni) sets a single criterion for testing all individual hypotheses. The SD and SU
procedures order the hypotheses to be tested by their p-values, and then compute adjusted
significance levels for each individual hypothesis. The SD procedures (Holm, Holland-
Copenhaver) start the testing with the hypothesis with the smallest p-value, whereas the SU

procedures (Hochberg, Hommel, Rom) start the testing with the hypothesis having the largest



p-value. The slep-up procedures are based on extensions of the Simes (1986) modification of
the original Bonferroni procedure which was proven to control the overall Type I error rate to be

no greater than the nominal significance level if the tests are independent.

In this study, I use O to denote the overall Type I error rate per matrix, O' to denote a
criterion for testing an individual hypothesis, i to indicate the order of the hypotheses, and m
as the total number of hypotheses tested.

Alternatively, Wright (1992) suggested adjusting the reported p value and reporting the

adjusted p value as an indicator of "how significant” the result is; which is consistent with the

p-value approach to statistical testing as opposed to the fixed-Ol approach.

Original Bonferroni Procedure (SS) .

With the original Bonferroni (Bon) procedure, the value of Q'=0/m is computed. An
individual hypothesis Hg, with py < o' is rejected. Thus the overall Type I error rate is

divided equally among all of the possible hypotheses to be tested.

Holm Procedure (SD)
Hoim (Holm) (1979) proposed sequentially setting different significance levels for
rejecting each individual hypcthesis : let py,, ..., Py, be the ordered p values {smallest to largest)

and Hy,, ..., H,, be the corresponding hypotheses. The Holm procedure rejects Hy, to H,, if i is

{m)
the smallest integer such that p, > Ol/(m-i+1). Statistical power is gained by sequentially -
increasing the criterion for statistical significance. Because any hypothesis rejected by the
original Bonferroni procedure will alsc be rejected by the Holm procedure, the Holm procedure

can never have lower power for an individual hypothesis test.

Holland and Copenhaver procedure (SD)

Holland and Copenhaver (Hc1) (1987) recommended using the Sidak (1967) inequality to
set the criterion for individual hypothesis tests. Let py, ..., P, be the order p values and H,,
... Hy be the comresponding hypotheses. Suppose i is the smallest integer from 1 to m such

Wmeist),

that p(i)>1-(1-QX) : the Hel procedure rejects H(1) to H{i-1) and retains H(i) to H(m). The



criterion used by Hcl is slightly larger than the criterion used by the Holm procedure thus

leading to slightly greater power for an individual hypothesis test.

Hochberg Procedure (SU)

Hochberg (Hb) (1988) developed a step-up procedure based on an extension of the
Simes (1986) enhancement of the original Bonferroni procedure. Rather than beginning with
the smallest p value, Hb begins with the largest p value and proceeds sequentially through the

hypotheses with decreasing p values. The Hochberg procedure rejects H, to H for any i=m,

m-1, .1 if pmSOU(m-iH), The step-up procedure uses the same criterion for individual
hypotheses as does the Holm procedure but tests hypotheses with the larger p values first.
The consequence of this procedure is that Hb will test, and possibly reject, hypotheses not
examined by the Holm procedure while rejecting the same hypotheses that are rejected by the

Holm procedure.

Homme! Procedure (SU)

Hommel (Homm) (1988), extended the Simes (1986) test to individual hypothesis by

suggesting a procedure that requires two stages. Let J=fi' € {1, .., m} : Plnie) = koui': k=1,
. i), The first stage uses the obtained p values to compute the number of members in J.
The second stage obtains the significance level of rejection using &'za!j'., where j’ is the
largest number in J. Then, if J is nonempty, H, is rejected whenever p{ﬂS(X.;’j’. If J is empty,
all H, (i=1, ...m) are rejected.

An example application can nelp clarify the Hommel procedure. Suppose four
hypotheses (m=4) are to be tested with the overall G{=05 having the following ordered p-values
. py=-0011, p,=0145, p,=.0291, and p,=.0562. To determine ]'" in the first stage, several stepé
are needed involving one or more tests (denoted by k). At the first step i'=1; i’ is then
increased 1 at each step (k=1 ..i" within each step).

Step 1 only contains one test. Wit_h m=4, i":l, and k=1, p,. i'+kj:p{4]:‘0562‘ The

criterion value is kOUi'=1(.05)/1=.05. Because p>.05, the procedure continues with j’=1_



Step 2 contains two tests. For the first test in step 2, i'=2, k=1, O
p,=-0291, and kOQU/i'=1(.05)/2=.025. Because p>-025, the procedure continues. For the second
test in step 2, i'=2, k=2, Py, /4 Pru2u=Py=0562, and kOUi'=2(05)/2=05, with p,>05. Because
at step 2 both p, and p, are larger than the corresponding criterion values, the procedure
continues with j':2_

Step 3 contains three tests. For the first test in step 3, i'=3, k=1, Pt s =Piagir™
P,=.0145, and kOU/i' (05)/3=.0167. Because p,<.0167, the procedure at the first stage stops.
The largest number in J is 2, so j'=2.

In general, for each test, the obtained p value, p,, /., is compared with a computed
criterion values kOU/i'. If p{m_ir+m>k0tfi', the calculations move on to the next p., /. I p. />
kQL i for all the tests within a step, }' increases by one; otherwise}the calculations stop.

For the second stage of the Hommel procedure, reject Hy whenever p{nSGUj'. In the
current example, j'=2, 0(.!]":.05;’2:025. Therefore hypotheses H,, and H,, would be rejected. If
p< .05 at step 1 all hypotheses would have been rejected.

The Homme! procedure not only considers the order of the tests but also takes the

obtained p values into the calculation while computing the o'

Rom Procedure (SU)

Rorn (Rom) (1999) suggested another alternative to the original Bnferroni procedure that
enhances the statistical power, but his procedure is computationally intensive as the numb;er of
hypotheses increase. With the Rom procedure, I denote H,, as the hypothesis with the largest

p value and H; as the hypothesis with the smallest p value.

m)

The testing starts by comparing p, with Ol and stops when p,, < O,;'. Then H to
Hy,,, are retained and H, to H; are rejected. The computation needed to determine the G.i"s

can be divided into three parts. The first part is :_(l1 + O+ ..+ O and the second

r i

i i i i ! . .
part is : { . ) (O ) +( 5 )((X.'\'3 B (i 5 )((X,ﬁ_n”). The third part is to solve for 0’.1.',
which is obtained by subtracting the second part from the first part, and dividing the
difference by i. Using the example p-values presented in the previous section but reordered

(py=0011, y ;=.0145, p,=.0291, and p,~0562) the Rom procedure can be demonstrated. For



the Rom procedure Oimr is always equal to the overall ({. Because p,>.05, H, is not rejected
and the procedure continues.

For the second hypothesis QL is always equal to 0’.[,,';’2. Because p,,;>.025, H,, is not

rejected and the procedure continues. For the third hypothesis (er:lDLJ.—(XZ—S (oL, )/3=.0169.

{2

(The 3 that precedes (OL{ZJ'Z) is the result of ( ;) ) Because p{3}<0tmr, H, and all hypotheses

@)
with p smaller than p (i.e. p,) are rejected, and the remaining hypotheses are retained. Rom
(1990) provides adjusted critical values for up to 10 tests when the overall O equals .05 and .01.
The increased statistical power for an individual hypothesis test is obtained by controlling the
overall Type 1 error rate exactly at the nominal significance level. The alternatives to the
original Bonferroni procedure proposed by Holm (1979), Holland and Copenhaver (1987),
Hochberg (1988) and Hommel (1988) are conservative in limiting the overall Type 1 error 1ate to

be no greater than the nominal level.

Holland and Copenhaver procedure (SU)
An approach not previcusly considered is an application of the Holland and Copenhaver
as a step-up (Hc2) procedure. The Holland-Copenhaver step-up procedure may be described as

follow : let pyy, ... Py be the order p-values and H,, .., Hy, be the corresponding hypotheses.

