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APPENDIX A

ELIMNATION OF THE ENVIRONMENTAL COORDINATES

From eq. (3.79), by omitting the subscript d on the environmental coordinate

qa,CO, and Ma, we have the expression

r)expj-J\[A(q2+ Vo) e, (A.1)

where |Dq()' [dq [Dq”)

To evaluate the sum over all close paths in eq. (A.1), we first consider

J /fy(r)expjj"(C/z+COZq2)-CqX rirj . (A.2)

Eg. (A.2) IS the standard form of the path integration of forced harmonic oscillator. From

refs. [2] or [3] 1eq. (A.2) is equal to

mco
Ahsin(y() P o w3

where

0 E[x(r),c/]= sinﬁfo V) [cosh(ry(/)-1]r/"2

s\nh( /)y JN ha 7-rN+sinh(wr)MrV?

e | rsinh[ry((?- r]sinh COT'x(r)x{r")dT"dT

mcosmhycoU)™

From egs. (A.1) -(A.3), itis clear that

4 1
mco JEh W
|D’\(r)exp|-’\|’\y(r/:+(02Cf)'ch dC\= 2A/|S|nh(%(/) 1 h ]dq
(A.5)
©
By using eq. (A.4) and the formulae Jexp(ax2+bX+CJdX = -d exp(c - b2/4a) and
-O

COSh(ryf/)' 1= 23|nh Z(mU 2), ed. (A.5) can be written in the form
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[zty(r)expj-"y @2+ 292-cqx dfj

1 f C2
asinn T O 1 "} AwsyPsinh(ftjt)[cosh(( )- ]
V 2z \]
JJ{sinh @i - )] + sinh (ryn)}{sinh [ry((/ - r')] + sinh ()X )x( )d dr
00
ctoh( )jjsinn7-
(A.6)
\% T
the exponent of eq. (A.e), we can change ~ 1 \ - in the first term to 2 c/r t/r’
0 0 0 0
since the integrand is invariant under the interchange between rand - After this

change, by using some hyperbolic function properties (it depends on one’s experiences),

one can show that

HTrl(r)expj-"j[M(rl: +@©292)- cax @t >=

2sinh(rya 1)
9Xp< ENY - rJ -uUu ~ (e)x{t dr (A?)
2mf* ” 5104 * »
T
Since, from eq. (A.7), the double integration d/r c/r' in the exponent implies that > -
o O

(r- - can be replaced by \ - r'l. After this replacement, the integrand of the exponent

of eq. (A.7) is now invariant under the interchange between rand - so the double
integration fjrfr/r' can be changed to —xda \da . Now, eq. (A.7) becomes (recalling
0 0 20 0

the subscript a on qaca,and -1

fAI(r)expj-1 JjNy- (%a * oj; qi)- cagaxJC/r]

2sinh(('1 /1)
o cl “)cosh(rya|r-r'|-7/ z)X o drd
Py siho 12 RN



APPENDIX B

ELIMINATION OF THE COORDINATE X OF A VORTEX

Since Y,,:Y'l, X_nz V*(since r(r) must be real), and Vo =0, eq. (4.31) can be

written as
-u 9 12 UMQ" 11 2 " 1R ﬂngﬁ'
2h LYn\x | -~ ~ rilv,y,x-n=~2Tir,'x ~ h™ Tnkl ~-n "
(MO *
-Z7X; -—}/ Vix |
2b r
(M fi "

Z kxx 1U+VvV.J. o).
(B.1)
Now, let us define *0=Rejr0,>"1=Re>1*0=Imr,, and >0=Im>0. By these
definitions and the properties V_n:'Vn *m0 =*<0, and >.0=>0, eq. (B.1) can be

expressed, after completing the square, in the form

U_?( | UMQ sr i iy rt A,,YV. +
2h » yV A ,
Lid uz2jx. Y 1'6.\ M2 2V
H Vv A Wy tdy T »  ykiz

(B.2)

Substituting eq. (B.2) for the exponent of the integrand of eq. (4.24) and using eq. (4.26)

we obtain
Jox(rexp- £UYX]/NFEX = -"] Jexp 'YUKX.' |_y My
ngl A Jexp vx"' - tnvx AJZ dX[
/ _ Ly
f]A oy UT T O IMQv § .
1 A J 3.
Xop | IJI\/IZnZ "v_2k P o5

h ttYn y
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After evaluating the usual Gaussian integrals in eq. (B.3) and recalling the

definition of y 1 in eq. (4.31), eq. (B.3) can be written as

M vl

Mv; +Mor + CJ

j>Z)x(r)exp(- IO\ X)) 'L [x] = JI— [ f

exp ! (B.4)
« | r,,

where a>l = kx/M



APPENDIX C

EVALUATION OF THE SEMICLASSICAL EFFECTIVE ACTION

]
About y = 0, the potential | D>) can be written, by Taylor series, as

|’O):—~ y :+0(y3) since V(0) :OZV'(O)).

Similarly, about y :Yblwe have

o)

I'O)=c +1 MM 0 yk):+0(0'- yhy) (since |l"om,)=0) (c.2)

Since we have to find the “semiclassical” effective action 11 and .'Mhi through eq.

