CHAPTER V

CONCLUSIONS

Effects of β -CD and 2HP- β -CD on stability of ranitidine HCl were investigated and can be summarized as follows:

- 1. There was no evidence to conclude whether the solid ranitidine HCI : CD (β -CD, 2HP- β -CD) inclusion complexes prepared by co-grinding and kneading methods were formed. However, the NMR technique supported the formation of freeze-dried ranitidine HCI : CD (β -CD, 2HP- β -CD) inclusion complexes in solution.
- 2. The freeze-drying method was suitable for preparing the inclusion complexes of ranitidine HCl and CD (β -CD, 2HP- β -CD).
- 3. The molar ratio of 1:1 was appropriated for preparing the inclusion complexes of ranitidine HCl and CD (β -CD, 2HP- β -CD).
- 4. Both CDs did not influence the degradation kinetics, i.e., the order of reactions.
- 5. In general, both CDs could protect the hydrolytic degradation of ranitidine HCl by means of forming the inclusion complexes, except for the extremely acid pH value; $2HP-\beta-CD$ could stabilize the drug more than $\beta-CD$ could.
- 6. Inclusion complexes of ranitidine HCl with CDs in a solid state retarded the degradation rate of drug, except for the inclusion complex with β -CD around the CRH.
- 7. 2HP- β -CD could protect the degradation of ranitidine HCl powder as a result of moisture sorption more than β -CD could.