!
Suppose i is the largest integer from 1 to m such that p; < 1-1-0)"™ ", The Holland-
Copenhaver step-up procedure rejects Hy, to H,, and retain Hy, to H,.

Li, Olejnik, and Huberty (13992) denionstrated the numerical examples for Bonferroni and

five modified Bonferroni procedures.

Purpose

The purpose of the present study is to address the limitations of the previoué
investigation by studying the Type I error rate and the three conceptualizations of power using
computer simulation methods. In addition a sixth modified Bonferroni method is iniroduced.
The Holland-Copenhaver approach uses a step down method. That is after ordering the p-
values, hypotheses are tested from the smallest to largest p-values. I test the hypotheses from '

the largest to the smallest p-values, thus a step-up approach. This step-up approach is similar



to the Hochberg method. The present study also uses the correlation matrix as the context for

multiple tests.

Related Literature

Li, Olejnik, and Huberty (1992) demonstrated the application of these six methods
excluding Holland and Copenhaver (step-up) method for controlling the overall Type [ error rate
using multiple hypothesis tests associated with a correlation matrix. A SAS macro computer
program was developed to compute the adjusted criteria for the original Bonferroni, Hochberg
(1988), Holland & Copenhaver (step-down) (1987), Holm (1979), and Hommel (1988) procedures.
Using a single data example, Wright (1992) demonstrated the increased statistical power for
individual hypothesis tests in the context of contrasts among means in a oneway ANOVA by .
presenting the adjusted p values associated with the original Bon,fenoni and the Holm (1979),
Hochberg (1988), and Hommel (1988) procedures. A computer program for computing the
adjusted p values recommended by Wright is available in PROC MULTTEST (SAS, 1992) and is
discussed by Westfall and Young (1993).

Analytically, it can be seen that the Holm procedure is more powerful than the original
Bonferroni and that the Holland-Copenhaver procedure is more powerful than the Holin
procedure. Hochberg and Benjamini (1990) showed that the Hochberg procedure is also more
powerful than the Holm procedure. Hommel (1989) showed that his procedure is as least as
powerful as the Hochberg procedure and in general can be more powerful. Holland (1991)
compared the Holland-Copenhaver, the Hommel; and the Rom procedures in the context of all
pairwise comparisons for a single factor repeated measures design. The results indicated that
the Hommel procedure rejected more hypotheses than either the Rom or Holland copenhaver
procedures; the difference in the number of tests rejected was, however, very small. Holland
suggested the need for further research in situations where there is no legical interrelationship
among the hypotheses tested. Finaly, Dunnett and Tamhane (1992) reported that the increase
in power for individual hypothesis tests provided by the Hommel and Rom procedures over the
Hochberg approach is at best marginal, with the Rom procedure having only a slight
advantage.
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Method

Computer programs were written using SAS/IML (1988) to generate correlation matrices
for the purpose of comparing the statistical power and Type I error rates among the seven
methods. Five factors were considered : number of variables, sample size, overall Type T error
rate, strength of the relationship between variables, and the number of true non-zero

relationships in a given matrix. Data were generated for four and six variables each having a

standard normal distribution. The null hypotheses were tested (H; : pn:O for all i7j) with the

overall Type I error rate set at .05 and .20. The true zero and non-zero relationships among the

variables were simulated for two situations. First, to study the Type | error rates all variables

generated were independent of each other (0=0 for all pairs of variables). Second, to compare
the seven procedures under each of the three definitions of power,, matrices were generated for
which pairs of variables were correlated .60, .40, or .20 when the number of variables equaled
four. When the number of variables in the matrix equaled six, pairs of variables were correlated
40. The partial Type I error rates were also considered. Thet is, for the subset of hypotheses
within a matrix where the variables were independent, the proportion of times when the null

hypothesis was rejected was recorded. Table 1 presents three example target population

correlation matrices involving four and six variables where three pairs of variables in the former

are correlated: a) 40 or .20, b) .60, and c) the five pairs of variables are correlated .40 with the

remaining pairs of variables being independent (D=0).

Table 1 Example Target Population Cormrelation Matrices for Four and Six Variables

Variable Variable Variable
v2 V3 V4 V2 V3 V4 V2 V3 V4 V5 V6
LI S R I R R e B (TR R TR R
V2 20 0 vz 60 0 V2 40 0 0 O
V3 40 V3 60 V3 40 0 0
V4 4 0

Vo 40
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The SAS-RANNOR function was used to generate the normal random numbers. The
matrices containing true non-zero relationships were generated using the procedure suggested
by Kaiser and Dickman (1962). To check the data generating procedure, 100,000 observations _
were generated for four variables with all pairs of variables being correlated 40. The absolute
value of the difference between the sample correlations and the population correlations was no
greater than .006. The procedure was repeated for six variables with the same results.

For each condition studied, 10,000 replications were generated. The percent of
hypotheses rejected by each procedure was recorded. Under the complete null, the proportion
of matrices rejecting at least one hypothesis was recorded. For non-null matrices the
proportion of matrices in which all true relationships were identified were recorded as well as
the proportion of matrices in which at least one true relationship was detected. Finally, when
two or more true non-zero relationships were present within a I'Il,atIiX, the average power for

detecting each of the true non-zero relationships was also recorded.

Results

Type I Error Rates. Table 2 presents the proportion of matrices in which at least one
correlation was declared significant when there were no true relationship among any of the
variables. All seven methods provided empirical Type I error rates less than the nominal
significance levels of 06 and .20 when the number of vanables equaled four and six. These

1esults provide a partial check of the computer programs.
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Table 2 Type I error Rates

k Q n Bon Holm Hcl Hb Homm Rom He2
10 051 051 053 051 051 052 053

05 30 046 045 047 046 047 047 047

50 051 051 052 051 051 052 052

4 100 047 047 048 047 048 048 048
10 178 178 196 179 184 197 197

20 30 182 182 201 183 189 201 202

50 178 178 194 178 183 194 195

100 189 189 203 189 194 204 204

10 050 050 051 050 050 051 051

05 | 30 047 | 047 | o048 | 047 | o047 | o048 | 048

50 049 049 050 049 049 049 050

6 100 051 051 052 051 051 052 052
10 182 182 199 182 184 199 199

20 30 179 179 199 180 182 200 200

50 187 187 204 187 189 205 204

100 179 179 196 179 181 196 196

Bon=0riginal Bonferroni procedure
Holm=Holm procedure
Hc1=Holland-Copenhaver (step-down) procedure
Hb=Hochberg procedure
Homm=Hommel nrocedure
*+ Rom=Rom procedure

Hc2=Holland-Copenhaver (step-up) procedure

All True Relationship Power. The proportions of matrices in which all of the true non-
zeio relationships were detected by the seven procedures are reported in Tables 3 through 6.

As expected, as the overall risk of a Type I error rate increases from .05 to .20 and as
the sample sizes increase, power increases, but as the number of variables in a matrix
increases, the probability of rejecting all of the non-null hypotheses decreases. All six of the
enhancements were more sensitive than the original Bonferroni procedure in detecting all true

non-zero relationships. The difference between the original Bonferroni procedure and the
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enhancements increased as the number of true non-zero relationships increased. Very small
differneces in statistical power, however, were found among the six enhancements to the
original Bonferroni procedure. The Holm procedure consistently had the lowest sensitivity in
detecting all true non-zero relationships while the Holland-Copenhaver (step-up) procedure had
the greatest power. When all of the correlations were non-zero the Hochberg, Hommel, and
Rom procedures had the same estimated power. The pattern of differences in power were

similar when the variables were correlated .40 or .60.

