การเคลื่อนที่แบบควอนตัมบราวเนียนด้วยวิธีอินทิกรัลตามวิถี

นาย สุพิชญ แขมมณี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาฟิสิกส์ ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2542 ISBN 974-334-567-1 ลิขสิทธิ์ของ จุฬาลงกรณ์มหาวิทยาลัย

QUANTUM BROWNIAN MOTION BY PATH INTEGRAL METHOD

Mr. Supitch Khemmani

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Physics
Department of Physics
Faculty of Science
Chulalongkorn University
Academic Year 1999
ISBN 974-334-567-1

Thesis Title

Quantum Brownian Motion by Path Integral Method

Ву

Mr. Supitch Khemmani

Department

Physics

Thesis Advisor

Professor Virulh Sa-yakanit, F.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Physics.

Washi Phth Dean of Faculty of Science

(Associate Professor Wanchai Phothiphichit, Ph.D.)

THESIS COMMITTEE

(Ahpisit Ungkitchanukit, Ph.D.)

V. Saziil. Thesis Advisor

(Professor Virulh sa-yakanit, F.D.)

(Assistant Professor Pisistha Ratanavararaksa, Ph.D.)

Maynu Notint Member

(Associate Professor Mayuree Natenapit, Ph.D.)

สุพิชญ แขมมณี : การเคลื่อนที่แบบควอนตัมบราวเนียนด้วยวิธีอินทิกรัลตามวิถี (QUANTUM BROWNIAN MOTION BY PATH INTEGRAL METHOD)

อ. ที่ปรึกษา : ศ.ดร วิรุฬห์ สายคณิต, อ. ที่ปรึกษาร่วม : -- , 99 หน้า. ISBN 974-334 -567 -1

จุดมุ่งหมายของวิทยานิพนธ์นี้คือการนำวิธีอินทิกรัลตามวิถีในทฤษฎีการเคลื่อนที่แบบควอนตัม บราวเนียนไปประยุกต์ใช้กับปัญหาการหนีออกของวอร์เท็กซ์ในของไหลยิ่งยวดหรือตัวนำยิ่งยวดจากศักย์ กึ่งเสถียร จากการที่มีแรงแม็กนัส เมื่อได้นิพจน์ของแอกซันยังผลแล้ว เราพบว่า สิ่งที่มีบทบาทสำคัญใน ปัญหานี้คือ เคอร์เนลการหน่วงเพี้ยน ในบรรดาพารามิเตอร์ต่างๆในเคอร์เนลการหน่วงเพี้ยน ความถี่ของ การสั่นในศักย์ตรึงแบบฮาร์โมนิกในทิศทางเสถียร ได้นำเราไปสู่การพิสูจน์การมีจริงและการไม่มีจริงของ อุณหภูมิคร่อมข้าม และการวิเคราะห์ผลของการกระจายและแรงแม็กนัสบนอุณหภูมิคร่อมข้ามสำหรับการ หน่วงโดยทั่วไป สิ่งเหล่านี้ช่วยให้เราเข้าใจการเปลี่ยนของกลไกหลักของกระบวนการหนี จากการกระตุ้น เชิงอุณหภูมิไปสู่การทันเนลเชิงควอนตัมได้ดีขึ้น ความถี่อันนี้ยังสามารถนำเราไปสู่การนิยามเกณฑ์การ จำกัดให้อยู่ในวง และมวลยังผลของวอร์เท็กซ์ นอกจากนี้ สูตรอัตราการหนีของวอร์เท็กซ์เหนืออุณหภูมิ คร่อมข้ามจะแยกออกเป็นสองกรณีที่แตกต่างกัน ซึ่งสอดคล้องกับค่าที่แตกต่างกันของความถี่

ภาควิชา ฟิสิกส์ สาขาวิชา ฟิสิกส์ ปีการศึกษา 2542

397 21930 23

: MAJOR physics

KEY WORD: metastability / vortex / dissipation / Magnus force / Brownian motion

SUPITCH KHEMMANI: QUANTUM BROWNIAN MOTION BY PATH INTEGRAL METHOD.

(การเคลื่อนที่แบบควอนตัมบราวเนียนด้วยวิธีอินทิกรัลตามวิถี) THESIS ADVISOR : Professor Virulh

Sa-yakanit, F.D., THESIS COADVISOR: --, 99 pp. ISBN 974-334-567-1.

