ผลของสารเหนี่ยวนำและช่วงเวลาความพร้อมปฏิสนธิต่อความพร้อมปฏิสนธิและ การปฏิสนธิภายนอกร่างกายของไข่หนูเมาส์ และพัฒนาการของตัวอ่อนก่อนฝังตัว

นายอรรถกร กู้ตระกูล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต

สหสาขาวิชาสรีรวิทยา

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2542

ISBN 974-333-555-2

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EFFECTS OF INDUCERS AND MATURATION DURATION ON IN VITRO MATURATION AND FERTILIZATION OF MOUSE OOCYTES, AND PREIMPLANTATION EMBRYO DEVELOPMENT

Mr. Athakorn Kutrakul

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physiology

Graduate School
Chulalongkorn University
Academic Year 1999
ISBN 974-333-555-2

Thesis Title:	Effects of Inducers and Maturation Duration on
	In Vitro Maturation and Fertilization of Mouse
	Oocytes, and Preimplantation Embryo Development
By :	Mr. Athakorn Kutrakul
Inter-Department	: Physiology
Thesis Advisor:	Associate Professor Vithaya Yodyingyuad, Ph.D.
Thesis Co- Advisor	Professor Pramuan Virutamasen, MD.
Accepted by	the Graduate School, Chulalongkorn University in Partial
Fulfillment of the R	equirements for the Doctor of Philosophy's Degree
	Dean of Graduate School
	(Professor Suchada Kiranandana, Ph.D.)
Thesis Committee	Chairman
	(Associate Prof. Prasong Siriviriyakul, M.D.)
	Vithyk Yorky Tymed Thesis Advisor
	(Associate Prof. Vithaya Yodyingyuad, Ph.D.)
	Ramuam Luutamack Thesis Co- Advisor
	(Professor Pramuan Virutamasen, MD.)
	M. Techaly (Member
	(Associate Prof. Mongkol Techakumphu, D.V.M., Ph.D.)
	Tanu Pinyapummintr Member
	(Tanu Pinyopummintr, D.V.M., Ph.D.)

อรรถกร กู้ศระกูล : ผลของสารเหนี่ยวนำและช่วงเวลาความพร้อมปฏิสนธิค่อความพร้อมปฏิสนธิและการ ปฏิสนธิภายนอกร่างกายของไข่หนูเมาส์ และพัฒนาการของตัวอ่อนก่อนฝังตัว อาจารย์ที่ปรึกษา : รศ. คร. วิทยา ยศยิ่งยวค อาจารย์ที่ปรึกษาร่วม : ศ. นพ. ประมวล วิรุตมเสน, 139 หน้า, ISBN 974-333-555-2

