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C L A S S I C A L  A N D  Q U A N T U M  

B R O W N I A N  M O T I O N  

( F U N C T I O N A L  I N T E G R A L  A P P R O A C H )

3.1 HISTORY OF THE FOUNDATION OF BROWNIAN MOTION

เท the year 1905 Einstein [11 ] discovered new fundamental laws outside the field of 

relativity. At the time when Einstein came to Bern, he was intensely occupied with the 

problem of light and motion but he saw that the final goal could be attained only by 

attacking the problem from various angles. One of the paths to the goal, he realized, was 

to investigate the relations between light and heat, and between heat and motion.

It had been known for some time that heat is connected with the irregular motion of 

molecules. The higher temperature, the more violent is this motion. The statistical behavior 

of particles in such irregular motion had been investigated chiefly by the Scottish physicist 

James Clerk Maxwell (1831-79) and the Austrian Ludwig Boltzmann (1844-1906). At the 

time of Maxwell and Boltzmann, however, the molecular constitution of matter was still a 

hypothesis, since there was as yet no very direct proof of the existence of the molecule, 

which could be doubted. Einstein strongly felt the necessity of investigating this matter 

more thoroughly and obtain more direct proof of molecular motion.

It had been known that small but microscopically visible particles, when 

suspended in a fluid with approximately the same density, exhibit a constant, apparently 

irregular zigzag motion. It had been discovered by Scottish botanist Robert Brown for 

pollen dust suspended in water, and for this reason it is known as “ Brownian motion" and 

the microscopically visible particle suspended in water is called “ Brownian particle". He 

also observed that very fine particles of minerals undergo similar incessant motion as if 

they were living object. The Brownian motion is not caused by any external influence 

jarring the vessel or by currents of water in the vessel, and the agitation increases in 

intensity when the temperature of the water is raised. For this reason it had been 

conjectured that the motion is connected with the heat motion of the molecules. According
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to this view, the kinetic energy of the water molecules is constant collision with the 

microscopic particle produces irregular forces in random direction, which gives rise to the 

observed motions. The idea of combining such a motion -Brownian motion- with molecular 

motion became fairly widespread in the latter half of the nineteenth century when atomism 

had not yet been fully recognized as reality.

เท 1902 Einstein had restated Boltzmann’s theory of random motion in a simplified 

form. He now treated the Brownian motion with this method and arrived at a surprisingly 

simple result. เท this way Einstein [6] was able to derive the mean square value of the 

displacement of the particle which could be immediately observed by the experiment. This 

famous formula [7] is of the form

where /  is the friction coefficient, ไ' the absolute temperature and / the time. This 

formula stated that the average displacement of the particles เท any direction in creased 

as the square root of the time. The influence of the surrounding medium is characterized 

by j  as well as by T .

The actual observations were later made by the French physicist Jean Perrin, who 

completely verified Einstein’s theory. He gave the following set of counts of the 

displacement of a grain of radius 2 .1 x1  (T5 cm. at 30 sec. intervals. Out of a number N  of 

such observations the number of observed value of displacement between X, and x 2 

should be

where D  is the diffusion coefficient.

Eq. (3.2) comes from the fact that the probability density of finding the particle at point X 

and time t  when it starts from X = 0 at time 1 = 0 of a free particle, which was originally 

derived by Einstein [6], is of the form

He derived this equation by finding for F a  partial differential equation, which in this case 

is the diffusion equation:

(3.1)

(3.2)

(3.3)
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—— =  -O— y- with the initial condition F (x ,o ) ะ= ร (x ) (3.4)
d t  dx

This initial condition is clear from the definition of F (x j)  because for 1 - 0 ,  there is 

certainly that X = 0. Einstein simply derived the relation between the diffusion coefficient 

D  and the friction coefficient /  by using the osmotic pressure idea [6]. Perrin showed 

that (see Table 3.1) eq. (3.2) agreed with the experimental observed value.

Range 
X X 1 o4 c m

1st set 2 nd set Total
Obs. Calc. OuS. Calc. Obs. Calc.

0-3.4 82 91 86 84 168 175

COCDr̂CÔ 66 70 65 63 131 132
6.8-10.2 46 39 31 36 77 75

10.2- 17.0 27 23 23 21 50 44

Table 3.1 : Observations and calculations if the distribution of the displacements of a

Brownian particle

The phenomenon of Brownian motion has subsequently always been included 

among the best “direct" proof of the existence of the molecule. At any rate, Einstein’s 

theory had a great im pact at that time, finally convincing people of the theory of heat as 

molecular motion, and so paved the way to modern physics of the twentieth century. It 

also greatly influences pure mathematics, that is, the theory of stochastic processes.

There many interesting papers written by Einstein and others people who develop 

this field. For the reader who is interested in this theory, you should read papers and 

books on references [6] -  [10] especially the book in ref. [6] that contains five papers 

written between1905 and 1908 by Albert Einstein. The theory of Brownian motion was 

further developed by p. Langevin, M. Smoluchowski, G.E. Uhlenbeck, L.s. Ornstein, and 

many others. The classical theory was excellently reviewed by Wang and Uhlenbeck [8] 

which we will mainly use this work to review the theory in the next section.

3.2 GAUSSIAN RANDOM PROCESS, METHOD OF RICE, AND FOKKER - PLANCK 

EQUATION

A f t e r  t h e  w o r k  o f  E i n s t e i n ,  m a n y  p e o p l e  t r i e d  t o  d e v e l o p  t h e  m e t h o d  i n  o r d e r  t o

s o l v e  t h e  p r o b l e m  m o r e  s y s t e m a t i c a l l y  a n d  a l s o  m o r e  g e n e r a l l y  t h a n  t h e  o l d  o n e .  T h e  v e r y
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famous method is starting from the so-called "Langevin equation” [1] and then, by using 

this equation, finding some interested (ensemble) average quantities at a given time t 

such as the mean square value of the displacement. However, this method is not general 

enough. เท some cases, if one wants to find the average value of some strange quantities, 

say the general function of random variables, it may be that one can’t directly use the 

Langevin equation to find them. By this reason, it is more advantageous, at the beginning 

of the problem, to find the probability distributions because the average value of any 

function of random variables can be calculated if one wants to know it. Moreover, the 

probability distribution gives US the pictorial information about the specific quantity such 

as the location of Brownian particle at a given time interval.

Now, we will review two well-know"1 methods i.e., method of Rice and Fokker- 

Planck which provide the ways to obtain the probability distributions. These methods are 

not dealing with the general random processes but are dealing with the so-called 

"Gaussian random processes [8], [10]. However, it is sufficient [8] to deal with Gaussian 

random processes for the Brownian motion problem. Before describing what Gaussian 

random process is, we should first review some important concepts and quantities. 

