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ABSTRACT

5172002063  Polymer Science Program
Busayarat Pattanaponganun: Catalytic Reactive Extrusion of
Ethylene (Vinyl Acetate)-g-Polylactide Bioplastic
Thesis Advisors: Assoc. Prof. Rathanawan Magaraphan 116 pp.
Keywords:  Bioplastics/ Ethylene (vinyl acetate)-g-polylactide/ Catalytic reactive
extrusion

Graft copolymerization of polylactide (PLA) onto ethylene (vinyl acetate)
(EVA) by catalytic reactive extrusion in an intermeshing co-rotating twin-screw
extruder is the preferable route to enhance the processibility of PLA, with catalyst
ratios of 0.1, 0.3, and 0.5%wt, the optimum amount of catalyst giving the highest
conversion was studied.

Transesterification reaction of EVA was done in a twin-screw extruder at
various screw speeds (10, 20, 30, and 40 rpm) with the presence of dibutyl tin
dilaurate (DB'fL) catalyst prior to reaction with PLA. The results from FTIR and
DMA suggested that the lower the screw speed the higher the conversion. Therefore,
the modified EVA at the screw speed of 10 rpm was Selected to react with PLA,

Graft copolymerization of PLA onto EVA main chains, the ratio of EVA:
PLA was 40: 60, was done inside the twin-screw extruder with the help of  (Octj2
catalyst at various catalyst contents (0.1, 0.3, and 0.5%wt) and at screw speeds of 30
and 40 rom. The results from TGA, DSC and tensile testing suggested that the
suitable amount of catalyst producing EVA-g-PLA was 0.3%wt. However, phase
separation can be seen for any condition except the EVA-g-PLA produced at 30 rpm
with 0.3%wt, which showed the finest dispersion.

Therefore, lactide monomer was introduced into the system as an initiator for
grafting reaction. However, phase separations were highly pronounced when LA was
introduced to the system at screw speeds of 30 and 40 rpm. Moreover, the modular
twin-screw extruder (SHJ-36, Nanjing Giant Machinery Co., Ltd.) with five mixing
Zones was Used as a reactor at screw speed of 150 rpm, in order to improve melt
mixing of those two phases. SEM images then again showed phase separation, where



the finest dispersion presented at EVA-g-PLA produced in two-component system
(without LA) with 0.3%wt of  (Qct)2.
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