
CHAPTER 3

RESEARCH METHODOLOGY

The details of the research methodology is divided into four major parts. The 
first part addresses the site surveying; the second deals with the data collection and 
pre-analysis; the third part focuses on the data analysis and modeling using two main 
analytical approaches, namely, Factor Analysis (FA) and Multiple Regression 
Analysis (MRA) and the fourth part examines management applications based on the 
results of the first three parts.

3.1 Site surveying:
The site survey process was conducted by visiting three industrial paper 

production sites in Thailand. The criteria for site selection are as below.
All input variables, both material input and utility consumption, in the 
production process, can be measured in the daily operation.
All output variables, both wastewater quality and quantity of SS, TDS, 
COD and BOD, can be measured in the same operational day.
Records of Data from both input and output variables are available and 
are of good quality in terms of the accuracy of the data.

3.2 Data collection and pre-analysis:
Data collection was carried out at the site selected by considering input and 

output variables in the daily operations from each of major processing steps (Figure 
3.1). The input variables, fibrous materials are collected and measured at the step of 
stock preparation in the unit of kg/day. Water and electricity are collected from all 
steps of process related to the operation of paper machine. Water is measured in 
terms of mill water flow (m3/day), electricity is measured in the unit of kWhr/day. 
Wet end chemicals (alum, emulsifier, clay, defoamer, cato, starch, wet strength) are 
measured at the first step on paper machine called wet end operations. Coating 
chemicals are measured at the second step on paper machine called dry end
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operations. The output variables are measured in terms of water quality (mg/1) and 
mill water flow (m3/day) and calculated as wastewater loadings.

Input Variable Output Variable
I. Stock Preparation Fibrous Materials, —

Chemicals, water Pulping Wastewater
Electricity

I

Electricity Screening
ไ

Wastewater

II. -Paner Machine Water F.lectricitv_______ Paper Farming- Wastewater
(Wet end operation) & Pressing

I(Dry end operation) Electricity----------- ------Drying

Water, Electricity, and Chemicals ---- Finishing Wastewater

Figure 3.1 Input and output variables from papermaking process

Data pre-analysis is performed by data compilation, conversion, and 
conditioning as follows.

3.2.1 Data compilation is conducted by recording daily operational data 
regarding input variables: type and amount of fibrous materials, type and amount of 
chemicals, water use, electricity consumption and wastewater load variables (SS load, 
TDS load, COD load, and BOD load). These data were entered into a separate 
spreadsheet for each kind industrial paper: Gypsum Back, Gypsum Face and Duplex 
coated board.

3.2.2 Data conversion is carried out by converting the unit of all measured 
variables from time base (day) to production base (kWhr/ton for electricity, m3/ton 
for water and kg/ton for other input variables).

3.2.3 Data conditioning is performed by identifying and removing invalid 
data. Because this industrial papermaking facility has a single production line for 
three kinds of industrial paper, the data recorded during the change of paper grades 
are removed because they are not representative of any single paper grade. These data 
are organized into the spreadsheet in the form of a matrix with observations as rows 
and input variables as columns.
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3.3 Data Analysis and Modeling:
3.3.1 Factor Analysis (FA):

The purpose of FA is to transform large portions of the entire set of variables 
into a smaller and more interpretable sets, so that only the essential information 
remains. FA derives a mathematical model from which factors are estimated. In this 
study, FA model is constructed for the production conditions of industrial 
papermaking assisted by SPSS Programs through the data reduction technique.
The process of FA follows six major steps that are described below [11, 43-45]:

Step I: Preparation of the Original Input Data Matrix for all variables,
Step II: Calculation of the Correlation Matrix between variables,
Step III: Factor Extraction or Factorization,
Step IV: Rotation of the Factor Matrix (optional),
Step V: Calculation of the Factor Scores.
Step VI: Validation of FA model.