Consider the random process y { t ) which roughly (for precise definition, see ref. [12], [13] 

or other books in the field of stochastic processes) means that the variable y  does not 

depend on a completely definite way on the independent variable / as in causal process, 

instead one gets in different obseivations different function y ( i ) ,  so that only certain 

probability distributions are directly observable. The random process y ( /)  is completely 

described by the following set of probability distributions:

พ x { y l ) d y  -  probability of finding in the range (y ,  y  +  d y )  at time /.

พ 2 (>’1/' 1; y 2t 2 )d y  1๙y 2 -  joint probability of finding y  in the range (>'1, >’1 + ๔ y1) 

at time /1 and in the range (>’2,> '2 + d y 2)  at time t 2 .

ffT (>’|/| * _>’2/ 2 ’ y 3̂ 5 )^T id y  ydy  2 = joint probability of finding a triple of values of 

y  in the ranges d >'1, ๙y 2, d y 1 at time /1, / 2, / 3 -

A n d  s o  o n (3.5)
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The set of functions in eq. (3.5) must fulfill the following obvious conditions:

(a) พ,, >  0

(b) พ,1 Cy1/, ; > 2/ 2 ., .>',1/,,) is symmetric function in the set of variables > 1/ 1.. .> ,1/,,.

This is clear since พ,, is a joint probability.

(c) พ ,  (>1/ 1;. . .  y , l , ) =  J Jr/> ,+1 ...  dy„  พ,, (y , / , ; . . .  >,1/,, )
since each function พ,, must imply all the previous พ , with k ( n .

เท most application (especially for the Brownian motion problem) we can make a 

simplification because the processes are "stationary" [1], [6] in time. This means that the 

underlying mechanism which causes the fluctuations does not change in a course of time. 

A shift of the /-axis will then not influence the functions พ ,,. เท other word, there is no 

preferred origin in time for the statistical description of >  i.e., the same ensemble ensues 

when all member functions of the ensemble are shifted by arbitrary amounts in time. เท this 

case, it is clear that the ensemble average of >mu s t  be independent of time and the set 

of functions in eq. (3.5) becomes:

พ 1 ( y ) d y  = probability of finding >  between > a n d  y  +  d y  (it is independent of time)

พ 2 [ ) ’1} ’2/ ) d y td y  2 = joint probability of finding a pair of value of > เท the range d y  1 

and d y 2 which are a time interval / apart from each other ( / is therefore = / ; - / , )

And so on (3.7)

There is another assumption called “ergodic assumption” which is usually 

assumed in the Brownian motion problem. This assumption means that the function > (/) 

for each system of the ensemble will, in the course of sufficiently long time, pass through 

all the values accessible to it. By this assumption, it is clear that the time average of >  in 

each system of the ensemble is the same. By these reasons, for “Stationary ergodic 

ensemble", one can cut the record in many pieces of time length T  (where T  is long 

compared to all period occurring in the process) from “one" record > (/)  taken over a 

sufficiently long time and these pieces should then constitute as good a representative 

ensemble of the statistical behavior of >  as the original ensemble. Hence, for stationary 

ergodic ensemble, the time average should be equivalent to the ensemble average (this
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can be proved mathematically, see ref. [1]) and one can, therefore, use either one of them 

without distinguishing them as in general processes.

The “Gaussian random process" is characterized by the fact that all basic 

distribution functions eq. (3.5) are Gaussian distributions, and one could take this fact as 

the defining property of the process. Consider the stationary random function >'(/) over a 

long time T and suppose that y(l) is repeated periodically with the period T . One can 

then develop J’(/) in a Fourier series:

>’(/) = £ a n cos 2Jtfn1 + b n sin 2พุ/'11/; ; / „  = n / T  (3.8)

There is no constant term a 0 since we will assume that the average value of y  is zero. 

The coefficient an and bm are random variables, and we will assume that they are all in 

dependent of each other and Gaussianly distributed with average value zero, so that one 

has for the probability that a  11 and b 111 are in certain ranges d a 11, d b 111 the expression:

^  (fl, « 2 . . . ; / ) ,  z>2 . . . ) = ] ” [ — l = e x p [ - ( a ;  +  / r ) / 2  a ; ]  ( 3 . 9 )

where a 11 = (a l\  = (b^ = G ( / ,1)/T G (f)  which IS defined here by this relation is called 

the “spectral density". เท order to determine the probability distribution of y  1 we will use 

the theorem about Gaussian distribution:

Suppose the variable X,, X, 1... X11 are distributed according to:

w ( x ,> ■ ■ ■ ,*„)= ท  exp ( - * ,2/ 2° ï )  (3.10)

Let z t , z 2, . . . ,  z s (ร < n)  be .ร, linear combination of the X, :

; k = 1 2 , . . . , ร (3.11)

where a h are constants. One can prove [8] that z k will be distributed according to the 

s-dimensional Gaussian distribution:

( 2  n ) sl2B '12
exp 2 6  ^ ' ' ^ k,ZkZ'

(3.12)
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Here B k1 is the cofactor of the element bk1 in the matrix bk1 where

K  =  ï x ^ c r ,2 = ( z kz ,)  ( 3 . 1 3 )

and Æ is the determinant of the matrix bk1. As a special case, taken for instance, 

.ร- = 2 .One then gets the two-dimensional Gaussian distribution, which according to eq. 

(3.12) can be written in the form:

, 1 I z -
2(1 -  p : ) [<T: โ 2 o r  J ( 3 . 1 4 )

w ( ■ ^ - ) = - — r - T F e x p
2npT\^ -  p  )

where <J~ r : = ( - : )  and (z ,z 2) ะ= o p x . p  here is called the “correlation

coefficient”

By using this theorem, if one compare eq. (3.9) with eq. (3.10) and eq. (3.8) with 

eq. (3.11), the joint probability distribution of finding y ] -  y  (11) and y  2 = y ( (2 ) can be 

obtained by using the eq. (3.14) as

w  2 ) =
1 1 น

( l - / r y /2 ^ ท
2 (1 - p : )น2

a n d  ( );\ y  2 ) = opx . P a g a i n

(3.15)

ร called the correlationHere a  -  (>’1' J 1 โ  -  (>’. 

coefficient.

