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ABSTRACT

4882001063  Polymer Science Program
Penwisa Pisitsak: An Insight on Processing and Characterization of
In-Situ and In-Situ Hybrid Composites with Liquid Crystalline
Polymers,
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan (r i
Advisor), Prof. Sadhan C. Jana (Overseas Co-Adviser)
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Blends of a liquid crystalline polymer (LCP) and a thermoplastic are
generally immiscible. They are termed as ‘in-situ composites’, taking into account of
the formation of LCP fibrils capable of reinforcing the resulting blends. Blends of
Vectra A950 (VA950) with poly(trimethylene terephthalate) (PTT) showed better
melt processibility as a result of partial LCP fibrillation. The best LCP dispersion was
found at the lowest processing temperature and the smallest LCP content. The
modulus and thermal stability were improved. VA950 was found to accelerate the
non-isothermal crystallization rate of the PTT phase by serving as a nucleating agent.
The microwave-synthesized spherical zinc oxide (ZnO) particles were introduced to
the blends of VA950 and polyethylene terephthalate) (PET). ZnO reduced the LCP
fibrillation owing to its lubricating effect, retarded the PET melt crystallization rate,
and yet improved the tensile modulus. An increase in the extent of triclinic crystalline
phase of PET as induced by microwave radiation was promoted in the presence of
VA950, yielding improved mechanical properties. Multi-walled carbon nanotubes
(CNTSs) were introduced to polycarbonate/ LCP blends where the LCP chosen were
VA0 and Vectra V400P (V400P). CNTs showed better affinity with LCP and
consequently prohibited LCP fibrillation leading to the disruption of conductive
pathways. As a result, a greater CNT loading was required to reach a percolation
threshold compared to the composites without LCP. The value of storage modulus
showed improvement by the addition of CNTs or VA950.
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