The details of each step are presented in the following discussion ( Figure 3.2):
Step I: Preparation of the Original Input Data Matrix for all variables,

The data matrix contains the complete set of data for every observation or 
case, providing all of the valid input variables to be used for calculation of the
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Step. In this matrix
variables that are converted into the same units of product produced (kg/ton) are put 
into the columns of the matrix while the numbers of the cases are put into the rows 
of the matrix. The size of the matrix depends on the number of all of the variables 
(p ) and the number of all cases, or the sample size (ท) obtained from daily operations. 
The original data matrix is obtained in the form shown above. Each column represents 
one input variable, such as water, electricity, and etc., while its values for all 
observations or cases are given in row.

Through step I, VI original data input matrix with different input variables 
(material supplies and utility consumption) and different cases (ท) for both gypsum
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liner board and duplex coated board are obtained. These data matrices are used for 
calculation of the correlation matrices.

Step II: Calculation of the Correlation Matrix between variables,
In this step, each pairwise of input variables in the original data matrix is 

calculated to find a correlation coefficient (r ) by this equation;

r 'j =  z (* ik - * 1) - ( x jk - X  1 ) !  J i ( x j t  - X j ) 2 £ ( x a  - X  1) 2 เ ท

where 7, j  = 1 ,2 ,  ......... , p

The value of the correlation coefficient is a measure of the degree of 
dependency between two variables (Xj, Xj). Then the correlation matrix is presented in 
the form of a symmetric {ทX ท) matrix and the diagonal value ( rn , r 22, rpp) of R is
1. The correlation value (r) is between -1 and +1. The meaning of correlation 
coefficients in the correlation matrix is as follows.

1) A coefficient o f+1 indicates that the two variables are perfectly positively 
correlated or have correlation in the same direction, so as one variable 
increases, the other increases by a proportionate change.

2) A coefficient of-1 indicates a perfect negative relationship or correlation 
in the opposite direction. If one variable increases the other decreases by a 
proportionate change.

3) A coefficient of zero indicates no linear relationship at all. For example, 
when one variable changes, the other may stay the same.

R (pxp)

r ท r ท ■ %

r 2X r 22 - r 2p

r px r p2 --  r pp

For any variables to be grouped into the same factor, a magnitude of correlation 
coefficient (r ) of each pair of these variables must be greater than 0.3 in absolute 
terms. Based upon the value of correlation coefficients, the variables are grouped into 
the same particular unobserved variables called factors by FA in the next step. Thus, 
the correlation matrix is fundamental matrix used for factor extraction.



Step I: Input Data Matrix
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Step II: Calculation Correlation Matrix
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Step III: Deriving
3.1 Diagonalization

|R -/Ii| = 0 (4)
(R -A ,l)e i = 0 (5)

pi, 0 - - 0 ■
e tr e  = V = 0 A 2 • - 0 (6)

0 0 - • K .
where E = [e, e 2 epj (7)

3.2 Factor Extraction
R = EVEt = LLT (8)

where L = e Vv  and LT = Vv E (9)

Step IV. Rotation (optional)

L** = LT (10)
Step V. Calculation Factor Score Matrix

F = XB (11)
where B = R _1L (12)

Figure 3.2 Factor analysis procedure for Gypsum liner board production
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Step III: Factor Extraction or Factorization,
The goal of factor extraction or factorization is to determine the factors that 

can be extracted from a large set of data through the correlation matrix. According to 
the theory of descriptive statistical analysis of multivariate variables, some data 
exhibit multivariate non-normal distribution due to the non-normality of some 
variables. The method called “ principle component” is, therefore, appropriate for 
factorization in such situations because there is no restriction requirement for normal 
distribution.

The linear combinations of the variables are found in the principle component 
method using a correlation matrix (R) which is a symmetric matrix. Then the 
eigenvalues and eigenvectors ; A,e are obtained from the roots of characteristic 
equation below.

(R-AI)X = 0 (3.1)

According to the important properties of the characteristic roots and vectors of every 
real symmetric matrix, there exists an orthogonal matrix p such that PTR P = D 
where D is the diagonal matrix of the characteristic roots of R.