The purpose of this thesis is to apply the path integral method in quantum Brownian motion

theory to study the problem of a vortex in superfluid or superconductor escaping out of a metastable

potential. Because of the presence of the Magnus force, after obtaining the expression for the effective

action, the anomalous damping kernel becomes an important role in this problem. Out of the

parameters contained in the anomalous damping kernel, the frequency of the oscillation in the

harmonic pinning potential in stable direction leads us to prove the existence and non-existence of the

crossover temperature, and to analyse the dissipation and Magnus force effects on the crossover

temperature for general damping. These can help us understand more about the change of

dominating mechanism of the escape process from thermal activation to quantum tunneling. This

frequency also leads us to define the localization criterion and the effective mass of a vortex.

Moreover, the escape rate formula of a vortex above the crossover temperature is splitted into two

different cases corresponding with difference values of this frequency.

ภาควิชา ฟิสิกส์ สาขาวิชา ฟิสิกส์ ปีการศึกษา 2542

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGMENTS

The author would like to express his deep gratitude to his advisor Professor Virulh Sa-yakanit for his valuable advice, discussion and help of every sort in writing this thesis, and to Associate Professor Wichit Sritrakool for his help in computer preparation.

Special thanks go to every one in my family for their help and support and also great thanks to all of my friends who have helped in creating a warm and friendly atmosphere in the group discussion.

The author also would like to thank the thesis committee, Dr. Ahpisit Ungkitchanukit, Assistant Professor Pisistha Ratanavararaksa and Associate Professor Mayuree Natenapit, for their reading and valuable comments to improve the manuscript.

TABLE OF CONTENTS

	Pa	age
ABSTRACT IN	N THAI	iv
ABSTRACT IN	N ENGLISH	v
ACKNOWLED	DGMENTS	vi
LIST OF TABL	_ES	ix
LIST OF FIGU	JRES	X
LIST OF SYM	BOLS	хi
CHAPTER I	INTRODUCTION	1
CHAPTER II	QUANTUM STATISTICAL MECHANICS AND DENSITYMATRIX	4
	2.1 CANONICAL DISTRIBUTION, PARTITION FUNCTION,	
	AND FREE ENERGY	4
	2.2 DENSITY OPERATOR AND DENSITY MATRIX	5
	2.3 DENSITY MATRIX IN STATISTICAL MECHANICS	8
	2.4 PATH INTEGRATION FORMULATION OF THE DENSITY	
	MATRIX	11
CHAPTER III	CLASSICAL AND QUANTUM BROWNIAN MOTION (FUNCTIONAL	
	INTEGRAL APPROACH)	17
	3.1 HISTORY OF THE FOUNDATION OF BROWNIAN MOTION	17
	3.2 GAUSSIAN RANDOM PROCESS, METHOD OF RICE,	
	AND FOKKER-PLANK EQUATION	19
	3.3 LANGEVIN EQUATION AND CLASSICAL BROWNIAN MOTION 2	27
	3.4 LIMITATION OF CLASSICAL BROWNIAN MOTION AND	
	SYSTEM-PLUS-RESERVOIR MODEL	33
	3.5 PHENOMENOLOGICAL CALDEIRA-LEGGETT MODELLING	36
	3.6 REDUCED DENSITY MATRIX AND REDUCED PARTITION	
	FUNCTION	38

CHAPTER IV	APPLICATION OF QUANTUM BROWNIAN MOTION ON A VORTEX	
	ESCAPING OUT OF A METASTABLE POTENTIAL	45
	4.1 MAGNUS FORCE ON VORTEX AND HAMILTONIAN OF	
	THE PROBLEM	45
	4.2 THE ESCAPE RATE FORMULA	52
	4.3 EFFECTIVE ONE-DIMENSIONAL REDUCED PARTITION	
	FUNCTION	55
	4.4 THE ESCAPE RATE FORMULA OF A VORTEX	61
	4.5 CROSSOVER TEMPERATURE AND ITS IMPORTANT THEOREMS	68
	4.6 DISSIPATION AND MAGNUS FORCE EFFECTS ON THE CROSSOV	ER
	TEMPERATURE	71
	4.7 LOCALIZATION OF A VORTEX	77
	4.8 EFFECTIVE MASS OF A VORTEX AND ITS INTERPRETATION	78
CHAPTER V	CONCLUSION AND DISCUSSION	82
REFERENCES	j	87
APPENDIX A	ELIMINATION OF THE ENVIRONMENTAL COORDINATES	90
APPENDIX B	ELIMINATION OF THE COORDINATE X OF A VORTEX	92
APPENDIX C	EVALUATION OF THE SEMICLASSICAL EFFECTIVE ACTION	94
APPENDIX D	LINEARIZATON OF THE EQUATION OF MOTION	96
APPENDIX E	PROOF OF $\eta_{\scriptscriptstyle 0} > \eta_{\scriptscriptstyle C}$	98
CURRICULUM	1 VITAE	99