อัตราการปฏิสนธิและพัฒนาการของตัวอ่อนภายนอกร่างกายซึ่งได้รับจากไข่ที่ทำให้พร้อมปฏิสนธิภายนอกร่าง กายต่ำกว่าไข่ที่ทำให้พร้อมปฏิสนธิภายในร่างกาย ข้อมูลตั้งกล่าวนี้ชี้แนะว่าไข่ และ/หรือกระบวนการต่างๆสำหรับเตรียม ความพร้อมปฏิสนธิภายนอกร่างกายยังไม่เหมาะสม การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อพัฒนากระบวนการต่างๆสำหรับ เครียมความพร้อมปฏิสนธิ การปฏิสนธิ และพัฒนาการของตัวอ่อนภายนอกร่างกายของไข่หนูเมาส์ โดยมุ่งศึกษาผลของ สารเหนี่ยวนำความพร้อมปฏิสนธิ (PMSG และ hCG) ช่วงเวลาความพร้อมปฏิสนธิ (3-24 ชั่วโมง) และระคับของไซคลิกเอ เอ็มพีภายในไข่ต่อความพร้อมปฏิสนธิและการปฏิสนธิภายนอกร่างกายของไข่หนูเมาส์ และพัฒนาการของตัวอ่อนก่อนฝัง คัว การศึกษาในส่วนที่หนึ่งมุ่งศึกษาผลของสารเหนี่ยวนำความพร้อมปฏิสนธิ โคยนำไข่ซึ่งไม่พร้อมปฏิสนธิในระยะโปร เฟส I , หลังจากกระคุ้นหนูเมาส์เพศเมียนาน 48 ชั่วโมงค้วยสารเหนี่ยวนำความพร้อมปฏิสนธิ (PMSG หรือ hCG) ความ เข้มข้น 5, 7.5 หรือ 10 IU, มาเลี้ยงภายนอกร่างกายในน้ำยาเพาะเลี้ยงภายใต้เงื่อนไขที่ 5% CO₂ ในอากาศ อุณหภูมิ 37°C นาน 24 ชั่วโมง จากนั้นคูผลการพัฒนาเป็นไข่ที่พร้อมปฏิสนธิในระยะเมทาเฟส 11 การปฏิสนธิตลอคจนพัฒนาการของตัว อ่อนภายนอกร่างกายถึงระยะบลาสโตซิสในน้ำยาเพาะเลี้ยง T6 การศึกษาในส่วนที่สองมุ่งศึกษาผลของช่วงเวลาความ พร้อมปฏิสนธิ โคยนำไข่ซึ่งไม่พร้อมปฏิสนธิหลังจากการกระตุ้นหนูเมาส์เพศเมียนาน 48 ชั่วโมงค้วยสารเหนี่ยวนำความ พร้อมปฏิสนธิ (PMSG หรือ hCG) ความเข้มข้น 7.5 IU มาเลี้ยงภายนอกร่างกายในน้ำยาเพาะเลี้ยงนาน 3-24 ชั่วโมง จากนั้น แต่ละช่วงเวลาดูผลการพัฒนาเป็นไข่ที่พร้อมปฏิสนธิในระยะเมทาเฟส 11 การปฏิสนธิ และพัฒนาการของตัวอ่อนภายนอก ร่างกายเหมือนการศึกษาในส่วนที่หนึ่ง ระดับของไซคลิกเอเอ็มพีภายในไข่ ความหนาและความแข็งของเปลือกหุ้มไข่ถูก ศึกษาในครั้งนี้เพื่ออธิบายผลของช่วงเวลาความพร้อมปฏิสนธิภายนอกร่างกายค่อความพร้อมปฏิสนธิ การปฏิสนธิ และ การพัฒนาการของตัวอ่อนก่อนฝั่งตัว

ผลการศึกษาครั้งนี้พบว่าความเข้มข้นที่เหมาะสมของสารเหนี่ยวนำความพร้อมปฏิสนธิในการกระดุ้นหนูเมาส์ เพศเมียเพื่อนำไข่มาศึกษาการเตรียมความพร้อมปฏิสนธิ และการปฏิสนธิภายนอกร่างกายคือ 7.5 IU อย่างไรก็ตามสาร เหนี่ยวนำความพร้อมปฏิสนธิ hCG มีประสิทธิภาพคีกว่า PMSG ต่อการเตรียมความพร้อมปฏิสนธิของไข่ (87.6 ± 3.4% กับ 76.4 ± 3.2%, P<0.05) การปฏิสนธิภายนอกร่างกาย (65.5 ± 3.4% กับ 51.0 ± 4.7%, P<0.05) ลดระดับของไซคลิกเอ เอ็มพีภายในไข่ (0.03 เฟมโตโมล/ไข่ 1 ใบ กับ 0.08 เฟมโตโมล/ไข่ 1 ใบ, P<0.05) ลดเวลาการย่อยเปลือกหุ้มไข่ (1,882 ± 147 วินาที กับ 1,668 ± 103 วินาที, P<0.05) และเพิ่มการพัฒนาการของดัวอ่อนภายนอกร่างกายถึงระยะบลาสโตซิส (64.4 ± 2.5% กับ 57.6 ± 3.1%, P<0.05) ตามลำคับ โดยช่วงเวลาความพร้อมปฏิสนธิที่เหมาะสมต่อการนำมาใช้ศึกษาการ เครียมความพร้อมปฏิสนธิ และการปฏิสนธิภายนอกร่างกายของหนูเมาส์คือ 15 ชั่วโมง การศึกษาครั้งนี้สรุปได้ว่า สาร เหนี่ยวนำความพร้อมปฏิสนธิ hCG เหมาะสมต่อการกระดุ้นหนูเมาส์มากกว่า PMSG และช่วงเวลาความพร้อมปฏิสนธิที่เหมาะสมต่อการนำมาศึกษาการเครียมความพร้อมปฏิสนธิ การปฏิสนธิ และพัฒนาการของตัวอ่อนถึงระยะบลาสโดซิส ภายนอกร่างกายของหนูเมาส์คือ 15 ชั่วโมง นอกจากนี้การลดระดับของไซคลิกเอเอ็มพีภายในไข่จะเพิ่มเปอร์เซ็นต์ความ พร้อมปฏิสนธิ การปฏิสนธิ การป