Through the diagonalization of R by post-and pre-multiplying it by the matrix 
of eigenvectors (E) and its transpose (ET), the diagonal matrix of eigenvalues (V) is 
obtained as shown in the following equation;

Et RE = V (3.2)

where V = •■- 
o 

>*' 
■•- 

O • - o ' 
•- 0

0 0 - h .

where E = [e, e2 " eP1

The columns in E are called eigenvectors, and the values in the main diagonal of V 
are called eigenvalues. The first eigenvector corresponds to the first eigenvalue, and 
so forth. From this equation, the matrix of eigenvectors (E) pre-multiplied by its
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transpose (ET) produces the identify matrix (I) with ones in the positive diagonal and 
zeros elsewhere. This equation can be reorganized in this following form.

Et E = I (3.3)
R = EVEt (3.4)

Then the correlation matrix (R) can be decomposed into the matrices of eigenvalues 
and corresponding eigenvectors. Through the scaling of the principle component 
(factor) the various magnitudes of factor vectors are obtained as shown below.

R = (EVY)(Vv Et ) (3.5)

0 . .. 0
where Vv = 0 Æ .. 0

0 0 . ~-k

and e Vv  is L and Vv E1 is LT

R = LLt (3.6)

where L is the un-rotated factor matrix of factor loadings and LT is the transpose of L

The form of correlation matrix in equation 3.5 and 3.6 shows the achievement 
of diagonalization in the form of each combination of eigenvectors and the square 
root of eigenvalues. The result means that all variables are dispersed from the 
correlation matrix with different magnitudes. These magnitudes explain the 
dispersion of variables called “variance”. This equation is called the fundamental 
equation of FA, because it represents the decomposition of the correlation matrix into 
the product of the factor matrix of factor loadings; L and its transpose (LT).

Through step III, the eigenvalues are obtained and the un-rotated factor 
matrix (L) can be found by direct matrix multiplication (L = e Vv ) as below.
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lu 12, -  /„
L = f  ;

/ ' / >  ^ / ’  IPP.

where I =  factor loading

This factor matrix of factor loading (L) describes the pattern variation of 
variables (p  variables) with common factors (Fm factors) in different magnitudes, but 
in the same direction for each common factor. These magnitudes, called factor 
loadings (/) or correlation coefficients between variables and factors, explain how 
each variable relates to each factor based on the same eigenvalue or variance. The 
first factor will account for the largest amount of variance in the data sample. The 
second factor accounts for the next largest amount of variance remaining in the 
sample and will be uncorrelated with the first factor. The successive factors account 
for smaller proportions of the total sample variance, and all factors will be 
uncorrelated with each other. Based upon the significance of factor loading (> 0.5) in 
this factor matrix, the highly correlated variables are grouped into the same particular 
factors with different percentage of total variance explained. Then, the number of 
significant factors is obtained.

Due to the scaling of factor in the eigenvectors matrix as unit vector, the 
proportion of variance that each common factor accounts for is one for all variables. 
That is the communality of a variable is also one for all the variables.

The communality for a variable is the sum of the squared loadings (SSL) 
within a variable across factors. The proportion of variance in the original variables 
accounted for by a factor is represented by the SSL for the factor divided by the 
number of variables for the orthogonal rotation.

Then, the eigenvalues or latent roots will be used as criteria in selecting the 
number of significant factors. The factor that has eigenvalue greater than 1 is 
considered to be significant and the factors with eigenvalue less than 1 will be 
neglected. The reason for the above criteria is that factors with a variance less than 1 
are no better than a single variable, since each variable has a variance of 1.

Normally, existing relationship is found as a percentage of total variation or 
total variance for each factor. Based upon the eigenvalue >1 that is plotted between 
the eigenvalue and number of factors called Screeplot, all significant factors are
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obtained. The percentage of total variance for each factor measures the amount of 
data variation in the original matrix that can be reproduced by a factor. It is equal to 
[sum square of loading (SSL) / Number of factors (/ท)] X 100. This value measures a 
factor’s comprehensiveness and strength. Note that in FA using principle component 
method, number of factors (m ) is equal to number of variables (/?).

In this step, if the factor loadings are clearly shown, rotation is not 
necessary. If they are not clearly shown, then rotation is performed to find the most 
meaningful interpretation of extracted factors. This means that high (> 0.5) or low 
(< 0.5) values of factor loading can be classified into factors, but moderate values of 
factor loading is difficult to classify into any factor. In this case, rotation should be 
performed.