(4.51), egs. (C.1) and (C.2) can be approximately written as
V{y) = "'M<O|y' (since |/|r(0) = Ma>|),
and

y{y) =c - 2T/ry;0°"- th (since I'"(yb) =-Mofh),

respectively. About y =0, let US consider jV (y)jr.From eq. (C.3), we have
0

Jr(rVr J):(r)c/r.

Substituting eq (4.30) for >(r) in eq (C.5), we obtain

JnyT =xMa>iujyy

(L1} i
To arrive this result, we have used the orthogonality relation JE I-E le = US:ﬂn

0

Similarly, about Y = Yb,we have

(v{y)dz =vbu - -M alagyry- ybydr.,

Let _y(n= Yb + ' jC 6""1'Jlis clear from eq. (4.30) that
(o)

>o=yb+Co and Y =C forall // * 0.

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)
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Now, by using the orthogonality relation of eanleq. (C.7) becomes
J-o Ndr = vk fy.\ -

Inserting eq. (C.6) into eq. (4.51), we get

+2M<aut> |=.

By using the properties y 1= >t and 1=2,,, the above equation can be written in the

form
ST vV Myvitss+kjm(o- (c.10)

Similarly, when inserting eq. (C.9) into eq. (4.51), we obtain

Svbu+ b ayx oo« <«" 1D CCLY)

By using eq. (C.8) and the properties A 1:A,1 S 1=>*and ™ 1- Cn. eqg- (C.11)

becomes
VA = oy U -y Ly R A PO ,(U<C12)

Since, in our problem, meflbI[>] will be used to evaluate the reduced partition function z*h)
in eq. (4.48) only, it is clear from the function measure (4.26) (here, X,, must be replaced
by 1) that we can write (>’,1'yh) in the second term of eq. (C.12) as =1 without
affecting the reduced partition function z',h). By this reason, eq. (C.12) can be written in

the form

s T b b v ju + * M wootsow  *t=vi-a>+v-r M- (C13)



APPENDIX

LINEARIZATION OF THE EQUATION OF MOTION

From eq. (4.44), we have the equation of motion

-M'ye{r) + V'(yc) + 2yc(r)\\g(T - *)-k( - T')]az’

1
- 2j[tf(r - )"'k(r- r'Yk r'Vr'=0m (b.1)
Inserting eq. (4.68) into the third term of eq. (D.1) and using the orthogonality relation

[
jvV. "V n"r6/r = US:“.:ﬂ.With the fact that FO =1, eq. (D.1) can be written as

-M}'XT)+ Fr(yd +M T:31(r)- 2j[g-(r - r')- k(Z - l)])I '{' )y =0. (D.2)
Slightly below TO 1y0(]) can be replaced by YB{ ) expressed in eq. (4.67) and iS now

approximately replaced by ,'1= 2n p,,ﬁ < 2nkBT ﬂ.After this replacement, eq. (D.2)

becomes
Me0)j( cosc<yrry+ I pyz +€08((0,))]+ \ fQ2 1+ MQ.£ cos(akt)
- Bhijrecr- T)-k(T- )\ "= 28 ¢rgee- ")-k{j - micos(COR")d "=0,
(D.3)
where (R =2K 3% . when inserting eq. (4.68) { is now equal to ) in the fifth term of
eq. (D.3) and using the orthogonality relation of e'":{v]lis now equal to Inn//3,,ft ), one
can see that the fifth term will cancel with the third term.  the second term of eq. (D.3),
expanding Vl\yb+£xos((ywr)]about YN and using the fact that u(e:)=0, we get
L'|\b+£cos(rer)]:V"{Yb) cos(<yRr) since F'(36)= 0. By these reasons, eq. (D.3)
can be written in the form

Mem\ cos(coR ) + sV (yb)cos(coR )+MQ.2ecos{(oR )

- 29/\[9{ - ')-k{T- r)]cos((yRr)6/r' =0 .. (D.4)
0
Now, let us consider

sk(r- ) k{ - mcos(syfiryir =rej g~ ) -k( - dr\.o.s)
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By wusing eq. (4.68) and the orthogonality relation of ™" rwith the fact that

CRR =2 /pch = v, lone can show that
JW - T)-k(T- TAy~dr = Jo (D.s)

Inserting eq. ( .e) into eq. ( .5) and recalling the definition of rn form eq. (4.68), we

obtain

fu'c- ") k{ r)]cos((a,r)ilr > +s 1 00Ster).( )
Ma>| + Mco] +p MQr

Inserting eq. ( .7) into eq. ( .4) and using the relation in eqg. (4.50) with the fact that

= oR1We obtain

o] +RAWR)  oRHOR) iRy =0 ( )

(AT (1+ORA0H  Q:

\Mcol +V"{yb)+MQ? -M Q 2



APPENDIX E

PROCF CF 0>

We have already known that ]Oobeys the equation

2
(E.1)
4y 2ih TIM
M 1
tin 1 (0
From eq. (4.74) (with (01:O) and the definition of y eq. (4.75), it is clear that 7,
obeys the equation
20!
f 0 = (o: (E.2)
’ 1M s
fin « Y }
Equating the left hand side of eq.(E.1 ) with the left hand side of eq.(E.2), we obtain
2,0»r iM AT )L
e <y(&r ~+Cij{) "
min <y
T;f[' £ 7@ iy (E.3)
n. 1'1<

Now, itis clear from (E.3) that 7, >7/1.
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