Table 3 All true relationship power for alpha=.05 k =4

#of sig. n Bon Holm Hcl Hb Homm Rom Hc?2
correlations
10 058 059 059 059 ? 059 059 059
1 30 332 334 337 334 334 337 337
50 613 614 617 615 615 617 617
100 943 943 944 943 943 943 944
10 004 005 005 005 005 005 | 005
30 116 133 135 133 134 135 135
50 370 402 405 404 405 406 407
2 60 508 541 545 541 542 545 545
70 643 675 680 676 877 680 681
80 747 771 773 772 773 774 774
90 821 840 842 840 841 842 842
100 282 396 898 896 896 898 898
30 004 008 008 008 009 .009 009
50 026 043 044 044 044 044 045
100 211 263 264 264 265 265 265
200 | 583 543 645 844 | 645 645 646 |
3 250 708 755 757 755 756 757 757
300 805 843 845 844 845 846 846
350 872 904 906 905 505 905 906
400 915 937 937 938 938 938 938
450 947 963 963 963 963 963 964
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Table 4 All true relationship power for alpha=.20 k =4

#of sig. n Bon Holm Hel Hb Homm Rom Hc2
correlations ) ) :

10 160 164 174 165 167 174 175

1 30 548 552 568 553 559 569 569
50 785 789 801 791 794 802 803

100 981 981 .983 981 982 983 983

30 292 339 .369 345 351 362 363

40 465 510 528 515 522 531 532

2 50 815 657 872 660 665 674 676
60 741 an 782 774 777 783 785

70 840 862 872 864 , 867 873 874

80 896 814 919 915 817 919 920

40 069 A11 121 119 124 127 130

50 126 185 197 183 199 203 206

60 177 244 262 253 258 266 270

70 240 319 335 326 332 338 342

80 309 .389 407 397 404 410 414

3 90 364 449 467 456 4€e3 470 473
100 415 498 514 505 510 .518 521

1560 626 695 | 708 700 704 710 713

200 761 819 826 823 826 829 830

250 - 859 895 901 898 800 .502 903

300 916 942 | 946 944 945 947 .947
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- Table 5 All true relationship power for alpha=.05 k =6
#of sig. n Bon Holm Hel Hb Homm Rom He2
correlations
10 .030 .030 031 .030 .030 031 031
1 30 220 220 224 220 220 223 224
80 496 496 .500 497 497 499 .500
100 892 892 B93 892 .892 893 893
50 113 127 130 128 128 129 130
60 220 238 242, 239 239 240 242
70 355 .379 384 .380 .380 .383 .384
3 80 481 507 514 .508 .508 511 512
90 607 631 635 632 g 632 634 635
100 718 736 739 736 " 736 738 738
120 .B57 867 .868 867 .BB7 .867 868
130 .905 915 917 915 915 916 817
200 211 253 256 253 2853 257 256
250 374 418 421 418 418 423 422
300 603 .bb7 59 5857 .6b7 .660 .669
350 634 678 682 678 678 683 682
5 400 750 .785 .786 785 785 787 786
450 .828 883 856 854 .854 .897 856
500 .820 910 912 810 .810 912 912
550 928 .943 944 943 942 .944 944
600 954 964 865 964 964 .965 865
7/{;& @f*ﬁﬂ'i*iﬁ?uaﬁsﬁigiaﬁﬁﬂ’isnw{fﬁrsq;a
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Table 6 All true relationship power for alpha=.20 k =6

#of sig. n Bon Holm Hel Hb Homm Rom He2
correlations

10 .085 086 .093 086 087 093 093

1 30 .397 .399 415 .399 A0 416 415
50 672 673 687 873 675 687 687

100 .955 956 .960 956 .956 960 960

50 315 344 .362 .344 .348 363 364

60 465 499 521 500 503 521 521

3 70 .606 636 654 637 640 655 .655

80 718 144 760 745 747 761 761

90 807 .825 837 825 827 .837 .837

100 875 890 .897 890 ' 892 898 .898

60 014 023 026 023 .023 026 026

100 030 122 132 122 123 132 132

150 .250 .296 311 296 301 311 311

b 200 421 478 498 479 .482 40R 496
250 590 .642 659 643 646 .6b9 658

300 731 175 788 776 778 788 788

350 819 851 861 851 853 861 B61

Although a very limited, specific sets cf conditions were studied in the present study in

* order to compare power estimates among adjustment procedures, Tables 3 through 6 do
provide some interesting results on sample size requirements for the conditions I simulated.
For example, when using the modified Bonferroni procedures, approximately the same sample
size is needed to detect all true non-zero relationships when all of the pairs of variables are
correlated .60 as when only one pair of variabies is comelated .60. Using Rom with k=4 and
0::20, a sample size of 20 will result in power of .806 when dnly one pair of variables is
correlated .60 and power of 814 when all 6 pairs of variables are correlated .60. This result is a
function of the dependence among the hypothesis tests when all pairs of variables are

correlated.  If fewer pairs of variables are correlated, a greater difference in sample sizes will

result. For example, with k=4 and O{=.20, power will equal 806 when N=20 when using the
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Rom procedure with one pair of variables is correlated .60. But with k=4 and O(=.20 and four
pairs of variables are correlated 60 a sample size of 25 would be needed for the estimated
power to equal .80.

Another interesting result is that when k=4 and Ol=.20, using Rom, the sample size
needed to detect all true relationships would be slightly less than 20 for power to equal .80

when all pairs of variables are comrelated 60. If a researcher had used the power tables

provided by Cohen (1988) to detect a cormrelation of .60 with Ol=20 and power equal to .80, only

- 11 participants would be needed. This result demonstrates a limitation of using the Cohen
power charts to determine the sample size needed if multiple hypotheses are tested and the
overall Type I error rate is controlled.

The partial Type 1 error rate for all matrices containing pairs of variables which were
independent of each other was less than the nominal significance Ifevels of .05 and .20.

At Least One True Relationship Power. Tables 7 and 8 present the proportions of
matrices in which at least one true non-zero relationship was detected when the significance
level equaled .05 and .20. Again predictable power results as a function of C{, k, and N were
obtained. Power estimates to reject at least one true relationship were always greater than the
power estimates provided in Tables 3 through 6 to reject all true non-zero relationships for the
same conditions. The results indicate almost no difference between the original Bongferroni
and each of the enhancements. Finally, the sample size needed to detect at least one true non-
zero relationship in the matrix was approximately the same as indicated by the sample size

. ch_a_rt provided by Cohen (1988); that is, for Ol=.20 and P=.40, a sample size of 28 is needed for
nower to cqual .80.
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Table 7 At least one true relationship power for alpha=.05

k #of sig n Bon Holm Hel Hb Homm | Rom He2
correlations

10 117 117 118 117 118 119 119

2 30 566 .568 571 568 b72 872 572

50 849 850 853 851 855 854 854

4 100 996 .896 9897 897 997 997 997

10 123 124 126 124 126 126 127

3 30 527 528 531 528 534 532 532

50 824 824 827 825 830 827 828

100 994 994 894 894 994 994 994

10 .085 .085 .087 .085 085 086 087

3 30 538 539 544 539 542 543 544

50 868 868 872 869 | 871 871 872

6 100 999 999 999 .999 999 999 999

10 095 095 097 .095 056 087 037

5 30 564 .665 569 565 568 569 .569

50 881 882 884 882 885 883 884

100 999 999 999 899 1.00 889 999
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Table 8 At least one true relationship power for alpha=20

k #tof sig n Bon Holm Hel Hb Homm Rom He2
correlations

10 293 299 319 .303 310 321 321

2 30 790 793 .808 796 806 811 811

50 956 957 962 957 962 962 962

4 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 312 318 337 318 327 339 .340

3 30 778 781 797 784 797 799 799

50 962 .963 956 954 959 .957 957

100 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00

10 227 230 247 230 234 248 247

3 30 782 784 798 785 790 799 799

50 965 965 970 965 | 967 970 970

6 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 269 271 289 272 277 280 289

5 30 808 810 .826 810 817 826 826

50 975 975 979 975 978 .979 979

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Average Power. The average proportion of true non-zero relationships rejected per
matiix are presented in Tables 9 and 10. The original Bonferroni procedure had the lowest
average power but the enhancement procedures offered only a small, generally between two
and three percent, increase in average power. Using the Cohen (1988) sample size charts
would result in an underestimate in the needed sample size to achieve the desired level of

power.