From eq. (3.8) and the definition of spectral density (below eq. (3.9)), we can 

express many forms of expectation value in terms of this spectral density. For example,

{ y : ) = ] o ( . f W
0

(>'1.)':) =  \G ( f ) c o s 2 n f T ( J f  ; T = {2 - f, (3.16)

( r )  =  4  ท2]  f-G {f)d f

Notice that ( y 2) ,  (>’: ) are independent of time and (>',>'2) which is called the 

“correlation function" (since it determines the correlation behavior of random variables at 

different time) depends only on the time interval โ  =  (2 -  f, as they should be since the 

process is stationary. เท this method, one an see that not only พ 2(>'1/, ; >’2/ 2) can be found
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but the joint distribution function พ  11(>’1/1 . . , y nt  11)  which will be the n-dimensional 

Gaussian distribution depends only on t 2 - / 2,. 1 and the distribution

function concerning the differentiation of y  such as พ'4(y ÿ  1, y ÿ 2 , r )  where r  ะ= 12 ~ /j  can 

be found too since the expectation value in eq. (3.13) is always computed by the use of 

eq. (3.8). Moreover, all expectation value of the form ^y " ÿ " ' y  2 ÿ ' f )  can also be 

determined in terms of the spectral density by the use of eq. (3.8) (e .g .,^ÿ 2  ̂ in eq. (3.16)).

The method for determining the probability distribution that we have shown above 

is called the “ Method of Rice” which actually works within the domain of Gaussian random 

process. By above discussions, the problem seems to be completely solved by this 

method if one only knows the spectral density or the correlation function. เท the actual 

problems of Brownian motion this spectral density can be found from the so-called 

Langevin equation which will be discussed in the next section. It should be emphasized, 

however, that for many applications it is an advantage that one can leave open the 

questions of the actual shape of the spectrum.

Now, we will review the next method which is called the “method of Fokker-Planck 

[8], [15] Before reviewing it, it is first necessary to describe roughly about the “ Markoff 

processes [8], [12], [13 ]”. A Markoff process is defined by the equation:

where p „ ( y ]t ] , y 2t 2 •>'11- / ท-\ \ y jท) is the conditional probability density of find ing>’,1 at 

time 111 when giving y x, y 2, 1 at time l \ , t 2 , . . . t„_  1 respectively. This equation means 

that the event at time /„ depends on the only one of previous event at time 111_ 1. By this 

definition, it is implied intuitively that the Markoff processes is completely described by 

พ 2 . This fact can be proved easily by first considering the obvious equation (from now on 

we shall restrict ourselves to stationary processes):

From eqs. (3.17) and eq. (3.18), it is easy to prove that all the พ  11 for ท >  2  can be found 

when only พ 2 is known. For example, fo rท = 3

(3.17)

(3.18)

๙ ! ; -y2/ 2 ; ^ 3 ^ ) =
w J y T T

(3.19)
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where พ 1 ( y  J  2) can be found from พ 2 by using eq. (3.6) property (C), 

j " ^ 2G V b J V îM ':  - Eq. (3.19) shows clearly that the Markoff process is 

completely described by พ 2 . Moreover, in Brownian motion problem, the Markoff process 

is also completely described by I \  since on always has the expression (because the 

conditional effect on the probability should be absent in the course of very long time),

lV: (>’: ) = Jim P2 G’l 1̂ 2. /) (3.20)
and when combining with eq. (3.18), พ 2 can be found. The basic equation for the theory 

which follows from the definition of a Markoff process is called the “รททoluchowski 

equation’’. It shows that P2 must fulfill :

P 2 G’l IT: 1/)= J P 2 O’, \y, /<> h  (y\);2. / -  /0 (3.21 )
For all values of 10 between zero and /

เท general, the process may not be a Markoff process so it can not be completely 

described by พ 2 . However, เท the physical applications it occurs very often that when a 

process is not Markoff process one can still consider it as a kind of “projection" of a more 

complicated Markoff process. Besides y  1 one then considers another dependent variable 

z  (which may be, for instance, d y / d t  or it may be a coordinate of another system), and it 

may be that for two variables y. ะ combined, the process is then Markoff process,so that::

P 2 O',Z 1 \ y ะ2 ะ - / )  =  J J ^2 G ’ , Z \ | j * . /บ ่ ) P 2 ( y z \ y i z 2 1 / - / บ ) t y d z  ( 3 . 2 2 )

By this reason, it is sometime, in physical applications, reasonable to assume the process 

a Markoff process and as a consequence, we have the Smoluchowski equation. 

Fortunately, there is a theorem which was first pointed out by J.L. Doob [14] about a 

Markoff process. It shows that the Gaussian process will be Markoffian only when the 

correlation function p ( t ) a e x p (- /? /) ,  so according to eq. (3.16) the spectral density 

G ( f ) a \ / ( j 3 2 + ( 2 ^ ) : ) where p  is constant. This theorem can be generalized to n- 

dimensional Ganssian process, it sill be Markoffian only when the correlation matrix [8] 

R ( t ) a  e Q' where 0  is a constant matrix. Now, we will derive the Fokker-Planck equation [8] 

by first assuming that the process is a Markoff process. Hence, we have the 

Smoluchowski equation (from now on we shall omit subscript 2 on P 2 for the convenience),
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p(x\y, / +  A / )  =  J  p(x\z, t)p(z\y, Al)dz (3.23)

Let /?(}’) is an arbitrary function which goes to zero for |_y| —> 00 sufficiently fast. Consider,

J /J(X|>71 v>’ = Jim —■ j R(y lR{x\y> ' + A/) -  p(x\y, t^dy (3.24) 

Inserting eg. (3.23) into eg. (3.24), we obtain

j  Ri} ) ^ d y  = l i m [ f  dyR{y)\ d z p { x \ z , i ) p ( z \ y ,  A / ) -  J  d z R { z ) p { x \ z ,  t ) (3.25)

เท the double integration, interchange the order of integration and develop R ( y )  in a 

Taylor series. The problem arises now !, if the series are not terminated, then the final 

result is very cumbersome and seems to be useless for practical ralculation. This problem 

can be removed by making some reasonable physical assumptions. Consider the 

moments of the change in space coordinate in a small time A/ They are giveen by:

« ,1 {ะ, A t )  =  j ( y  -  z)" p ( z \y ,  A t)d y  (3.26)

We shall “assume” that for Ar — >■ 0 , only the first and second moments become 

proportional to A t (since the Brownian particle should move by a very small amount 

distance within a small time At ) so that

A ( z )  -  lim  - ~ a .  {z,  At )Ar->0 h t

B(z)= lim  —  a7{z,At)
a'-To At

lim  ~ a  1 {z, A /)=  0 V/7 > 3
. v - ฬ  h t

(3.27)

By this assumption, one can stop the Taylor series of R { y )  at term (z -  y ) 2 and one gets

=  0 (3.28)

Since this must hold for any function R ( y ) ,  the expression in the sguare brackets must be 

zero, which gives the general Fokker-Planck eguation:
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■ ^ -  ะ= - ^ - [ฬ 0 ',)^ ,] + ‘~ 'T ^ [ '^ 0 ') jP] with the initial condition / ',(r|> ’,o ) = < 5 (y - jr )  (3.29)

This method is elegant in the sense that it makes the original problem of finding the 

probability distribution to be the problem of solving the partial differential equation for the 

conditional probability and, actually, if one can solve it, the (Brownian motion) problem will 

be completely solved since this process is already Markoff process (which have been 

assumed at the beginning of the derivation) which means that the process is completely 

described by p ’2 However, it is impossible, at this point, to solved this equation since we 

don’t know the form of A(z) and B (z) 1 because to know them, one must have already 

known p { z \ y ,k t )  1 see eq. (3.26) . Notice that this method does not seems to be referred 

to Gaussian random processes at all but, instead, uses the assumption eq. (3.27). We will 

discuss the connection between this assumption and Gaussian random process the 

connection between this assumption and Gaussian random process in the next section.