Step IV: Rotation of Factor Matrix (optional),
The purpose of rotating the factor matrix is to redistribute the variance from 

earlier factors to later ones in order to achieve the most meaningful pattern of factors. 
Normally, it is used after extraction to maximize high correlations and minimize low 
ones. The orthogonal rotation is conducted by rotating a pair of factor axes in a 
perpendicular line that are passed through the points of all variables, as much as 
possible. Thus, the angle between these axes are always maintained at 90-degrees. 
This will make as many values of factor loading in each column of the factor matrix, 
as close to zero as possible or will make the number of high loading as small as 
possible. The rotation method called varimax will be used because its goal is to 
maximize the sum of variances of the required loading in the columns of the factor 
matrix. This orthogonal rotation method implies that the factors are mathematically 
independent. In this step, the rotated factor matrix (L**) is obtained by multiplying 
un-rotated factor matrix (L) with the transformation matrix (T) of sines and cosines 
of an angle (f>,

L** = LT

cosp  -sin<j) 
sin(f) cosrj)

(3.7)

where T
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After rotation is performed, other relationships already mentioned in Step III 
can also be found, namely, communality and proportion of variance.

If rotation is not required, the naming of factors may either be carried out or 
not. Basically, high loading of the contributing variables in each factor are utilized to 
give a descriptive name to the factors and the label is then communicated to those 
who would apply the results.

Step V: Calculation of Factor Scores.
Through the factor matrix, the values of factor scores are estimated. These 

scores measure some definable property of the object that has characteristics or 
variables with an individual value or score on that factor and represent estimation of 
the underlying factor value for each case or observation;

Fi = fn ( F,1, F(2,......., F,>1), i = l  2 ,3 , . . . ,  ท (3.8)

Such a value must be based on the individual’ values or scores obtained from 
the directly measured variables, the Xj in the standardized form (Z) called “z score”
(z = (X ij-X jj)s j) . The first step involves calculation of regression coefficients for
weighting variable in the standardized form to produce factor scores. Because these 
factors are extracted using the principle component method, there are no differences 
in using any method (Bartlett and Anderson-Rubin methods) to calculate the factor 
score coefficients. However, according to the best estimation of factor score 
coefficient [11], the linear relationship based on the use of the regression method is 
the most appropriate approach for estimating these scores as detailed in the following 
equations:

F ij = /?I1Z 11+ /?12Z 12+........+ A p Z  ip (3.9)

This equation can be represented in matrix form as the following.

= Z BF (3.10)
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where F is an ท X m  matrix of m  factor scores for the ท observations,
A

B is a p x n  matrix of estimated factor scores coefficients, and 
z is an ท X p  matrix of observed variables

Equation 3.10 can be written as 1/n  ZT F = 1/n  ZTZ B (3.11)
or L = RB

as 1/n  ZT F = L and 1/n ZTZ = R

Therefore, the factor score coefficient matrix is given below.

B = R *L (3.12)

where B is a factor score coefficient matrix of variable scores

Factor scores, then, can be generated on the first factor and so forth. Thus, 
they are a product of matrices of standardized scores on variables (Z) and factor score 
coefficient (B) as indicated in the following equation.

F = ZB (3.13)
Moreover, predicting scores on variables from factor scores is also possible 

as shown in the equation below.

Z = FLt (3.14)

This equation will be used when there is only an un-rotated factor matrix.

Z = F(L**)t (3.15)

If a rotated factor matrix is available, equation 3.16 will be used.
Therefore, from equation 3.13 and 3.14, FA provides two form of the 

equations for calculation of these common factors (Fm) as shown below.
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Fl =bnZi + bi2Z2 + ................ + bimZp (1.1)

Fm = bp ,Z \ + bP2z 2 + .............. + bpm Zp (I.p)

where bjj =  factor score coefficient

Therefore, FA is shown to be useful for isolating, identifying, and discovering 
the hidden factors that are common to a large number of interrelated variables. These 
hidden factors or common factors can, then, be used to explain the interrelations of a 
large set of observable variables.