Table 9 Average power for alpha=.05

20

k tof sig n Bon Holm Hel Hb Homm | Rom Hc2
correlations
30 341 .350 .353 351 .353 .353 .354
50 .609 626 629 627 630 630 630
60 713 730 733 731 732 733 733
2 70 801 818 821 818 820 821 821
80 .865 877 .878 877 .878 .878 878
90 .906 915 916 915 916 816 916
4 100 939 946 547 946 947 847 947
30 212 219 221 220 223 222 222
50 397 414 417 415 418 417 418
3 100 .686 709 B 4] 710 12 11 J11
200 .860 881 .882 .881 .882 882 882
250 903 918 919 918 919 919 918
300 935 .948 948 .948 .948 949 .949
30 226 229 232 230 Z31 232 232
50 486 495 499 495 498 499 499
€0 bu4 614 617 614 616 817 B17
3 70 708 719 722 720 721 722 722
80 783 794 796 794 795 797 797
a0 .646 .856 858 .856 857 857 868
100 895 902 903 802 902 203 903
120 950 954 954 854 954 .954 .954__
6 30 147 150 152 151 152 162 162
50 315 .323 328 323 325 325 325
100 605 618 620 618 620 620 620
5 200 784 .798 799 798 798 .800 799
250 .843 .856 857 856 856 .857 857
300 885 857 898 857 897 898 898
350 919 .829 930 929 929 530 930
400 947 .954 945 954 954 955 956
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Table 10 Average power for alpha=.20

k #of sig n Bon Holm Hel Hb Homm | Rom Hc2
correlations

10 160 168 180 171 176 183 183

30 541 566 584 570 579 586 587

2 40 680 704 716 707 714 719 719

50 786 807 817 809 814 818 819

60 860 875 882 876 879 882 883

4 70 916 927 933 928 930 933 934

10 116 123 133 126 131 136 136

30 347 399 413 403 413 416 418

50 571 606 617 611 619 620 622

70 690 726 735 729 734 736 738

3 80 735 768 FIE L7 b\ 7% T8 778 780

90 765 799 806 801 805 808 809

100 791 822 828 824 827 829 830

150 875 898 902 900 901 903 904

200 920 940 942 941 942 943 943

30 398 409 423 409 414 424 424

50 681 895 2 696 699 709 709

3 60 775 790 801 790 793 802 802

70 846 858 866 858 860 866 366

6 80 89 905 912 906 907 912 012

90 932 938 942 938 939 042 | 942

30 245 274 287 275 280 287 287

> 40 375 390 402 390 395 403 403

50 457 474 485 474 479 486 486

5 60 531 549 560 550 554 561 561

100 702 720 728 721 723 728 728

150 797 813 819 813 815 | 819 819

200 | 859 | 875 | 880 | 875 | £ | 881 | .88

250 906 920 924 | 920 921 924 924




Conclusions

The Bonferroni method for controlling the Type I error 1ate over a series of hypothesis
tests has been popular among researchers because of its computational simplicity and wide
applicability. Its major limitation has been a reduction in statistical power for the hypothesis
tests as the number of tesls increase. In recent years several efforts have been made to
increase the statistical power of the Bonferroni method.  Analytic studies of these
enhancements have shown that they do provide greater sensitivity to true relationships than
the original Bonferroni but the magnitude of that difference has not been clear. Similarly,
comparisons between the enhancements have been shown analyticelly that some altematives
are more powerful than others but again the magnitude of the difference has not been clear.
The greater statistical power has generally come as a result of increase computational difficulty.

Li, Olejnik, and Huberty (1992) raised some question’ as to the utility of the
enhancements when they showed very small differences between the alternatives and only
modest increases in power over the original Bonferroni, They used real data sets where true
relationships could not be distinguished from Type [ errors.

In the present study I used computer generated data to investigate Type I erior rates
and three definitions of statistical power to compare five suggested enhancements to the
Bonferroni and T proposed still another enhancement that has not been previously considersd
based on the Holland-Copenhaver approach. Results show that for all three definitions of

power, the new step-up Holland-Copenhaver and the Rom procedures tend to have the highest

. power among the seven procedures. Because the Rom procedure is more complicated, I

recommend the Holland-Copenhaver (step-up) procedure to be used. Moreover, results from
_ this study are consistent with 1) Hommel (1989) that the Homme! procedure is at least as
" powerful as the Hochberg procedure, and in general more powerful. The power difference
however is in the third decimal place. 2) Dunnett and Tamhane (1992) that power increases
yielded by the Hommel and the Rom procedures over the Hochberg procedure are marginal at
the best, with the Rom procedure being slightly superior. c¢) Hochberg and Benjamin (1950)
thét Holm procedure is sharper than the original Bonferroni and the Hochberg procedure is
'"‘s;':'sharper than the Holm procedure. All six modified Bonferroni procedures are supetior to the

origiﬁal Bonferroni procedure under all true relationship power and average power. However, 1
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gain less than 2% when alpha is small (i.e., .05) and less than 5% when alpha is .20 under the
average power definition. Under all true relationship power I gain greater power only when
alpha is large (.20) and there are large number of true relationships in the matrix. Therefore,
while I agree with Holland and Copenhaver (1987) that a modified Bonferroni procedure should
be used in situations where the original Bonferroni would otherwise be the method of choice, 1
have been disappointed with the magnitude of the power increase.

Controlling the overall Type 1 error rate over a series of hypothesis tests is an important
topic of interest to applied researchers and data analysis. A considerable effort has gone into
modifying the Bonferroni method in order to increase statistical power. Results of the present

study appears that this effort has not been too successful in improving the statistical power.
. Additional research in this area is needed to develop still other alternatives that may be more

sensitive to true relationships than the current enhancements and the original Bonferroni.
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Example of program used in Type I exrror rate calculating



options pagesiza=54;
proc iml wrkspace=300;

title "type I error rate with n=10,30,50,100

n=10;

c=4; i — =
alpha=.05;

count=j(1,8,0);
pncount=j(1,8,0);

do ii=1 to 10000;

x =rannor(j(n ,c,0));
sum=x[+,];

XpPX=X ¥X-sum ¥sum/n;
s=diag(1/sqrt(vecdiagixpx)));
r T sSEXpXx¥sS;

ne={c¥{c-111/2;
cp=jlnc,1,0);

cpll;1]1=rl2,11;
cpl2,11=rL3,11;
cpl3,11=r(3,21;
cplG,11=r(6,11;
cp{511]=r‘E412];
CP[SJI]““‘[’*,E];

%rint cp;
top=cpHi(sqrtin-211;
bo=sqrt(l-cpi#i2z);

t=top/bo;
p={l-probt(abs(t),(n-2)))%2;
¥rint top bo t p r x;

b=p;
pl rank(p),1=b;
¥rint b p;

*={-G336,.0338,.0520,.ﬂ?Zﬂ,.b?Bﬂ,;2SGG};
¥={.0400,.0300,.0520,.0800,.1100,.2200};

#¥%% no control of type I error Xxxx;
nocntl=j(nc,;1,alpha);

cl=jlnc,1,0};

cl=p<nocntl;

¥rint nocntl cl p;

#%% original Bonferroni procedure ¥%¥;
bonf=jine,l,alphal;

bonf=bonf/nc;

c2=j(nc,1,0);

c2=p<bonf;

¥rint c¢2 bonf p;

¥2¥ Holm procedura X3;
holm=j(rc,1,0};

%rint holm;

'de i=1l to nc;
holmii,ll=alphas/{nc-itl);
and;