From the method of Rice and Fokker-Planck, one can see that, in the method of 

Rice, the problem is completely solved if one knows the spectral density or correlation 

function and, in method of Fokker-Planck, the problem is completely solved if one knows 

A{z)an6 B ( z ) . All of these quantities can be obtained by the so-called Langevin equation 

which will be described in the next section.

3.3 LANGEVIN EQUATION AND CLASSICAL BROWNIAN MOTION

เท previous section, we have reviewed the general mathematical method using to 

determine the probability distribution without using in specific problem. เท this section, we 

will use these methods to study the specific physical phenomena which is already 

mentioned in section 3.1 as “ Brownian motion". The Brownian motion can serve as a 

prototype problem whose analysis provides considerable insight into the mechanisms 

responsible for the existence of fluctuation and “dissipation of energy". The problem is 

also of great practical interest because such fluctuations constitute a background of 

“noise” which imposes limitations on the possible accuracy of delicate physical

measurements.
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For the sake of simplicity we shall treat the problem of Brownian motion in one 
dimension. We consider thus a Brownian particle of mass m  whose (center-of-mass) 
coordinate at time 1 designated by x(/) and whose corresponding velocity is V = d x / d i . 

This particle immersed in a liquid at the absolute temperature T . It would be a hopelessly 
complex task to describe in details the interaction of the (center-of-mass) coordinate X 
with all the many degrees of freedom other than X . But these other degrees of freedom 
can be regarded as constituting a heat reservoir at some temperature T , and their 
interaction with X can be lumped into some net force /-’(/) effectively in determining the 
time dependent of X .

Focusing attention on the (center-of-mass) coordinate X. Newton’s second law of 
motion can then be written in the form

m ^  =  F ( i ) + K ( l )  (3.29)
where K { l ) is the external force such as gravity. Basically, /-'(/) must depend on the 
positions of a great many atoms which are in constant motion. Thus F ( l )  is some rapidly 
fluctuating function of the time / and varies in a highly irregular fashion. The rate at which 
F ( l )  varies can be characterized by some “correlation time" F  which measure roughly 
the mean time between two successive maxima (minima) of the fluctuating function /■ '(/) 
This time r* is quite small on a macroscopic scale i.e., about 10’13 section if F ( l )  

describes interaction with molecules of a typical liquid. When looking at eq. (3.29), one 
can not do anything with it since the complication of F ( l ) .  So, what one should do is to 
play with the average procedure. First, integrate eq. (3.29) over some time interval r  
which is small on a macroscopic scale, but large in the sense that โ  »  r * . Then one 
gets.

m  [v(/ + t ) - v(/)] = K โ (/)r + j '  F ( t ' ) d i '  (3.30)
1

where we have assum ed that the external force K ( l ) is varying slowly enough that it 
changes by a negligible amount during a time T Taking an ensemble average of eq. 
(3.30) and thinking that F ( ( )  changes sign many times in the time โ  so that the average 
value of it vanishes, one get

- f = * «

( 3 . 3 1 )
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Suppose that K ( i ) =  0 , one can see that V  will not tend to zero as it should be when the 
particle reaches to the equilibrium. The reason is that we were too careless in treating the 
effect of F ( f )  in eq. (3.30). So, F ( t )  itself should contain a slowly varying port F  tending 
to restore the particle to equilibrium. Hence, we can write,

F ( t )  =  F ( l )  +  Z ( t )  (3.32)
where £(/) is the rapidly fluctuating part of F  whose average value vanishes. The slowly 
varying part must be some function of V  which is such that F ( v )  =  0 in equilibrium when
V  = 0 . If V  is not too large, F (v) can be expanded in a power series in V  whose first non
vanishing term must be linear in V  . Thus F  must have the general form

F  = - พ ิ  (3.33)
Where a  is some positive constant which is called “friction constant" and where minus 
sign indicates explicitly that the force F  acts in such a direction that it tends to reduce V  

to zero as time increases. From eq. (3.32), it is reasonable that the velocity should be 
analogously com posed of slowly and rapidly fluctuating part,

v(/) = v (/)+ v '(/) (3.34)
where v(/) and v '(/) denote the slowly varying part and the rapidly fluctuating part of 
v(r) whose average value vanishes respectively.
Inserting eqs. (3.32), (3.33) and (3.34) into eq. (3.29), we obtain

+  =  K ( t ) + ç ( t ) (3.35)
where we have put av «  c c v  with the negligible error. This comes from the fact that the 
rapidly fluctuation contribution o r 'c a n  be neglected comparing to the predominant 
fluctuating term ç ( t )  since the mass พ  is appreciable, see eq. (3.29). Equation (3.34) is 
called “Lagevin equation [1]”. It differs from the original eq. (3.29) by explicitly 
decomposing the force F  i f )  into a slowly varying part — c c v  representing a dynamical 
friction experienced by the particle and into a rapidly fluctuating part ç i f )  which is the



characteristic of Brownian motion. เท the theory of Brownian motion, it is always postulated
and not derived that the fluctuating part £ ( t )  must satisfy [8], [7]:

น ) f พ  น h  z p M lm m (336>all pair
where the sum has to be taken over all the different ways in which one can divide the 2ท  

time points into ท  pairs.
The important point of this postulate eq. (3.36) is that it is “equivalent [8]” to the 

definition of Gaussian random process i.e., when writing £(/) in the Fourier series, its 
coefficients must be Gaussianly distributed, see eq. (3.8) and eq. (3.9). Moreover, one can 
easily show that eq. (3.27) which is first used as the assumption in order to derive Fokker- 
Planck equation can be derived by this postulate. By these reasons, one can conclude 
that under the domain of “Gaussian random process", we haven our discussions, two 
approaches to find the probability distribution of the problem. First, method of Rice and, 
second, the Fokker-Planck equation. For simplicity, if we treat £(/) as a “pure random 
p rocess” i.e., the correlation occurs within only an infinitesimal time interval, then the 
correlation function of £ (f) can be written in the form