Through Step V, factor scores matrix of significant factors for all products of 
industrial paper are obtained and used as the new independent variables or predictor 
variables for MRA.

Step VI: Validation of FA model.
FA model validation is performed by moving case-by-case. In this 

method, the most recent ท data values for 7 months is used to validate the FA 
model. The term moving case-by-case is based on the time that as a new observation 
is used, it replaces the oldest observation in the original data set and a new FA model 
is computed. The result from step VI provides the stability of the FA model in terms 
of physical meaning for industrial papermaking.

3,3.2 Multiple Regression Analysis (MRA):
In MRA, a statistical model is derived from a set of independent variables or 

predictor variables (x) in order to predict the dependent variables or response 
variables (y). In this work, the MRA model is constructed for prediction of the 
wastewater load of industrial paper production for the two main products. 
Development of the MRA model involves five major steps assisted by SPSS program 
for regression analysis ( Figure 3.3) [11,14, 46-47]:

Step I: Data Collection and Preparation of Predictor Variables,
Step II: Model Investigation,
Step III: Model Testing,
Step IV: Estimation of Model Parameters,
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Step V : Evaluation and Interpretation of the Model,
Step VI : Validation of the MRA model.

Step I: Data Collection and Preparation of Predictor Variable
In this study, data collection and preparation consist of the same set of data 

that are used for FA. Data for independent variables or predictor variables are reduced 
from several variables to a smaller number through FA. These variables are in the 
form of significant factor scores. Data for dependent variables or response variables 
include the wastewater loads, namely, s s  load, TDS load, COD load, and BOD load. 
These variables are also in the same case or observation set of significant factor 
scores. Both predictor variables (x) and response variables (y) are organized into the 
same spreadsheet for determination of their relationships; y  =  f  (x) in the later 
steps.

Step II: Model Investigation,
This step provides a measure of the goodness of fit of the estimated 

regression equation to the data through the least squares method (LS). LS is a 
technique for finding the value of the regression coefficient that is to minimize the 
sum of the squared deviations between the observed values of the response variable 
(y) and the predicted values of the response variable ( y  ).

Least Squares involves two major processes. First, a response variable is 
selected and the best fit of the relationship between each predictor variable and the 
selected response variable is investigated using 11 different basic models (Figure 
3.3). The best curve fitting is performed on the basis of the following statistical 
significances:

1) high coefficient of determination (R 2) and 2) low significance level (a) for 
overall prediction.

• R 2, the coefficient of determination, is the proportion of the total variance of y
explained by the model or accounted for by x; xi...Xp.

R 2 =  S S M /S S T  = 1 -  SSR /S ST
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where S S M  = y  (>’1. -J ’)2 and is the sum of squares accounted for by the regression 
model. The larger S S M  is in relation to SST, the greater is the effect of the 
regression relation in accounting for the total variation in the y  I  observations.

where SSR  = y  (>’1. -  j), )2 and is the sum of the squared residual or error., it is 
based on the difference between the values of the observed variable (>'1.) and the 
prediction value (  y  j )  for each case. The greater the variation of the >'1. observations 
around the fitted regression line, the larger is SSR.

The relationship among SST, SSM , and SSR is as shown below.

Total Sum of Squares (SST) = Explained Sum of Square of Regression Model (SSM )

5>I-5D2 E (t, - t)2
+ Residual or Error Sum of Squares (SSR)

Z (T , -> '1')2

The values of R 2 are between 0 to +1. If X  can account for all the variance of>> then 
S S M  is equal to S S T  and R 2 is equal to one. Since R 2 is the proportionate reduction of 
total variation associated with the use of predictor variable (x), the larger R 2 is, the 
more the total variation of y .  is reduced by introducing the predictor variable (x).

Thus, in the second process, the best curve fit is checked for its significance. In this 
process, F -s ta tis tic  is performed to test the significance of R 2 , while S E  (Standard 
Error of the Estimate) is used to measure the dispersion of the observed points 
around the computed points.