_c3=j(nc,1,ﬂ];

k=%

alpha=.05";
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—c3=p<holm;
#rint ¢3 p holm;
_%%¥ Holland-Copenhaver procedure 33;
—hoco=jlnec,1,0); .
_do i=1l %to nc;
= xx=1/(ne-1+%1);
hocol[i,l)=1-(1l-alphal##ixx;
end;
c4=3jinec,1,0);
c4=p<hoco;
#rint c% hoco pj;

#%% Hochberg procedure ¥x;

hoch=jlnec,1,0);

do i=1 to nc;
~hochli,l)l=alpha/lnc-i+1l);

end;

cb=3(nc,1,0);

ch=p<hoch;

#rint ¢5 p hoch;

#%% Hommel procedure ¥¥x;
p2=jlnec,1,0);
p2[1,11=pl6,11;
p2[2,11=p[5,1];
p2l3,11=pl4,11;
p2l(4,11=p[3,11;
p2(5,11=p(2,11;
p2l6,11=pl1,11];

¥={.2670,.0633,.0633,.0350,.0255,.0129,.0089,.0011,.0001,.0000};
¥e=1h; 3
¥lpha=.10;

hn=nz;

r=-1;

pp=1;

z=nc; .
do i=l to nc whilel(pp > m);
do k=1 to i whilefpp > m);
m=kzalpha/i;

hn=nc-i+k;

pp= plhn,11;

if pp<=m then 2z=i-1;

end;

if pp<=m then i=i-1;

end;

hemm=3j{nc,1l,alphal;
if z>0 then
homm=homm/z;
cb=3(nc;:1,0);
ch=p<homn;

*rint cé p homm i;

¥%%¥ Rom procedure ¥¥¥;
rom=jlnc,1,0);
rom{1,1]1=.0085;
rom[2,1]1=.0102;
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rom[3,11=.0127;
rom(4%,1]1=.0169;
rom[5,1]1=.0250;
ronl[6,1]1=.0500;
ce7=p<rom;

*rint ¢7 p rom;

*%%xholland cooenhaver step-up##x;
hoc2=j(nc,1,0];

da i=1 to nc;

xx=1/(ne-i+l);
hoc2[i,1]=1-(1-alpha)##ixx;

end;

c8=jinc,1,0);

c8=p<hoc2;

¥rint c8 hoc2 p;

ctl=cll+, 1
]

’
-
r

ct2=c2l+,

ct3=0;

do i=1 to nc while (c3[i,11=1);
ct3I=ct3+l;

end;

cta=0;

do i=1l to nc while (c4[i,1]1=1);
cté=cté+l;
end;

ct5=nc;
do i=nc to 1 by -1 while{c5[i,1]1=0);
ctS5=ct5-1;

end ;

cté=nc;

do i=nc te 1 by -1 while(cb[i,11=0);
cte=ct6-1;

end;

ct7=nc;

do i=nc to 1 by -1 wnilel(e7[i,11=01;
ct7=ct7-1;

end;

cté=nc;

do i=nc to 1 by -1 while(c8L[i,;1l1=0);
ct8=ct8-1;

end;

countll;ll=countfl,1]1+ctl;
count[l,2]l=count[l,2]+ct2;
countl[l,3]l=countl[l1,3]1+ct3;
countll,4]l=countll,4]+ct%;
countl[l,5]l=countll,5)+ct5;
count{l,6l=countll,él+cts;
countll,7)=countil,71l+ct7;
countll,8]l=count(i,8]+ct8;

if ctl=0 then p:cuunt{l,11=pmcount[1,1]+0}
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— else pmcount[l,li=pmcountil,1]1+1;

if ct2=0 then pmcount[l,2]l=pmcount[l,2]+0;

e -— else pmcountll,2]l=pmcount(l,2]+1;
_if ct3=0 then pmcountl[l,3]=pmcount[l,31+0;

= else pmcountl[l,3]l=pmcountll,3]1+1;

if ct4=0 then pmcountil,4l=pmcountlil,s]+0;

= -~ else pmcountll,4]l=pmcountll;4l+1;
if ct5=0 then pmcount[l,5]=pmcount{l1,5]1+0;
else pmcountl[l,5]=pmcount[l,5]1+]1;

if cté6=0 then pmcountll,él=pmcount[l,6]+0;
else pmcountll,é6l=pmcount[l,6]+1;

if ct7=0 then pmcount[l,7l=pmcount[l,7]1+0;
else pmcount[l,7]=pmcount[l,71+1;

if ct8=0 then pmcount[l,8]l=pmcount[1,8]4+0;
else pmcount[l,8)=pmcount[1l,8]+1;

end;

print count pmcount n ii alpha nc
n=30;

c=4;

alpha=.05;

count=3(1,8,0);
pmcount=3j(1,8,0);

do ii=1 to 10000;

% =rannor(iln ,c,0));
sum=x[+,]1;

XPX=x ¥x-sum ¥sum/n;
s=diag(l/sqrtlvecdiag(xpx)));
r = S¥Expx¥s;

nc={c*¥le-12)/2;
cp=ilnc,1,0);

cpll,11=rl2,1];
epl2,13=ri(3,11;
eplZ,11=riZ,2]1;
cpl4,11=rl4,1];
cpl5,11=i[4,2];
cpl6,11=ri4,31;

rint cp;
top=cp#(sqrtin-2));
bo=sqril(l-cpH#2)];

t=top/bo;
p=(l-probttabs(t),(n-2)))x%2;
¥rint top bo t p r x;

b=p;
pl rank(p),1=b;
*rint b p;

¥={.0330,.0338,.0520,.0720,.0900,.2500};
¥={.0¢00,.9300,.0E29,.0800,.1100,.2200};

#%¥%¥ no control of tyvpe I error ¥ux;
nocntl=j(nc,1,alphal;

cl=jlnec,1,0);

cl=p<noecntl;

¥rint nocntl ¢l p;

e
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~%%% original -Bonferroni procedure ¥x;
bonf=ji{nc,l,alphal;

bonf=bonf/nc;

c2=zjinc,1,0);

c2=p<bonf; .“ —
¥rint c2 bonf p;

#%% Holm procedure ¥XX;
holm=ji{nec,1,0);

#rint holm;

do i=1 to nc;
holm[i,l)l=alpha/{nc-i+l);
end ;

c3i=jlnc,1,0);

c3=p<holm;

*rint ¢3 p holm;

¥%% Holland-Copenhaver procedure X#;
hoco=jlne,1,0);

do i=1 to nc;

x%x=1/{nc-i+1);
hocoli,l]1=1-(1-alphal##dxx;

end;

c4=3j(nc,1,0);

c4=p<hoco;

¥rint c¢ hoco p;

#%¥ Hochberg procedure #*¥¥;
hech=j(nec,;1,0);

do i=1 to nc;
hochli,l]l=alpha/{nc-i+l);
end;

c5=jilne,1,0);

c5=p<hach;

¥rint ¢5 p hochj;

*¥%% Hommel procedure X¥x;
p2=jinc,1,0);
p2l1,1]1=pl6,11;
g212,11=p(5,11;
p2(3,11=pl4,1]1;
p2l(4,11=p[3,11;
p2(5,11=p(2,11];
p2l6,11=pl[1,11;

*={,2670,.0633,.,0633,.0350,.0255,.0129,.0089,.0011,.0301,.00001};
‘%c=10;
*¥lpha=.1G;

. hn=n¢;
m=-1;
pp=1;
Z=nc;
do i=1 to nc whilefpp > m);
do k=1 t0o i while(pp > m);
m=k*alpha/i;
" hn=nc-i+k;
pp= plhn,131;
if pp<=m then z=i-1;
.end; -
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—if pp<=m then i=i-1;
end;
~homm=j(nec,1,alphal;
—if z>0 then
__homm=homm/z;
—=¢c6=jinc,1,0);
cé=p<honm;
¥rint ¢6 p howmm 1i;

¥%¥% Rom procedure *x;
rom=jlnc,1,0);
rom{1,1]=.0085;
rom[2,11=.0102;
rom[3,11=.0127;
rom[4,1)=.0169;
—rom[5,11=.0250;
rom{6,1]1=.0500;
c/=p<rom;