ภาควิชาสหสาขาวิชา	อายมือชื่อนิสิต (ปี่ฉพาส)ว: >>	
สาขาวิชาสรีรวิทยา	ลายมือชื่ออาจารย์ที่ปรึกษา	
ปีการศึกษา2542	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม :: 🚉 🧢	٦.

KEY WORD: GONADOTROPINS / MATURATION DURATION / IVM / IVF / EMBRYO DEVELOPMENT / cAMP / MOUSE

ATHAKORN KUTRAKUL: EFFECTS OF INDUCERS AND MATURATION DURATION ON *IN VITRO* MATURATION AND FERTILIZATION OF MOUSE OOCYTES, AND PREIMPLANTATION EMBRYO DEVELOPMENT. THESIS ADVISOR: ASSOC PROF. VITHAYA YODYINGYUAD, Ph.D. THESIS CO-ADVISOR: PROF. PRAMUAN VIRUTAMASEN, MD. 139 pp. ISBN 974-333-555-2

In vitro fertilization and development of embryos from oocytes matured in vitro are still by far much lower than those matured in vivo, suggesting that oocytes and/or procedures for the oocyte maturation being used are of suboptimum. This study was carried out on the purpose of developing improved procedures for IVM, IVF, and cultivation of embryos in vitro, concentrating on the effects of oocyte maturation inducers (PMSG and hCG), oocyte maturation durations in vitro (3-24 hours), and intraoocyte cyclic adenosine monophosphate (cAMP), on in vitro oocyte maturation, fertilization, and preimplantation embryo development. In the first experiment, the effect of oocyte maturation inducers was explored. Oocytes at germinal vesicle (GV) stage obtained from various groups of immature female mice 48 hours after injection of various concentrations (5, 7.5, 10 IU) of either PMSG or hCG were cultured in a maturation medium for 24 hours under an atmosphere of 5% CO₂ in air at 37°C. Oocytes developed to metaphase II (MII) stage were subsequently tested for their efficiencies for fertilization and development to blastocysts in T6 medium. In the second experiment, the effect of in vitro maturation durations was explored. GV stage oocytes obtained 48 hours after 7.5 IU PMSG or hCG injection were cultured in maturation medium for 3-24 hours. At various intervals, oocytes developed to MII stage were subsequently tested for their efficiencies for fertilization and development to blastocysts as in experiment I. The level of intraoocyte cAMP, zona thickness, and zona hardness, were also measured to elucidate the effect of oocyte maturation duration in vitro on these factors, which accordingly affect their fertilization and development.