• F -s ta tis t ic  =  E x p la in ed  M ean  S q u a re /R esid u a l M ea n  Square, or 
F  =  M SM /M SR

where S S T  =  ^ ( > ’1. - ÿ ) 2 and is called the total sum of squared deviations or
the total sum of squares before regression. The greater the variation among the y -

observations, the larger is S S T .
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where M S M  =  S S M /k  and M SR  =  SSR/n-k-1
k = number of samples of predictor variables 
ท =  size of each samples of predictor variables

• Standard Error of the Estimate; SE  = S S R /(n -(k + 1))

All determinations of statistical significance of the two major processes ( F -s ta tis tic  
a n d  SE) can be obtained through the analysis of variance.

- Analysis of Variance (ANOVA): This statistical method involves a two - 
stage process. The first stage is used to investigate whether there is a difference in the 
means among the variables, and then to locate where these differences may be. The 
second stage is conducted depending on the nature of the hypothesis (Table 3.1).

Table 3.1 ANOVA Table for Linear Regression

Source of Variation Sum of Square
(SS)

Degree of Freedom 
(df)

Mean of Square 
(MS)

Regression or Model SSM k M SM =SSM /k
Residual or Error SSR ท-(k+1) M SR=SSR/(n-k-1 )
Total SST ท-1 M ST=SST/(n-l)

From Table 3.1, it can be seen that the relationship that holds among the sums 
of squares (that is, S S T  ~ S S M  +  SSR) also holds for the degrees of freedom (d f);
T ota l d f =  R eg ress io n  m o d e l d f  + R esid u a l o r  e r ro r  df.
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“INPUT”
Predictor Variables 
(x) ; Factor Scores 
(F j......... F m ) ___

Figure 3.3 Multiple Regression Analysis Procedure for Industrial Paper Production
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Then, the hypothesis are tested using the F -s ta tis tic  that checks whether the 
hypothesis can be either rejected or not. The procedure of hypothesis testing concerns 
these standard terms.

• Null hypothesis (denoted by Ho):
H 0: Pi =  P i =  p 2 =. . .  =  Pk =  0  or

All predictor variables in the model could not be used for prediction.
where Pi, ,...,Pk  are the model parameters that have values of 0.

In this hypothesis, the statement of a zero or null difference is directly tested in the 
sense that the final conclusion will be either rejection of Ho or failure to reject H 0.

• Alternative hypothesis (denoted by H„):
H„: Pi =  P i = Pi2 = .. .  =  P k * 0  or

Some predictor variables in the model could be used for prediction.
where Pi, ....,Pk are the model parameters that have not values of 0.

In this hypothesis, the statement must be true if the Ho is false.

The conclusion involved a decision either to reject or to fail to reject the Ho is 
determined by a comparison of the F -s ta tis tic  and the critical value.

• Critical value: The value that separates the critical region from the values of
the F -s ta tis tic  that would not lead to rejection of the Ho.

• Significance level (a): The probability of rejecting the Ho when it is true.
Typical value in this study is 0.05 that is the value of a  = 0.05.

If the F -s ta tis tic  calculated is less then or equal the critical value at a  = 0.05, 
Ho is accepted. This means that all predictor variables (y) do not influence the 
response variable (x) or they are not appropriated for prediction.

If the F -s ta tis tic  calculated is greater then the critical value at a  = 0.05, H a is 
rejected. This means that at least one predictor variable (y) influences the response 
variable (x) or that it can be used for prediction. In this case, the t- s ta tis tic  is used for 
testing any model parameter (Pi)  * 0  or which X is in relation to y  by the following 
hypothesis.

Ho: Pi =  0  
H  11: P i* 0 ,  i =1
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ร,,
where ร b =  Standard deviation of bi

If the t-s ta tis tic  calculated is less then or equal the critical value at a  = 0.05,
Ho is accepted.

If the t-s ta tis tic  calculated is greater then the critical value at a  = 0.05, H a is 
rejected.

Thus, at any given a  level, either the F -s ta tis tic  or t-s ta tis t ic  can use for 
testing Pi =  0  or p i *  0.