¥rint ¢7 p rom;

¥%¥¥holland copenhaver step-up#%¥;
'hoc2=j[nc,1,ﬂ];

‘do i=1 to nc;

xx=1/(pe-i+l);
hoec2[i,ll=1-(1-alpha)##xx;

end;

c8=j(nc,1,0);

c8=p<hoc2;

#rint c¢8 hoc2 p;

ct1=01[+g ];
cte=c2l+, 1;

ct3=0;

do i=1 to nc while (e3[i,11=1);
ct3=ct3+1;

end;

ct4=0;

de i=1 to nc while (e%[i,11=1);
ctg=ct4+1;

end; .

ctB=nc;

do i=pc to 1 by -1 whilele5[i,11=0);
ct5=ct5-1;

end;

ctéb=nc;

do i=nc to 1 by -1 while(ec6[i,1]1=0);
cte=cté6-1;

end;

ct7=nc;

do i=nc to 1 by -1 while(ec7[i,1]1=0);
R ct7=ct7-1;

end;

ct8=nc;



do i=nc to 1 by -1 while(c8[i,11=0);
ctB8=ct8-1;
end ;

countfl,ll=countil,l)l+ctl; B
count(l,2]=count(l,21+ct2;
count[l,3]1=count(l,3]1+ct3;
countll,4]=countll,;4]l+cts;
count[l,5]=countil,51+ct5;
count[l,é6]l=count[l,61+ct6;
countll,7]l=count[1,7]1+ct7;
count(1l,8]=count(l1,81+cts;

if ctl=0 then pmcount(l,ll=pmcountll,11+0;
else pmcount[l,l]l=pmcountl1,11+1;
if ct2=0 then pmcountll,2]l=pmcountl1,21+0;
else pmcount[l,2]=pmcountll,2]1+1;
if ct3=0 then pmcountll,3]=pmcount[1,3]1+0;
else pmcountll,3l=pmcountil,3]1+1;
if ct4=0 then pmcount[l,4]l=pmcount[l,4]1+0;
else pmcountll,4)=pmcountll,4]1+1;
if ct5=0 then pmcount{l,5]=pmcount[l,51+0;
else pmcounti{l,51=pmcountll,5]1+1;
if ct6=0 then pmcountll,é6]l=pmcount[1l,61+0;
else pmcountfl,é6l=pmcount[l,61+1;
if ct7=0 then pmcountll,7l=pmcount[1,71+0;
else pmcount[l,7i=pmcount[l,71+1;
if ct8=0 then pmcount{l,8l=pmcount(l,81+0;
elsa pmcount[l,8l=pmcount[l,8]1+1;

end;

print count pmcount n ii alpha nc
n=50;

c=h;

alpha=.05;

count=3j(1,8,0);
pmcount=3(1,3,0);

do ii=1 to 1900400;

x =rannor(3{n ,c,0)5;
sum=x[+,1;

XKPX=X ®X-sum ¥sum/n;
s=diag(l/sqrt(vecdiagixpx)));
T = sS¥xpx¥s;

nc=(c¥(c-11)/2;
ep=jlnc,1,0]};

cpll,l]l=r[2,13;
epl2,11=r(3,1];
cpl3,11=r[3,21;
cplé,11=r(4,11;
cpl5,11=ri%,2];
cplb,;11=r[4,3]1;

#rint cp;
top=cp#(sartin-211;
bo=sqrti{l-cp##2);

t=top/bo;

p=(1 probtlabs(t]),{n-2))1%2;
~¥rint top bo_t p r x;

-



o — —_—

— — -

b=p;

=pl rank(p),l=b;
—*rint b p;

—

*={.0330,.0338,.0520,.0720,.09008,.2500};

=%={.0400,.0300,.0520,,0800,.1100,.2200};

¥%% no control of tvpe I error xx¥;
nocntl=jlnc,;1l,alphal;

cl=jine,1,0);

cl=p<nocntl;

¥rint nocntl ¢l p;

%#¥% original Bonferroni procedure x%¥x;
bonf=jlnec,1,alphal;

banf=bonf/nc;

c2=jlnc,1,0);

c2=p<bonf;

¥rint c¢2 bonf p;

%% Holm procedure ¥%;
holm=3j(ne,1,0);

“#rint holm;

do i=1 to nc;
holmli,ll=alpha/lnc-i+l);
end;

‘e3=3jinc,1,0);

c3=p<holm;
#rint c3 . p holm;

#%% Holland-Copenhaver procedure ##%;
hoco=3jinc,1,0);

da i=1 to nc;

xx=1/(nc~i+1};
hocoli,l1]l=1-{1l-alphal##xx;

end;

c4=3(nc,;1,0);

c4=p<hoco;

#¥rint ¢4 hoco p;

¥%% Hochberg procedure ¥¥¥;
hoch=jinec,1,0);
do i=1 to nc;

‘hochii,ll=alpha/(nc-i+1);

end;
c5=jine,1,0);
ch=p<hoch;

¥rint ¢5 p hoch;

£#%%¥ Hommel procedure ¥¥x;
p2=jtne,1,0);

p2l1,11=pl6,1]1;

p2l2,11=p[5,11;
P2l3,11=pl[%,1]};
p2l4,11=p[3,11;

~p2l5,11=pl2,11;

p2l6,1]1=p[151];

'!z{-zﬁ?ﬂ,.0633,.0633,.0350,.0255,.0129:.0089;.0011,.0001,.0000}i



%e=10;
¥1pha=.10;

hn=nc;

m=-1; . ' —
pp=1;

z=nc;

do i=l to nc whilel(pp > m);
do k=1 to i while(pp > m);
n=k¥*¥alpha/i;

hn=nc-i+k;

pp= plhn,11;

if pp<=m then z=i-1;

end;

if pp<=m then i=i-1;

and ; '

homm=jinc,l,alphal;
if z>0 then
homm=hommn/z;
c6=jlnc,1,0);
cb=p<homm;

#rint c6 p homm i;

#¥%¥%¥ Rom procedure ¥¥¥;
rom=3jlnc,1,0)};
rom[1,1]1=.0085;
rom[2,1]1=.0182;
rom{3,11=.0127;
rom[{4%,1]1=.0169;
rom[5,1]1=.0250;
rom[6,1]1=.0500;
c7=p<rom;

*rint ¢7 p rom;

*¥%¥%holland copenhaver step-up¥¥ix;
hoc2=jinc,1,0); -

do i=1 to ncj;

xx=1/(nc-1i+1];
hoe2li,1]1=1-¢1l-alpha)#ifixx;

end;

c8=jinc,1,¢C);

c8=p<hoc2:;

¥rint ¢8 hoc2 p;

ctl=cll+, 1
1

;
]

ct2=c2[+,

ct3=0;

do i=1 to nc while (c3[i,1l1=1);
ct3=ct3+l;

end;

ct4=0;

do i=1 to nc while fc4l[i,11=1);
cta=ct4+l;
end;

_ct5=nc; _



~do i=nc to 1 by -1 while(c5[i,11=0);
ct5=ct5-1;