Inserting eq. (3.37) into eq. (3.16), we get the spectral density of the reservoir 
corresponding the pure random process in the form

It is called a “white spectrum" which is the constant for all / .  Since ç (t) is a Gaussian 
random process, it is clear that v(/) will also be a Gaussian random process. By using 
eqs. (3.38) and (3.35), the Ganssian random process v ( t )  has a spectral density in the 
form

(£(/,)£ i t 2)) = 2 K T a S ( t x - t 2 ) =  2 D m z S ( t x - t 2) - , D  =  ^ f  (3.37)
m

(3.38)

(3.39)
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By using eqs. (3.39), (3.16) and (3.14), one obtains

2̂ O'l พ ุ')  = ------ J  2 พ2 exp 0- 7  7๚  {v-r + v2: -  2/01’, v2}
2 æD ( i - p ]  L 2 £ ) ( l - p  j

(3.40)

where p  = exp(- /■ /)
Notice that G v { f y x \ / y 2 + (2;z/'): . Hence, the process v(/) is Markoff process 

due to the theorem of Doob. So, we also use Fokker-planck method for this process. From 
eq. (3.35), integrating both sides with respect to ไ from 1 to / + A/ and with eq. (3.37), it 
is easy to prove that A { v ) ~  -yvand B ( v )  =  2 D  . When inserting these quantities into eq. 
(3.28), we obtain the Fokker-Planck equation in the form,

—  = y  d.!*—) + D with initial condition /> (พ ุเพ ุ'= o )=  <5(v-1’0) (3.41)
d t  ท ’ ท ’

where we suppose that at ไ -  0 ,  V  =  V ,.,. The fundamental solution of this equation with this 
initial condition is

/J(vo|’v )  = 7---- exp[- ( v  -  V)2 /2 c r2 ]
(2 ^ c r : )

where V = V’0 exp(- y t )  and G 2 = { { } ’ -  v):  ̂= ( D / y \ 1 -  ex p (-  2^)] 
By using eq. (3.20), one can show from eq. (3.42) that

(3.42)

พ x (v) = lim p(vn|i’,/)  = InDj exp พ
2D (3.43)

Notice that this result is the Maxwell-Boltzmann distribution as it should be since 
the Brownian particle should reach to equilibrium for sufficiently long time. Moreover, when 
substituting eq. (3.42) and eq. (3.34) into eq. (3.18), we also get the same result of 
พ 2 ( v xv2,/) a s  in eq. (3.40) which was derived by the method of Rice. As one can see in 
this section, the Langevin eq. (3.35) with the postulate eq. (3.36) and also the assumption 
eq. (3.37) when using together with method of Rice or Fokker-Planck equation constitutes 
the “real basis foundation of (classical) Brownian motion"

There are others interested problems in Brownian motion. One of them is the 
problem about the relation between dissipation which is described in term of friction and 
fluctuation due to the random force. One can think that the friction constant a  must in 
some ways be expressible in term of the random force itself since the frictional restoring 
force is also caused by the interaction described by this random force. Of course, from 
eq. (3.30), by assuming that the correlation time r* (which is of the order of mean period
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of fluctuation of the random force and is also the relaxation time for the environment to 
come to internal equilibrium when disturbed by a sudden small change of Brownian 
particle) is mush smaller than any macroscopically small time interval, one can prove that 
[ 1 ],

y = J \y = a ! m  (3-44)

This equation which is sometime called “fluctuation-dissipation theorem” provides US with 
an explicit expression for the friction constant a  in term of correlation function of £ (?) . 
Note that this equation is quite consistent, however not necessary, with the case of pure 
random process i.e., the correlation function is in the form of eq. (3.37) which corresponds 
to the white spectrum eq. (3.38). เท real nature, such a pure random process can only be 
thought of as an approximation or the limiting case of some processes. Hence, instead of 
eq. (3.37), the correlation function should be in a more complicated form and also the 
spectrum should not be white i.e., it is not constant for all / . By these reasons, since eq.
(3.44) is quite consistent with pure random process, it should change the form for the 
general processes in real nature. Since eq. (3.44) was derived by the use of the Langevin 
eq. (3.35), the Langevin equation, in general, should also change its form.

เท other word, the assumption that the slowly varying port of random force is 
proportional to the slowly varying part of the velocity, which is the average of velocity, is 
quite reasonable when the process is pure. By this reason, the friction in general, instead 
of describing by friction constant, will be “retarded” and the Langevin equation should be 
generalized to [10], [15], [16]

mx(t)+m I y(t -  t')x(t')dt' + V'(x) = Ç(r) (3.45)
-00

This equation describe the motion of Brownian particle in contact with the heat reservoir 
which is a source of “coloured noise". เท this case, we define the so-called “frequency 
dependent damping coefficient” by [10]

y(co) = I  y{t)eicxdt (3.46)
0

and one can prove the fluctuation-dissipation theorem [10],

(3.47)
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Moreover, from eq. (3.45) (if the external force is zero) are can easily derive the relation 
between the spectral density of velocity and of reservoir as,

G v M  =
G\ { o j ) j  m : (3.48)

I I CO +  y  ( ๔ ]

By this equation, if one model the spectrum of reservoir G c(co)  (it is equivalent to the 
model of the correlation function (0)0(/)) )1 one can find the spectrum of the velocity
(71.(ry)from which the correlation function (v(o)i’(/)) is obtained by the Wiener-Khintchine 
theorem [1], [10]. Moreover, it is easy to show from eq. (3.47) that the spectral density will 
be related with the real part of y(co)  by,

G£ (<y) = AmKT'R e {^ ((y )} (3.49)
CO

Here we define the spectral density from eq(3.16) i.e., G ( / )  = G ( c o)  =  2 J  (£1 £2) cos( c o t ) d t

Notice that if the retarded friction is not retard i.e., y ( l  - / ' )  = y S ( l  - 1' )  then eq.
(3.45) reduces to the old Langevin eq. (3.35), y ( c o ) -  y  , eq. (3.47) reduces to eq. (3.44) 
and also tells US that (£ ,£2 ) must obey eq. (3.37) which is the case of pure random 
process corresponding to white spectrum, eq. (3.48) reduces to eq. (3.39), and eq. (3.49) 
reduces to eq. (3.38).

3 . 4  LIMITATION O F  C L A S S I C A L  B R O W N I A N  M O T I O N  A N D  S Y S T E M - P L U S -  
R E S E R V O I R  M O D E L .