Results from this study suggested that the suitable concentration of gonadotropins for the stimulation of immature female mice to obtain immature oocytes for IVM/IVF studies in the mouse model is 7.5 IU/mouse. However, hCG, more effective than PMSG, plays a major role in nuclear maturation (increase oocyte maturation : $87.6 \pm 3.4\%$ versus $76.4 \pm 3.2\%$, P<0.05), cytoplasmic maturation (increase the fertilization rate : $65.5 \pm 3.4\%$ versus $51.0 \pm 4.7\%$, P<0.05; decrease the level of intraoocyte cAMP : 0.03 fmol/oocyte versus 0.08 fmol/oocyte, P<0.05; and decrease the zona digestion time : $1,882 \pm 147$ seconds versus $1,668 \pm 103$ seconds, P<0.05), and preimplantation embryo development (increase blastocyst development : $64.4 \pm 2.5\%$ versus $57.6 \pm 3.1\%$, P<0.05) respectively. The optimum maturation duration of the GV stage oocytes for the highest rate of IVM/IVF studies in this mouse model is 15 hours. In conclusion, hCG is superior to PMSG, and 15 hours is the optimum duration for *in vitro* oocyte maturation yielding the highest rate of fertilization and preimplantation development of embryo *in vitro*. In addition, decreasing the level of intraoocyte cAMP increase the percentage of oocyte maturation, fertilization, and preimplantation embryo development, and decrease the zona hardness.

ภาควิชาสหสาขาวิชา	ลายมือชื่อนิสิต (() เกาะ)
	ลายมือชื่ออาจารย์ที่ปรึกษา
สาขาวิชาสรีรวิทยา	_ \
ปีการศึกษา2542	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 💾 🗞 🗫 🧢

ACKNOWLEDGEMENT

I would like very much to express my deepest sincere and gratitude to my advisor, Associate Professor Vithaya Yodyingyuad, and my Co- Advisor, Professor Pramuan Virutamasen for their kind advice, guidance, keen interest, and constant encouragement throughout this study.

I would also like to thank Associate Professor Duangnarumon Prachankhadee, Associate Professor Chollada Buranakarl, Associate Professor Suthiluk Patumraj, Assistant Professor Juraiporn Somboonwong, and Assistant Professor Kanokwan Kutrakul for their kindness in suggestion and correction in my study.

My thanks would also express to Dr. Pornpimon Tangchaisin,
Department of Physiology, Faculty of Medicine, Chaing Mai University and all
members in the Division of Reproductive Medicine, Department of Obstetrics
and Gynecology, Faculty of Medicine, Chulalongkorn University for providing
advice and the facilities used in experimental works and laboratory techniques.

I would like to thank Professor Pramuan Virutamasen, the committee of Rangsit University, and the Graduate School, Chulalongkorn University for the research grant to support this study.

Finally, I am also indebted to all experimental mice for their sacrifice which bring me to succeed in my study.

CONTENTS

pa	ge
HAI ABSTRACT	.iv
NGLISH ABSTRACT	V
CKNOWLEDGEMENT	.vi
ONTENTS	.vii
ST OF TABLES	ix
ST OF FIGURES	kiii
BBREVIATIONS	kvi
HAPTER	
I. INTRODUCTION	1
Rationale	1
Review of literature	3
Correlation of oocyte and follicular development	4
Oocyte maturation inhibitor and stimulator	.10
Nuclear and cytoplasmic maturation of oocytes	.19
In vitro oocyte maturation	.21
Cyclic AMP and oocyte maturation	.28
The objectives of the study	.32
The hypothesis of the study	.33
II. MATERIALS AND METHODS	.34
Experimental animals	.34

M	Iedia preparation	34
K	Treb Ringer Bicarbonate (KRB) medium preparation	34
P	ercoll in KRB with Hepes solution preparation	36
Т	6 medium preparation	37
Ir	mmature oocytes preparation for IVM	38
P	ercoll-gradient centrifuged sperm preparation	39
I	VF procedure and embryo development	40
C	Cyclic AMP enzymeimmunoassay system	40
Ir	ntraoocyte cAMP extraction procedure	41
N	Measurement of intraoocyte cAMP procedure	42
E	Experiment I- III	44-46
D	Data collection and analysis	48
C	Conceptual framework	49
III. RES	SULTS	52
IV. DIS	CUSSION	98
REFERENCES	S	117
BIOGRAPHY		138
PUBLICATIO	NS	139