LIST OF TABLES

Table	Page
3.1 Observations and calculations of the distribution of the displacements	10
of a Brownian particle	19

LIST OF FIGURES

Figure	D
FIGURE	Page
9	· ago

2.1	The sum over paths is defined as a limit, in which at first the path is specified	
	by giving only its coordinate x at a large number of specified times separated	
	by very small intervals $arepsilon$. The path sum is then an integral over all these	
	specific coordinates. Then to achieve the correct measure, the limit is taken	
	as $arepsilon$ approach 0	14
4.1	Magnus force on the rotating cylinder	45
4.2	The vortex flow which its center called a "vortex"	46
4.3	A metastable "quadratic-plus-cubic" potential well	52
4.4	The inverted potential $-V(y)$	53
4.5	Dominant escape mechanism depicted schematically as a function of	
	temperature	54
4.6	Intersection between the increasing and decreasing function	69
4.7	The normalized crossover temperature $T_0(\eta)/T_0(\eta=0)$ is shown for general	
	damping as a function of dissipation strength η in the case where $\omega_{{ m c}}\neq 0$ and	
	$\omega_{x}=0$ with the condition $\Omega<\omega_{b}$	74
4.8	The crossover temperature $T_{\scriptscriptstyle 0}(\eta)$ is shown for general damping as a function of	
	dissipation strength η in the case where ω_{x} = 0 with the condition $\Omega \ge \omega_{b}$	74
4.9	The normalized crossover temperature $T_0(\Omega)/T_0(\Omega=0)$ is shown for general	
	damping as a function of Magnus force strength Ω in the case where $\omega_{_{x}}\neq 0$	76
4.10	The normalized crossover temperature $T_0(\Omega)/T_0(\Omega=0)$ is shown for general	
	damping as a function of Magnus force strength Ω in the case where $\omega_x = 0 \dots$	76

LIST OF SYMBOLS

Symbol	Description
P_r	probability of the system is in state r
Z	partition function (of the universe)
$\hat{ ho}$	density operator or reduced density operator
$\rho(x,x')$	density matrix or reduced density matrix
S	action
S^{E}	Euclidean action
G(f)	spectral density
$\xi(t)$	random force
$\gamma(t)$	retarded friction
$\widetilde{\gamma}(\omega)$	frequency dependent damping coefficient
C_{α}	coupling constant
ω_a	frequency of each bath oscillator
q_{α}	environmental coordinate
$F^{\mathrm{E}},\widetilde{F}^{\mathrm{E}}$	influence functional
Z_{d}	reduced partition function or effective one-dimensional
	reduced partition function
$J(\omega)$	spectral function
η	dissipation strength
$ec{F}_{\scriptscriptstyle M}$	Magnus force
d	thickness of the sample
\vec{V}_s	uniform superfluid velocity
V(y)	metastable potential
-V(y)	inverted potential
${\cal Y}_b$	the point corresponding with the local maximum of $V(y)$
	i.e., $V'(y_b) = 0$ and $V''(y_b) < 0$
V_{b}	height of $V(y)$ i.e., $V_b = V(y_b)$
ω_b	frequency of small oscillation around the minimum of the
	inverted potential $-V(y)$

T_{o}	crossover temperature
F	free energy
k	escape rate or decay rate
$K(\tau)$	normal damping kernel
g(au)	anomalous damping kernel
$y_B(\tau)$	bounce trajectory
$S_{ m eff}^{ m E}$	effective Euclidean action
$S_{\scriptscriptstyle B}$	bounce action
$S_{ m eff}^{ m E(0)}$	semiclassical effective action about $y = 0$
$S_{ m eff}^{ m E(b)}$	semiclassical effective action about $y = y_b$
$\hat{\gamma}(z)$	Laplace transform of the retarded friction
\mathcal{C}_{qm}	quantum-mechanical enhancement factor or quantum
	correction factor
Ω	Magnus force strength
$\omega_{_{\scriptscriptstyle X}}$	frequency of the oscillation in the harmonic pinning
	potential in x direction
$ ho_{s}$	superfluid atom or electron number density
M*	effective mass of a vortex