From previous section, the Brownian motion problem seem s to be completely 
solved based on Langevin equation with Fokker-Planck equation or method of Rice. 
However, in order to obtain the Langevin equation, there are two main assumptions. First, 
the mass of Brownian particle must be sufficiently large in such a way that we can neglect 
the rapidly fluctuating part of velocity when comparing to the rapidly fluctuating part of 
force, second, the correlation time r * . Which is the relaxation time for the environment to 
come to internal equilibrium must be much smaller than any microscopically small time 
intervals. This correlation time r * will be larger when the temperature is lower. As we have 
known, the quantum behavior will occur to the microscopically particle which has very 
small mass such as electron and also occurs at sufficiently low temperature. By these 
reasons, we can not write down the Langevin equation of the form like eq. (3.35) o req .
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(3.45) for quantum particle (suppose that, at first approximation, ignore the uncertainty 
principle between coordinate and momentum) and although we can write it, the 
quantization procedure can not be progressed. This comes from the fact that the standard 
procedure of quantization relies upon the existence of Lagrangian or Hamiltonian function 
for the system which we can not find it since an equation of motion of the form eq. (3.35) or 
eq. (3.45) can’t be obtained from the application of Hamilton’s principle to any Lagrangian 
which has no explicit time dependence. Now, the question arises: how can one formulate 
the problem of quantum Brownian motion which is the Brownian motion under the situation 
where quantum behavior occurs?

By the above discussions, we cannot do any quantization procedure when dealing 
with the random force since the Hamiltonian or Lagrangian function can not be found. By 
this reason, one way we can do is to "model" the mechanism of dissipation explicitly 
without dealing with any random quantities, and from this model the Hamiltonian or 
Lagrangian function can be found so the quantization procedure will be progressed. Now 
the question arises again: how can one find the expectation value of any observable of the 
Brownian particle such as the momentum of Brownian particle from this model? The 
answer is simple, they can be found from the density matrix (which in fact is the reduced 
density matrix which will be discussed in section 3.6) as presented in Chapter II. This 
model we mentioned above is called the phenomenological “system-plus-reservoir" 
model. This model regards the system and its environment as together founding closed 
universe which and be described by a Lagrangian or Hamiltonian. เท this picture the 
phenomenon of dissipation is simply the transfer of energy from the single degree of 
freedom characterizing the “system ” to the very complex set of degrees of freedom 
describing the “environment”. It is implicitly assumed that the energy, once transferred, 
will be effectively disappeared into the environment and will not recover within any time of 
physical interest.

The simplest model one can envisage is a model where the environment consists 
of a set of harmonic oscillators coupling "linearly” via the coordinate X of the Brownian 
particle. Caldeira and Leggett [17] pointed out that the environment consisting of 
harmonic oscillator is rather general and often provides a suitable description of a realistic
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environment at sufficiently low temperature. The restriction of a realistic environment at 
sufficiently low temperature. The restriction of linearity i.e., “any one degree of freedom of 
the environment is sufficiently weakly perturbed” that it is permitted to put up a system- 
reservoir coupling which is linear in the reservoir coordinate and is physically reasonable 
when the system is macroscopic. Note that this does not necessarily imply that the 
dissipative influence on the system is “weak" as well, since the number of environment 
degree of freedom coupled to the system is very large.

The most general form of the Hamiltonion for the universe complying with these 
requirements is [16]

H  =  H s  + H h +  H 1 (3.50)
where

Hs p -  

2  M
r(.v) (3.5i:

is the Hamiltonian of the isolated system i.e., the Brownian particle of mass M  in potential 
l '(.*•) (it may depend explicitly on time),

HK = t U - z r +^ m^“=1 V2  /??.
(3.52)

describes the reservoir consisting of N  harmonic oscillators which is usually large in 
number, and

H , =  - ร ุ F a  (*>/„ + A v ( x )  (3.53)

is the interaction term. For the latter purpose, we added a counter-term A V ( x )  which may 
depend on the parameters m 0 , c o a  of the environment, and on F a ( x ) ,  but not on the 
dynamical variable q a  1 If we assum e for the moment that AF(x) is zero, the minimum 
value of the potential energy of the universe which can be attained for given X is when 
q a = F a { x ) เท Iaa>l for all a  . To ensure that the system can not lower its potential energy 
below the original uncoupled value by moving off the X axis in the many-dimensional 
space where axis are X and q a  ’ร, one can choose A V ( x )  as

A V ( X ) = ~ Y j F a ( X ) / 2 m a Û}l  (3.54)
This form of A F(x) in eq. (3.54) com pensates the coupling-induced 

renormalization of the potential and it is introduced here as a matter of convenience which

X  4 Cl 6 0 2 )
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is reasonable if one wishes to consider solely the effect of dissipation. Naturally, such a 
term can always be split off from v(x) in eq. (3.51).

If we require that the interaction be separable and dissipation be “strictly linear" 
[17], Fa{x) can be written in the form,

F a ( x )  =  c a x  (3.55)
Where ca is constant for all a
From eqs. (3.51) -  (3.55), the Hamiltonian eq. (3.50) takes the specific form,

H = - £ 7 +
2  M  2 f t

ๆ f \ 2 '
P a + w a ( 0 l

c a-x
ว

m น V m a K  )
(3.56)

This Hamiltonian has been used to model dissipation for about thirty years. เท the more 
recent literature, the model described by eq. (3.56) is usually called the "Caldeira-Leggett 
model".

3.5 PHENOMENOLOGICAL CALDEIRA-LEGGETT MODELLING [16]
เท previous section, it is clear from the model that the Brownian particle should be 

transferred its energy to the environment. By this behavior, one may ask a question that: 
can one write the equation of motion of the Brownian particle in the form like eq. (3.45)? 
To answer this question, one should first find the equation of motion of the universe and 
then eliminate the coordinate of the environment later. We obtain for the model by eq.
(3.56) the equation of motion

« = 1 V m 0๓11 J
m a 9 * ( ' ) + m a « > i ï a ( l ) - C a x 0 )  =  0

ter eliminatina the environmental coordin;

(3.57)
m  a  <7* V )  + m  a  <  CI a  K n - C a A n  = 0

From this equation, after eliminating the environmental coordinates qa 1 the equation of 
motion for x(/) can be written as

M x ( t ) + M  J"Y (/ -  l ' ) x ( t ' ) d t '  +  v ' ( x )  =  ç ( t )
—00

(3 .5 8 )
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where

£ พ  =  “ i x  ^  ( ° )  +  ^ ^ t H ° )  c o s ( ( y Q/ ) + ^ ^ รiท (w „ / ) (3.59)

and

77  Ÿ  Cg 2 cos(fc>a/) (3.60)