ix

LIST OF TABLES

	page
Table 1.1	Morphological parameters used for assessment
	of oocyte maturity11
Table 1.2	Mammalian follicular fluid components25
Table 3.1	In vitro maturation of denuded and cumulus
	cell-enclosed immature oocytes were obtained
	from either 5, 7.5, or 10 IU PMSG stimulated immature
	female mice57
Table 3.2	In vitro maturation of denuded and cumulus
	cell-enclosed immature oocytes were obtained
	from either 5, 7.5, or 10 IU hCG stimulated immature
	female mice58
Table 3.3	In vivo maturation of oocytes after immature female
	mice were i.p. injected with 7.5 IU PMSG and recorded the
	development and maturation of oocytes at
	12, 24, 36, 48, and 60 hours later62
Table 3.4	In vivo maturation of oocytes after immature female
	mice were i.p. injected with 7.5 IU hCG and
	recorded the development and maturation of oocytes
	at 12, 24, 36, 48, and 60 hours later63

Table 3.5	In vitro fertilization rate of in vitro matured
	denuded and cumulus cell-enclosed oocytes
	were obtained from either 5, 7.5, or 10 IU PMSG
	stimulated immature female mice64
Table 3.6	In vitro fertilization rate of in vitro matured
	denuded and cumulus cell-enclosed oocytes
	were obtained from either 5, 7.5, or 10 IU hCG
	stimulated immature female mice65
Table 3.7	Blastocyst development of 2-cell embryos were
	obtained from of in vitro matured denuded and
	cumulus cell-enclosed oocytes of either 5, 7.5, or 10 IU
	PMSG stimulated immature female mice69
Table 3.8	Blastocyst development of 2-cell embryos were
	obtained from of in vitro matured denuded and
	cumulus cell-enclosed oocytes of either 5, 7.5, or 10 IU
	hCG stimulated immature female mice70
Table 3.9	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on in vitro maturation of oocytes at the MII stage.
	The cumulus cell-enclosed immature oocytes were
	obtained from 7.5 IU PMSG- primed mice74

Table 3.10	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on in vitro maturation of oocytes at the MII stage.
	The cumulus cell-enclosed immature oocytes were
	obtained from 7.5 IU hCG- primed mice75
Table 3.11	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on in vitro fertilization rate of in vitro matured oocytes.
	The cumulus cell-enclosed immature oocytes were
	obtained from 7.5 IU PMSG- primed mice78
Table 3.12	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on in vitro fertilization rate of in vitro matured oocytes.
	The cumulus cell-enclosed immature oocytes were
	obtained from 7.5 IU hCG- primed mice79
Table 3,13	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on blastocyst development of 2-cell embryos were
	obtained from in vitro matured oocytes. The in vitro
	matured oocytes were obtained from 7.5 IU PMSG-
	primed mice82
Table 3.14	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on blastocyst development of 2-cell embryos were
	obtained from in vitro matured oocytes. The in vitro
	matured oocytes were obtained from 7.5 IU hCG-
	primed mice83

Table 3.15	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on zona pellucida digestion time of in vitro matured
	oocytes were obtained from 7.5 IU PMSG- primed mice87
Table 3.16	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on zona pellucida digestion time of in vitro matured
	oocytes were obtained from 7.5 IU hCG- primed mice88
Table 3.17	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on zona pellucida thickness of in vitro matured oocytes
	were obtained from 7.5 IU PMSG- primed mice91
Table 3.18	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on zona pellucida thickness of in vitro matured oocytes
	were obtained from 7.5 IU hCG- primed mice92
Table 3.19	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on intraoocyte cAMP of in vitro matured oocytes
	were obtained from 7.5 IU PMSG- primed mice95
Table 3.20	Effect of in vitro oocyte maturation duration, 3-24 hours,
	on intraoocyte cAMP of in vitro matured oocytes
	were obtained from 7.5 IU hCG- primed mice96