Usually, when the F -s ta tis tic  is calculated by the computer program for 
statistical analysis such as SPSS and SAS, the probability value (P -v a lu e ) is 
considered. Since in a regression model building, the variables involved are assumed 
in the standard normal distribution (Z) that is a correspondence between area and 
probability, thus, the P -v a lu e  is equal to twice the area to the right of the F -s ta tis tic . 
The P -v a lu e  is the probability of getting a value at least as extreme as the observed 
one such as the mean value.

If the P -v a lu e  is less than or equal to the significance level (a), that is p  <  a  =  
0.05, the Ho is rejected.

If the P -v a lu e  is greater than the significance level (a), that is p >  a  =  0.05,
Ho is accepted or failed to reject.

Through the steps of the model investigation, the model parameters and their 
error terms of the predictor variables (x) for the regression models that meet the above 
statistical significances are obtained and proposed for testing the assumptions 
underlying MRA in the next step. However, in any case where the investigation does 
not succeed, it means that the match of the estimated regression equation to the data 
does not fit well under 11 different basic models. It may have to do with whether or 
not there are other more complicated relationships within the data.

Step III: Model Testing,
The proposed model resulting from Step II is tested using the three 

assumptions underlying MRA: Independence, Normality, and Homogeneity in order 
to obtain the linear relationship between the predictor and response variables that
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does not affect the statistical procedure used for MRA. These assumptions are tested 
by the following methods.

1. The independence of the error terms can generally be considered through 
the residual plot that exhibits an association between the errors and a 
sequencing observation or time. However, in this study, FA is performed
before for predictor variables (x; F \.....F m). The variables resulted from
FA as the predictor variables for MRA are unrelated and independent. 
Thus, only assumptions 2 and 3 are considered for this application.

2. The normality of the error distribution can be considered through the 
Kolmogorov-Smimov approach for sample size (ท) > 50 and or Shapiro- 
Wilks approach for ท < 50 at a significance level of 0.05 under the 
following hypothesis.

Ho: The error of the sampled observation is normally distributed
H n: The error of the sampled observation is not normally distributed

where Ho is null hypothesis and H i is alternative hypothesis.

The test statistic is D =  sup|*S'(x) -  F0 (x)|,

where D  equals the supremum, overall X, of the absolute value of 
the difference ร (x) -  F 0(x).

where ร (x) is the observed cumulative frequency probability function 
computed from the sample data,

where F 0(x) is the expected relative cumulative frequency probability 
function.

F q(x)  can also be computed from the standard normal curve area. Thus, the 
value of X in each observation is converted to the form of standardized 
variables. Then the probability of each standardized variables for each
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observation is obtained from the table. This probability value will be
subtracted from the value in the table, then Fo(x) is obtained.

The largest amount of the differing frequency: D  is compared with the value 
in the table. If the critical value of D  is not greater than the value in the standard 
table, then, Ho is accepted.

However, when this value is calculated by the computer program, the /?-value 
of D  at a significance level of 0.05 is considered. If the calculated /7-value of D  > a  = 
0.05, Ho is accepted.

As for the Shapiro-Wilk approach, the original data will be converted in the 
form of logarithm 10, and the test of normality is also in the form of logarithm 10. If 
the /7-value of Shapiro-Wilk from the calculation of the computer program is > a  = 
0.05, H o is accepted.

3. The constant variance or homogeneity of the error term can be considered 
either by the residual plot between residuals or errors values and predicted values, or 
Levene statistic that calculate the probability under different conditions. For residual 
plot, if the data is distributed near zero, it means that the error is constant. For 
Levene statistic, it is usually calculated based on the mean or the median in order to 
test the variation of data under the following hypothesis.

H 0: The tested data is not differently distributed.
H a: The tested data is differently distributed.

If the significance value of this statistic is greater than 0.05, Ho is accepted.

In this study, if the tested data is in the form of factors, the Levene statistic 
may not succeed due to the sum of case weight being less then the number of data 
groups. When this happens, the residual plot is carried out.

Moreover, the outliers as influential observation of errors are considered from 
the 1.5 Inter-quartile Range (IQR = Q3-Q1) through the Box-plot diagram (see Figure
3.4). When the data have the series of data values from the lowest to the highest, the 
diagram of Box-plot can describe the data distribution.
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Step IV: Estimation of Model Parameters,
The regression coefficients or model parameters of the composite model 

that is obtained from all of the proposed models for each response variable (y) are 
used as starting value for estimation of the real model parameters of the final 
predictive equation through the least square (LS) method.