Substituting eq. (3.60) for y { t )  in eq. (3.46), the frequency-dependent damping coefficient 
y ( c o )  is in the form

r M
! CO

m

J L  c 2 1y  c u 1

*-l m J ° l  X  - ® a )
(3.61 ;

At this point, it is convenient to introduce the “spectral function" of the environmental 
coupling, j { c o ) , by

4 * 0  = | z - ^ —  s ( a  -  <°a ) (3.62)
Since we wish the environment to constitute a proper heat bath causing dissipation, we 
now consider J ( c o )  as continuos. Then the sum in eq. (3.61 ) is replaced by the integral

y ( ,0)^
๘ ' 1 - C O 2 - i 0 +

(3.63)

By this manipulation, the function y ( c o )  acquires a real part

R e j f ( r 4 = - 1 . 2 f e >  (3.64)
M  CO

From eqs.(3.49) and (3.64), the spectral function j ( c o )  will be related with the spectral 
density G c ( c o )  (if we treat £1 (/) in eq. (3.59) as a random force ) by

G 4 { ผ )  = 4 K T ^ -  (3.65)
For frequency-dependent damping, it is sometimes convenient to determine y  ( c o )  through 
analytic continuation of the Laplace transform y ( z )  of the y ( l ) ,

y { c o ) = y { z  =  - i c o ) (3.66)
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From eq. (3.63) and eq. (3.66), one can show that

(3.67)

Moreover, from eq. (3.64) and eq. (3.46), it is easy to show that

j { ( o )  = M c o I  y(/)cos(<y t ] c h (3.68)

It is worth to note from the above equations that the model described by the 
Hamiltonian (3.56) is fixed completely by the mass M  1 the potential v ( x ) ,  and the 
spectral function j { c o ) .

3.6 REDUCED DENSITY MATRIX AND REDUCED PARTITION FUNCTION [16]
From the Caldeira-Leggett model, the quantization procedure in quantum 

mechanics can be done since the Hamiltionian or Lagrangian has already been known. 
So, from chapter II, it is clear that one can find the density matrix of the universe based on 
this model Hamiltonian. From the model Hamiltonian eq. (3.56), the corresponding 
Euclidean Lagrangian contains contributions from the system (ร), the reservoir(R ), and 
their interaction (i) can be written in the form L v = L l  +  +  where

ร E [*,q ]  = ร ! M  + Sr [ q ]  +  ร,E[*,q ] , ร ! M  = j LEsdr, ร E [q] = J L\dr, s f  [x ,q]= J ü[dz

Z | ^ M - + r ( x )

(3.69)

As in chapter II, the Euclidean action is defined by

( 3 .7 0 )

where q =  (q] , q 2, . . . , q N )
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As in eq. (2.31), the (normalized) density matrix of the universe can be written as a path 
integral in the usual form,

K ( x " , q ' , x ' , q ' ) = z ~ '  J D x ( r )  f D -vq ( r ) exp.(-1ร,E[ x , q ] / h )  (3.71)
x (0 )= x ‘ จ ิ{ 0)=1}'

where D N q { r ) ~  D q x { z ) D q 2 { r ) .  . . D q N { r )  and z  is a partition function of the universe 
normalizes the density operator k  ( K { x n , q ”\ x ' , q ' )  ะ= ( x " , q ” k  x ' , q ' ^ l  ), so that T r^  = l .

Since the real interest of the problem is not the whole universe but just the 
behavior of the Brownian particle (system) only, we should focus our interest on a reduced 
description in which the reservoir coordinates are eliminated. เท statistical sense i.e., the 
average value of any observable can be computed via the trace process, it is reasonable 
to define the “reduced density operator” by partial trace of the density operator k  of the 
universe with respect to reservoir states, P  = TrR k  . When expressing in coordinate 
representation, the “reduced density matrix” { p { x ’ , x ' )  =  ^x"|p|x'^) is of the form,

p ( x \  x ' )  = J d N  q ' k ( x " , q ' \  x \  q ' ) (3.72)

where d  q '  -  d q \ d q ' 2 . . .  d q 'N

From eq. (3.71) and the definition of Euclidean action (3.70), eq. (3.72) can be written in 
the form,

p ( x - , x ' ) = z ; ' 1 j  û K r )e x p .( -S sBH / » M * ] ; Z a =
x (o )= x '

_ z _

z 7

where
F  E พ = Z R j  D v<7(r)exp.(- 5RE1 [x, q]/ f i )

(3.73)

(3.74)

with
S h  h  ฟ  =^R & ]+  ■ร’,E [x,7] (3.75)

® จิ(vh ?
where j d s q '  J z)a q { r )  denotes the sum over all close paths or periodic

-cr จิ(̂ )=จิ'

paths with period บ  =  fd t i taking by the coordinate q (r) .
F E[x] in eq. (3.74) is called the "influence functional” because it describes the 

environmental influences on the system. This comes from the fact that it contains the sum
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over all close paths of every environmental coordinates and leaves only the system 
coordinate X as the domain of the functional. The factor Z R' is introduced here in order to 
normalize F E [x] 1 so that F  E [x] = 1 when the coupling IS switched off. Hence, it is clear 
that ZR must be the partition function of the system of N  independent harmonic 
oscillators of the form [2],

” 0  2sinh(<yai//2 ) (3.76)

Zd’ in eq. [3.73] is introduced in order to normalize the density operator p  1 so that 
Try» = l . Since p ( x " , x ' )  is called the reduced density matrix, Zd' is correspondingly 
called as the "reduced partition function” i.e., the partition function which contains the 
reduced description of the system from the entire universe. Note that it connects with the 
partition function of the universe z  by the relation Zd = Z /Z R which is reduced to the 
partition function of the original isolated system when the coupling is switched off. From 
eq. (3.73), it is clear that the reduced partition function Zd' can be written in the form,

z d = ji/)jr(r)exp(- ร E [x]///)f e [ x ]  (3.77)
/ .v(i; K*'

where j>Z)x(r) = ) d x '  J/j>x(r) denotes the sum over all close path taken by the
-«■  x(0 p.v'

coordinate x (r) .
Now, from the model Hamiltonian eq. (3.56) or equivalently the Lagrangian eq. 