=and;
—cté=nc;
.do i=nc to 1 by -1 whilef(cé6li,11=0);
= cté6=ct6-1;
end;
ct7=nc;
do i=nc to 1 by -1 whilelc7[i,11=0);
y ct7=ct7-1;
end;
cté=nc;
do i=npc to 1 by -1 while(c8[i,11=0);
ct8=cta8-1;
end;

countll,l]l=countl[l,11+ctl;
count[l,2]l=count[l,2]+ct2;
countl[l,3)=countl[l,3]+ct3;
countl[l,4]=countll,4]+cts;
count[l,5]=count[l,5]+ct5;
"countl[l,6]=countl[l,6]4cté;
" countl[l,7)=count[l,71+ct7;
count(l,8]=countll,8]+ct8;

if ctl=0 then pmcountll,l)=pmcount[l,1]1+0;
else pmcount[l,;l]l=pmcount[1,1]1+]1;

if ct2=0 then pmcountl[l,2]=pmcountll,21+0;
else pmcountil;2]=pmcount[l,2]+1;

it ¢t3=0 then pmcouni[i,3l=pmcounti[l,31+0;
alse pmcount[l,3]=pmcount[l,;3]+1;

if ct4=0 then pmcount(l,4i=pmcountll,4]1+0;
else pmcountil ,4]l=pmcount[l,41+1;

if ct5=0 then pmcount[l,5]=pmcount[1l,5]1+0;
else pmcountl[l,;5)l=pmcount[1l,5]1+1;

if ct6=0 then pmcountil,si=pmcount[l,61+0;
else pmcount[l,6]=pmcount[l,;6]1+1;

if ¢17=0 then pmcount(l,7]l=pmcount[l,7]1+0;

: else pwmcount[l.7]=pmcount[l,71+1;

if ct8=0 then pmcountll,8l=pmcount[1,8]+0;
else pmcount[l,8]l=pmcount[l,8]+1;

end;

print count pmcount n ii alpha nc

n=100;

c=6;

alpha=.05;

count=3(1,8,0);

pricount=3j(1,8,0);

‘ do ii=1 to 10000;

x =rannor(jln ,c,0));

sum=x[+,1;

XpX=X ¥x-sum ¥sum/n;

s=diagll/sqrtl(vecdiagi{xpxl));

r o= S¥xpxie ;

nc=(c*(c-1))/2;

cp=jinc,1,0);
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CP[lJlJ:r[ZJIJ;
cpl2,11=r(3,11;
cpl3,11=r[3,2];
cpl4,11=rl4,11]1; . )
cpl5,11=r(4,2];
cpl6,11=r[4,31;

*rint cp;
top=cp#(sart(n-2));
bo=sqrt(l-cp##z);

t=top/bo;
p=(l-probt{abs(t),(n-2)))%2;
#rint top bo t p r x;

b=p;
pl rank(p),1=b;
#rint b p;

¥={.0330,.0338,.0520,.0720,.0900,.2500%};
#={.0400,.0300,.0520,.0800,.1100,.22001};

¥%% no control of type I error xXx;
nocntl=jinc,1,alphal;

cl=j(nc,1,0);

cl=p<nocntl;

¥rint nocntl <l pj;

#%¥% ogriginal Bonferroni procedure ¥¥%¥;
bonf=jinc,l,alphal;

bonf=bonf/nc;

c2=j(nc,1,0);

c2=p<boanf;

¥rint c2 bonf p;

#¥¥%¥ Holm procedure Xx¥X;
holm=j(nc,1,0];

¥rint holm;

do i=1 to nc;
holm[i,il=alpha/(nc-i+l);
end;

e3=jlne,1,0);

c3=p<holm;

#¥rint ¢3 p holm:

##% Holland-Copenhaver procedure *¥¥;
hoco=3j(nec,1,0);

do i=1 to nc;

xx=1/(nc-i+1);
hecoli,l]l=1-(1-alphalf#ixx;

end;

cG4=jlne,1,0);

cG=p<hoco;

¥rint c% hoco p:

#%¥% Hochberg procedure %¥;

hoch=ji{nc,1,0);

do i=1 to nc;

hochli,ll=alpha/(nc-i+l);
_end; 2z



“e5=jlne,1,0);
cE=p<hoch;
=%rint c5 p hoch; -

——%x%% Hommel procedure *%¥;

_p2=3lne,;1,0);

=p2[1,11=pi6,11;
p2l2,1)=pl5,1];
p2l[3,11=p[4,1];
p2l4%,1]1=p[3,1]1;
p2[5,1]1=pl2,1];
p2l6,1]1=pl[1,11;

#={.2670,.0633,.0633,.0350,.0255,.0129,.0089,.0011,.0001,.0000};
#c=10; b
®lpha=.10;

hn=nc;
m==-1;
pp=1; ¥
zZ=nc;
do i=1 to nc whileipp > m);
do k=1 toc i whilel(pp > m);
‘m=k¥alpha/i;
hn=nec-i+k;
pp= plhn,11;
if pp<=m then z=i-1;
end;
if pp<=m then i=i-1;
end;

hemm=jlnc,1,alphal;
if z>0 then
homm=homm/2z;
cé=jlnec,1,90);
cb=p<homm;

%rint c6 p homm ij;

¥%x% Rom procedure %¥x;
rom=j{nec,1,0);
rom[{1,1]1=.0085;
rom[2,11=.0102;
rom[3,1]1=.0127;
rom[(4,11=.0169;
rom(5,11=.0250;
rom[6,11=.0500;
c7=p<rom;

#rint ¢7 p rom;

¥xxholland copenhaver step-up¥*x;

hoe2=jinc,1,0);

do i=1 to nc;

xx=1/(nc-i+1l);

hoe2li,1]1=1-(1-alphal)##ixx:

ond;

cb=3lnc,;1,03;

c8=p<hoc2; — i
%rint c8 hoc2 pj;



ctl=cll+
ct2=c2(+

ct3=0;
do i=1 t

end;

ct4=0;
do i=1 t

end;

ctS5=nc;
do i=nc

end;

cté=nc;
do i=nc

end;

ct?=nc;
da i=nc
end;

ct8=nc;
do i=nc

aend;

> 1;
s 1;

o nc

o nc

to 1

to 1

tao 1

41

while (c3[i,11=1);
ct3I=ct3+];

while (c4[i,1]1=1);
ctg=cta+l;

by -1 while(c5[i,11=0);
ct5=ct5-1;

by -1 while(c6[i,11=0);
cté=cté-1;

by -1 while(e7[(i,1]=0);
ct7=ct7-1;

by -1 while(c8li,1]=0);
ct8=ct8-1;

countl[l,l)l=count[1,11+ctl;
count{l,2]l=countll,2]+ct2;
count[l,3T=countll,31+ct3;
countll,4]l=countll,4l+ctsd; -
countl[l,5]=counrtll,5]1+ct5;
countil,él=countll,é6l+cts;
cauntli,?l=countil,7]+ct7;
countll ,8)l=countl[l,81+ct3;

if ctl=o
if et2=0
if ct3=0
if cta=0
if ct5=0
if cte=0
it ct7=6
if ct8=0

end;

then
else
then
else
then
else
then
else
then
elss
then
alss
then
elise
then
elsa

prncount[l,l]=pncount[l,;1]1+0;
pmcountil,il=pmcountil,11+1;
pacount(l,2]=pmcount{l,21+0;
pmcount[l,2]l=pmcount(1,2]1+1;
pmcountll,3]1=pmcount(1,31+0;
prmcountfl ,31=pmcountl1l,3]1+1;
pmcount(l,4l=pncountil,&]+0;
pmcount[l,;4l=prncount(l,41+1;
pmcount[l,5]=pmcount(1,5]1+0;
pmcount[l,5]=pmcount{l,51+1;
pmcountil,él=pmcount[1,61+0;
pnceount(l ,£l=pmcountil,6l+l;
pmcount[l,71=pmcount(1,71+90;
pmcountil,7]l=pmcount[1,7]1+1;
pmcount[l,8]=pncount[l,8]+0;
pmcouni{l.8]=pmcountl[l,8)+1;

print count pmcount n ii alpha nc

—quit;

e



Example of program used in statistical power calculating



FILE: RD9 SAS Al UGA VM/ESA2.1

oplions pagesize=54;
proc iml wrkspace=300;
N=50

£=4;

elpha=.20;

CHs PASE

title "n= 60 c=% alpha=,20 second Eethod 3 corr®;