The principle of the LS method is to minimize SSR  (sum of squared
residuals) or Z e;2 (errors).

SSR =  ]Te(.2 = £ ( .y, -> ,)2 = Z ( y ; - b 0 -  V ,)2 

where >’1. is the observed value of the dependent variable or response variable for the 
jth observation , and >1. is the computed value of the dependent variable or predictor 
variable (x) for the zth observation.

The procedure for finding the values of the parameters using the LS method 
involves differential calculus that is not essential to understanding the principles of 
regression analysis.

d sse  _ (>1- - b 0 - 6,x,)2
d b 0 = db0 = - 2l ( y ,  - b 0 - b xx 1) =  0

d sse  _  (>1- - b 0 -fr,x ,)2
56, 56, — 2Z ( * - b 0 - b lx , )  =  0

These equations are rewritten and normal equations are obtained as below.

+ Y j x i b  ̂ = H x iy i
The normal equations are solved to determine b0 and 6, .

ss
s s  1O'

K  =  y - b 1 ^

b0 and 6, are estimators of model parameters obtaining through the LS method.
Once the model parameters are determined, the equation for the best fitting line is 
obtained due to their good properties such as unbiased and minimized variability.
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For the non-linear relationship such as the polynomial regression model; 
y,- = p 0 +  /?, X; +  P j X * , this step is also conducted by an iteration search process with
the method of Levenberg-Marquardt [24], that is designed to capitalize on the best 
features of the linearization. This method deals with the problem of minimizing a 
function in the absence of any restrictions for the constructed model. It involves the 
rate of convergence and the partial derivatives of the model with respect to each of 
the parameters [25-26].

In this step, the predictive model is obtained and is evaluated in the next step.

Step V: Evaluation and Interpretation the Model.
The purpose of evaluation of the predictive model is to obtain the best fitted 

model. It is carried out by examining the statistical significance of the predictive 
model obtained from step IV as described in step II and testing the appropriateness of 
the predictive model as described in step III.

In addition, one sample T test is performed to determine whether the value of 
the mean is equal to zero through the significance value of t under the following 
hypothesis;

H 0: jUo =  0 or
The mean of the residual in the model is equal to zero.

H a: /Jo * 0  or
The mean of the residual in the model is not equal to zero.

The value of t-test; t =  X -  / l o i  SVn for ท < 30, and t = X -  / l o i  <Wn for ท > 30, if t 
calculated is greater than critical value at a  = 0.05, Ho is accepted, while H a is 
rejected. This means that the mean of the residual is equal to zero, and also indicates 
that the model has a normal distribution.

Through step V, if the result of the model meets the statistical significance 
and MRA assumptions, this predictive model is obtained and used for validation in 
the later part. If the model does not meet the statistical significance test, the outlier or 
influential observations must be removed (detailed in step III, Figure 3.4) and Step II 
will be repeated.
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Step VI: Validation of the MRA model
The purpose for validating the MRA model is to assess its generalizability 

and its predictive ability of MRA model. All complete observations for each type of 
industrial paper products obtained from operational days within a 14 month period 
are used to validate the model. The percentage of relation between each type of 
wastewater load and related input factors is determined from calculating the 
coefficient of determination (R2 ), just as in the model building step and multiplying it 
by 100 ( % relation = R2 X  100).

The prediction ability of a predictive environmental model for the 
wastewater load is then determined by calculating the percentage of relation of the 
model building (MB), multiplying it by 100 and dividing it by the percentage of the 
relation of the model validation (MV), ( % prediction accuracy = % relation of MV 
X  100 / % relation of MB). As a rule of thumb for fluctuated data, if the prediction 
accuracy > 40%, the model is applicable.

The results from the predictive models can be applied in wastewater 
management due to the ability of the models in identification of the root causes of 
wastewater generation. The suggested actions derived from the model results are 
aimed at improving industrial paper production, particularly in unusual cases that 
may greatly affect environmental quality due to wastewater generation.
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