(3.69), it makes the calculation of the influence functional eq. (3.74) to be exact since 
everything is Guassian in the path integration. From eq. (3.69), eq. (3.70), and eq. (3.75), 
eq. (3.74) can be written in the form,

1 N  V ( 1 2 2 y -ZJ - f - f e  +G>l qi ) - Caqax + 1 c r x
J th 0=1 0 2 2 ) -

^ EM = Z r fF>A>(r)exp<ร  X J  +G>Wa) - c aqax + r  dr  I

z»’ 0  exp(_ ร * )  ■ K M e x p j -  J  j ( ^ l k  * ) -  พ ) เ ^

(3 .7 8 )
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Notice that the path integration over the environmental coordinate q a (r) in eq.
(3.78) is in the standard form of forced harmonic oscillator [2], [3], The evaluation of this
path integration is straight forward, and one can show that (see Appendix A)

- . , 0x ; O  ; ' ' r 2 i l9 cinta (รท IJ /9 I d m  m ti J J cinhi/ii /9
(3.79)

2 sinh (æ>„ 77/2) 14/77a 07 0 /; sinh (<yu 77/2) r(r)x(r')r/rr/r

Inserting eq. (3.79) into eq. (3.78), we get

p r  ๅ  [ 1 2̂ [~ <9 rrCOsh(<y „ fir -  r 'l - ( / .  2 ]) ,  w  ,  r Ĉ Y2
A [ x ] = e x p j - - ] T  “  J7 ( ~ X----- - x ( r ) x ( r  V r ^ r  + J  “  2 dr

[ h น-\ L 4m a(0น 0 0 s i n h  yfi>aU  / 2 ) 0 2/?7 , < 9
(3.80)

To change eq. (3.80) into the “nonlocal" form, we have to use the simple identity, 

x(r).Y(r') = -^-(r: (r) + x : ( r ') - [ x ( r ) - x ( r ') ] 2). When inserting this identity into eq. (3.80) 
and using the definition of the spectral function (3.62) and the equation

/ r  1 we obtain

F e [x ] = e x p j-  J J k \ t  -  t ' \ \ x ( t )  -  x(r')Y dr'd (3.81)

where
1 f j( \C0sh(ty[r-77/2])^  h i* 1 T w  d a

(3.82)

is called the “damping Kernel" (in chapter IV is called the “normal damping Kernel” in 
order to make it different from the “anomalous damping Kernel").

Notice that eq. (3.81) is “entirely" nonlocal since the local contribution to K ( t )  just 
cancels the potential renormalization term (second term in the exponent of eq. (3.80) 
which is originated from A V ( x )  in eq. (3.54). When inserting eq. (3.81) into eqs. (3.73)
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and (3.77), we obtain the reduced density matrix and reduced partition function of the 
forms,

p(x',x') = z ; 1 J/)x(r)exp(-SeEff[x]//z) (3.83)
and

z d = |/)x(r)exp (- .ร;;,1 [x]/ti) (3.84)
where the “effective action" .ร;!;,. [a'] is given by the expression

r'|)[x(r)- x(r')]2£/rÿr (3.85)

Another (formally equivalent) form of the effective action, which has been used in 
many papers such as ref. [17], [18], can be derived if we agree to continue the path x ( t )  

outside the range 0 < T < U - p f \  by the prescription x (r +  u )  =  x ( r ) . Then we can 
transform the expression eg. (3.85) into [5], [7]

ร ! a  พ  = j | ]1 M x 2 + V ( x ) ^ T  + ^ \ d r  J d r ' K 0 (r  -  t ' \ x ( t )  -  x ( t ')]: (3.86)

where

K lt (r) ะ= —  โ,/ (ru) exp ( -  û ) \ z \ \ j ( û  (3.87)
2 n t

Eq. (3.85) and eq. (3.86) tell us that the environment affects the system in such a 
way that the system has the nonlocal behavior and the environmental effect on it is 
contained in the damping kernel. From eq. (3.82) or eq. (3.87), it is clear the behavior of 
damping Kernel depends on the form of spectral function as it should be since the 
spectral function contains the behavior of the coupling. There are many forms of spectral 
function which are widely used in Brownian motion problem such as the spectral function 
in the case of “Ohmic damping”. For Ohmic damping, the damping coefficient is 
frequency-independent,

y ( c o )  =  y  (3.88)
where y  is a constant real number. From eq. (3.64), this Ohmic damping may be 
described by the model eq. (3.56) with the spectral function
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The Ohmic damping is sometimes called “Markoffian dam ping” since from eg. 
(3.65) and eq. (3.89) the spectral density of the environment G . { ( ง ) -  constant so the 
spectral density of the velocity of Brownian particle G v { œ ) a \ l y 2 +  ผ 2 which, due to the 
theorem of Doob implies that the Gaussian random process v { t )  is a Markoff process. 
Note that, as have been discussed in section 3.3, this Ohmic damping should be 
equivalent to the case of pure random process. เท reality, any one realistic spectral 
function j { ( o )  falls off in the limit Otherwise, certain physical quantities would
diverge. Clearly, there is always some microscopic memory time setting the time scale for 
inertia effects in the reservoir. The Drude-re^ularized retarded friction y (/) with a memory 
time t d  =l/<yD has the form y (/) = y ( 0D e x p ( - « D/) which, from eq. (3.68), has the 
corresponding spectral function,

./(« )  = -----; ๆ  - M y  (3.90)
1 +  a >  / ( O p

Notice that when the relevant frequencies of a system are much less than the “Drude 
cutoff frequency” C0D 1 the reservoir describing by eq. (3.90) behaves effectively like an 
Ohmic heat bath. Moreover, there is a generalized form of spectral function which IS 

widely used in many papers such as ref. [17], [19]. It has the following form:
./(« )  = 7ๅ(ง*  exp(- ( ง เ ( ง  0 ) ,  (3.91)

with (0C the cutoff frequency whenever needed. เท accordance with ref. [17], ร  > 1 is the 
“super- Ohmic case", 5 = 1 the “Ohmic case", and 0 < .y < 1 the “sub Ohmic c a se ”.

Note that the reduced density matrix in this section (as in chapter II) is derived in 
the situation of thermal equilibrium. เท general, the quantum Brownian motion problem 
frequently concerns with the non equilibrium case so the reduced density matrix is divided 
into two kinds, equilibrium and "non equilibrium" density matrix. We will not discuss about 
the non equilibrium density matrix here since our application of quantum Brownian motion 
in chapter IV just requires only in the equilibrium case. There are many papers dealing 
with quantum Brownian motion in the non equilibrium case such as ref [20], developed by 
Feynman and Vernon, which describes the quantum Brownian motion based on the 
assumption of initial state which is called the “factorize assumption" (no correlation

j { ( û )  -  ไๅÛ) for all frequency C O , (3.89)
where ใๅ = M y  is the viscosity coefficient.
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between the system and reservoir at the beginning) and ref. [21] which deals with the 
general initial state. A system in the quantum Brownian motion problem is sometimes 
called the “quantum dissipative system” or “open quantum system" since the quantum 
system we are interested in can’t be regarded as isolated from the rest of the physical 
universe.
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