LIST OF FIGURES

	page
Figure 1.1	Mammalian oocyte maturation8
Figure 1.2	Morphology of a mouse oocyte at germinal
	vesicle (GV) stage12
Figure 1.3	Morphology of a mouse oocyte at germinal
	vesicle breakdown (GVBD; MI) stage13
Figure 1.4	Morphology of a mouse oocyte at metaphase
	II (MII) stage14
Figure 1.5	Mechanism of mammalian oocyte maturation30
Figure 3.1	In vitro preimplantation mouse embryo development53-55
Figure 3.2	Comparison of the effect of either 5, 7.5, or 10 IU PMSG
	or hCG on in vitro maturation at the MII stage
	of denuded oocytes59
Figure 3.3	Comparison of the effect of either 5, 7.5, or 10 IU PMSG
	or hCG on in vitro maturation at the MII stage
	of cumulus cell- enclosed oocytes60
Figure 3.4	Comparison of the effect of either 5, 7.5, or 10 IU PMSG
	or hCG on in vitro fertilization rate of
	denuded oocytes67

Figure 3.5	Comparison of the effect of either 5, 7.5, or 10 IU PMSG
	or hCG on in vitro fertilization rate of cumulus cell-
	enclosed oocytes
Figure 3.6	Comparison of the effect of either 5, 7.5, or 10 IU PMSG
	or hCG on blastocyst development of
	denuded oocytes72
Figure 3.7	Comparison of the effect of either 5, 7.5, or 10 IU PMSG
	or hCG on blastocyst development of cumulus cell-
	enclosed oocytes73
Figure 3.8	Comparison of the effect of in vitro oocyte maturation
	duration, 3-24 hours, on in vitro maturation of oocytes at
	the MII stage77
Figure 3.9	Comparison of the effect of in vitro oocyte maturation
	duration, 3-24 hours, on in vitro fertilization rate of
	in vitro oocyte matured oocytes80
Figure 3.10	Comparison of the effect of in vitro oocyte maturation
	duration, 3-24 hours, on the blastocyst development84
Figure 3.11	Comparison of the effect of in vitro oocyte maturation
	duration, 3-24 hours, on zona pellucida digestion
	time89
Figure 3.12	Comparison of the effect of in vitro oocyte maturation
	duration, 3-24 hours, on zona pellucida thickness93

	X		

Figure 3.13	Comparison of the effect of in vitro oocyte maturation		
	duration, 3-24 hours, on intraoocyte cAMP97		

ABBREVIATIONS

bovine serum albumin
calcium chloride
cyclic adenosine 3',5'monophosphate
calmodulin-dependent kinase
cervical dislocation
diacylglycerol
exempli gratia (Latin); for example
fetal bovine serum
follicular fluid
femtomole
follicle stimulating hormone
gram
growth factor
guanine-protein
germinal vesicle
germinal vesicle breakdown
human chorionic gonadotropin
hydrochloric acid
human menopausal gonadotropin
hypoxanthine

i.pintraperitoneal	
IBMX3-isobutyl-1-methylxanthine	
ICSIintracytoplasmic sperm injection	
IP3inositol 1,4,5-triphosphate	
IUinternational unit	
IVFin vitro fertilization	
IVMin vitro maturation	
KClpotassium chloride	
KGFkeratinocyte growth factor	
KH ₂ PO ₄ potassium dihydrogen phosphate	
KRBKreb Ringer bicarbonate	
llitre	
LHluteinizing hormone	
mgmilligram	
MgCl ₂ magnesium chloride	
MgSO ₄ magnesium sulphate	
mlmillilitre	
mmmillimetre	
mMmillimole	
mOsmmilliosmole	
MImetaphase I	
MIImetaphase II	
Nnormal; concentration unit	

Nasodium	
NaClsodium chloride	
NaHCO ₃ sodium bicarbonate	
NaH ₂ PO ₄ sodium dihydrogen phosphate	
NaOHsodium hydroxide	
nmnanometre	
OMIoocyte maturation inhibitor	
OMSoocyte maturation stimulator	
Pprobability	
PGCpercoll gradient centrifugation	
pHpower of hydrogen	
PIprophase I	
PIP2phosphatidylinositol 4,5-bisphosphate	
PKAprotein kinase A	
PKCprotein kinase C	
PMSGpregnant mare serum gonadotropin	
RTroom temperature	
T6modified Tyrode solution	
rpmrevolutions per minute	
w/vweight per volume	
ZPzona pellucida	
ZP2fzona pellucida 2 fragment	
°Cdegree Celsius	

°F	degree Fahrenheit
μ1	microlitre

*