" uwx%% Define mairices for counting
pl2z__cr =3(1,8,0);
pl3__cr =3(1,8,0);
pl4__cr =3j(1,8,0);
p23__cr =3j(1,8,0);
p24__cr =3j(1,8;0);
p34__cr =3j(1,8,0);
pl234cr =3j(1,8,0);
patlecr =3(1,8,0);
F={.47712 .67175 .52188
.7T7199 L%1516 -.32254
.77199 -.41516 -.32254
47712 -.67175 .52188
number of iteration

i

-.22080,
+35727,
-.35727,
.22080%};
%% ®:k;

DO II=1 TO 1e¢000;

%% compute correlation matrix

30 3
x =rannor(jin ,c,0));

xhat=t(x);

vhat=fxxhat;

y=t(yhat);

sue=yl[+,];

Ypy=y ¥y-sum ¥sua/n;
s=diag(l/sqrtivecdiag(ypyl));

r = skKypy¥s;
nec=(c®(c-1))/2; %%¥ nc is the number
cp=jlnc,1,0); E 3 31

3

cpll,li=rl2,11;
cpl2,11=r[3,1];
cpl3,11=r(3,2]1;
09[4;1]=l‘[4)1];
cpl5,11=rl4,2];
cpl6,11=rl%,3]1;

E 3 2

top=cptisqrti(n-2));
bo=sqrit(l-cpli@2);

t=top/bo;
p=(l-probtiabs(t),(n-2)))#%2;

ranking the p values H¥E

put individual correlations into cp in = defined order

computing p values for the correlation

of corrslations exx;

define mairix cp with nc rows;,; 1 col. 0 value;

Mg

(33

gsool



FILE: RD9 SAS Al UGCA VH/ESAZ

re=rank(p);

corl2=rpll,1];
cor23=rpl3,1]1;
cor34=rplé6,1];

b=p;

pl ranki(p),]=b;

#rint r p corl2 cor23 cor34;

EE 2 2

xxx%x computing criteria value for each
3383 %

#¥%¥¥%¥ no control of type I error ¥¥x;
nocntl=jinc,1,alpha);

cl=3j(nc,;1,0);

cl=p<nocntl;

%#rint ¢l p nocntl;

%%% original Bonferroni procedure x;
bonf=jinc,l,alphal;

bonf=bonf/nc;

c2=jinc,1,0};

cZ2=p<bonf;

#rint c2 bonf p;

#%% Holm procedure Mix;
holm=jinc,1,0]);

%rint holm;

do i=1 to nc;
holmli,l)l=alpha/lnc-i+l);
end;

c3=jlnec;1,0);

c3=p<heolm;

¥rint ¢3 p hols;

%#%#¥% Holland-Copanhaver procedurs ¥&%;
hoco=3jinc,1,0);

do i=1 to nc;

xx=1/(nc-i+1);
hocoli,l1l=1-{1-alphal)#fxx;

end;

c4=j(nec,1,0);

cG=p<hoco;

#rint ¢4 hoco p;

¥#% Hochberg procedurse x;
hoch=jlnc,1,0};

do i=1 to nc;
hochli,ll=alpha/{nc-i+l);
end;

c5=jinec,;1,0);

cb5=p<hoch;

#rint ¢5 p hoch;

.1 CHS PAGE

E.3.% 4
mathod £33
t 23 3

¥%% c2 is comperison of obtained;
#%% p value with criteria;

gogoz
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FILE: RD9 SAS Al UGA VM/ESA2.1 CHS

##% Homwmel procedurs *%ER;
p2=jinc,1,;0);
p2l1,11=pl6,1];
p2l2,11=p[5,11;

p2[3,11=pl4,1];

p2l4,1]1=p[3,1]1;

p2(5,11=pl2,11;
92[6;13=P[1;13i

hn=nc;

m=-1;

pp=l;

z=nc;

do i=1 to nc while(pp > =m);

do k=1 to i whilel(pp > m);
mn=k*¥alpha/i;
hn=nc-i+k;

pp= plhn,1]1;

if pp<=m then z=i-1;

end;

if pp<=m then i=i-1;

end;

homm=jilnc,1,alphal;

if z>0 then

homm=homm/z;

c6=jlnc,1;0);

c6=p<honm;

#rint c6 p hoam i;

k%% Rom procedure ¥¥x;
rom=ilnc,1,0);
romll;1]1=.0364;
roml{2,11=.0434;
rom[3,11=.9537;
roml4,11=.070¢;
rom[5,11=.1000;

ronl6,11=.2000;
c7=p<rom;

¥rint c7 p rom;

#%% Holland-Copenhaver procedure (step up) wx=x;

hoc2=3(nc,;1,0);

do i=1 to nc;
xx=1/(nc-i+l);
hoc2li,11=1-(1-alpha)®8xx;
and ;

c8=jilnc,1,0);

c8=p<hac2;

#rint c8 hocZ p;

c{1=j(hc,1,0]}
ct2=3(nc,1,0);
ct3=3(nc,;1,0);
ct4=jinec,1,0);
ctE=jinc,;1,1);
°t6=j(nc;1'1);

PASE

00003



FILE: RD9

SAS

ct7=j(nc,1,1);
c‘t8=j(nc,1,1]j

ctl=cl;
ct2=c2;

do i=1 to nec
end;
do i=1 to nc
end;
do i=nec to 1
end;
do i=nc to 1
end;
do i=nc to 1
end;
do i=nc to 1

end;

x#xi  counting within the mairices correct reject and type ii error;

cl2__cr=j(l,
c23__cr=j(1,
c34__cr=3j(1,
cl234cr=31(1,

Al UGA VM/ESAZ.1 CHs

while (c3[i,11=1);
ct3[i,11=1;

while (c4l[i,11=1);
ct4li,11=1;

by -1 while(c5[i,11=0);
ct5[i,11=0;

by -1 while(cé6li,11=0];
ctb6li,ll=0;

by -1 whilele7Li,1]}=0];
ct7[i,;1)=0;

by -1 while(c8[i,1)=0);
ct8li;1]1=0;

8,0);
8,0);
8,0);
8,0);

uEcl2 is the count for rl2 sig;
#xc23 is tho count for r23 sig;
H¥c3G is the count for r34 sig;

=x%cl234¢ for rl2 and r23 and r39 sig;

zrxxStart counting rl234 sig for 8 methods;

IF(CT1ICOR1Z2,

IF(CT2ICOR12,

11=1 &

11=1 &

IF(CT3ICOR12,1]=1 &

IF(CT4ICOR12,11=1 &

IF(CT5ICCR12,

1]1=1 &

CT1lICOR23,11=1
& CT1LCOR34,11=1)
cl234crll,1]1=cl234cr[1,11+]1;
CT2[COR23,11=1
& CT2ICOR34,11=1)
cl234cr{l,21=cl234cr[1,214]1;
C73ICOoR23,1]1=1
.& CT3L[COR34,1]1=1)
cl234cr[l1,3]1=cl234%cr[1,31+1;
CT4I{COR23,11=1
& CT4ICOR34,11=1)
cl2346cril,4)=ci23%cr[1,41+1;
CTS[COR23,11=1
& CT5I[COR34,11=1)
cl23%crll,51=cl23%cril,5]1+1;

THEN

THEN

THEN

THEN

THEN

PAGE

000046
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FILE: RD9 SAS Al UGA VH/ESA2.1 CHS PAGE 00005

IF(CT6ICOR12,1]1=1 & CTAIL[COR23,11=1
& CT6ICOR34,1]1=1) THEN
cl234crll,61=cl23%ecr[1,61+1;
IF(CT7ICOR12,11=1 & CT7LCOR23,1i=1
& CT7ICOR346,11=1) THEN
cl234%er(l,7]=cl234%cr[1,71+1;
IF(CT8ICOR12,1]1=1 & CTBICOR23,1]1=1
& CTSICOR34,11=1) THEN
cl234cr[l,8]=cl123%crfl1,8]141;
pl23Gcr =pl23Gcr +cl23Ger;
end;
print pl23%cr ;
print n ii alpha c;
quit;
run; ¥
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