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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

This thesis is concerned with the continuous ridgelet transform, the Smith transform and the
continuous curvelet transform which are wavelet-like transforms with directional dilation.
We study these transforms of function with Holder regularity and then analyze the Holder
regularity of function by these transforms. The problem of this kind has been studied in the
wavelet transform. In 1989 which found in [1,2,3,4,5], M. Holschneider and P.Tchamitchian
gave a result and a proof that the wavelet transform is its ability to characterize the Holder
regularity over interval of functions, gave a necessary and sufficient condition, in condition
that the wavelet is continuously differentiable, with real values and compact support. Jaf-
fard shows that one can also estimate the Holder regularity of function, precisely at a point,
which gives a necessary condition and sufficient condition, but not a necessary and sufficient
condition, and he supposed that the wavelet type function has n vanishing moments, has
continuously differentiable and compact support. In 1998 [6,7], Emmanuel J. Candés has
been defined the ridgelet transform with three parameters: scale, location and orientation
parameter and then in 2002 [8,9,10,11], Emmanuel J. Candés and David L. Donoho have
been constructed the continuous curvelet transform, developed from the continuous ridgelet
transform and closely related to a continuous transform used by Hart Smith in his study
of Fourier Integral operators. The Smith’s transform [8,9,12,13] is based on strict affine
parabolic scaling of a single mother wavelet, while for the continuous curvelet transform
they discuss gernerating wavelet changes(slightly) scale by scale and affine based on polar
parabolic scaling. These transforms are motivated by the need for finding better represen-

tations for natural images with edges where several geometric wavelets have been proposed.



These seem like the natural tools for analyzing the directional regularity of function.

In our work, we confine on the continuous ridgelet transform, the Smith’s transform
and the continuous curvelet transfrom, analyze the Holder regularity by these transform.
Generally speaking the amount of Holder regularity of a function reflected in its ridgelet,
Smith’s or curvelet transform by the decrease of their cofficient at small scale. And then we
turn our attention to the reciprocal problem. The next section consists of basic definitions,
theorems and some interesting properties that will be used in our investigations. The next
chapter we represent the continuous wavelet transform and demonstrate the characteriza-
tion of pointwise and uniform Holder regularity with the wavelet transform. In chapter
IIT we definitively indicate the continuous ridgelet transform, the Smith transform and the
continuous curvelet transfrom and discuss their properties. Final chapter, we analyze the
Holder regularity with these transforms and the directional regularity with the ridgelet
transform.

First, we indicate state fundamental definitions, examples, theorems and some interest-

ing properties that will be used in the proceeding chapters.

1.2 The LP-spaces

Definition If 0 < p < o0 and if f is a complex measurable function on X, define

is-{/ If!pdu};

and let LP(u) consist of all f for which
[£]]'< o0

We call || f|| the LP — norm of f.

11
4+ =1
P q

1 <p,g<oo, and if f € LP(u) and g € L(p), then fg € L'(n) and || fgll; < |Ifll, g,

Theorem 1.1. (Hélder inequality) If p and q are conjugate expands, i.e.

In this thesis, we shall deal exclusively with Lebesgue measure on R? and hence denote

the integral of function by the usual integral notation.



Theorem 1.2. (Fubini’s theorem). If [ [ |f(z,y)|dydzx < oo, then

[ [temais = [|[r@na]a =[] @i o

i.e., the order of the integrations can be permuted.

On a given Hilbert space H, we will follow the mathematician’s convention and use

inner product which is linear in the first argument, i.e.,

(Mu1 + Aoug, v) = Ay (up,v) + Ao (ug,v) for Aj, A9 € C and wug,ug,v € H.

As usual, we have (u,v) = (v, u) where @ denotes the complex conjugate of o, and (u,u) > 0
for all u € H. We define the norm [Jul| of u by |lul|® = (u,u). A standard inequality in a

Hilbert space is the Cauchy-Schwarz inequality,
| (v, w) [ < o] [[w]
for all v,w € H. A standard example of such a Hilbert space is L?(R?), with

()= [ F)ie) e

We will often drop the integration bound when the integral runs over the whole R2.

1.3 Rotation Matrices

Let v1 = (z1,v1), v2 = (z2,12) € R%. We say that vector v; is rotated to vs by an angle 6,

with 6 € [0,27), if we have the following relationships;

x3 = x1cosf —y;sinf
y2 = yicosf+xysind, ie.,
2 cos —sinf| |z

Yo sinf cosf Y1



or we can also write vy = Rgv; where Ry is the 2 X 2 matrix on the right of the equation,
called the rotation matrix by the angle 6.
Indeed, since x1 =rcosa and Y1 =rsina for some « € [0,27) and r € R we
have

x9 =rcos(a+60) =r(cosacosf —sinasinf) =z cosf — xasinb

y2 = rsin(a+0) = r(sinacosf + cosasinf) = y; cos 6 + 1 sin 6.

1.4 Fourier Transform

Let f € L'(R). We let
f(&) = / f@)e P dr, €€ R

be the definition of the Fourier transform of f.

The inverse of the Fourier transform of f is defined by

flz) = /fo F(6)e*™E de  for all z € R.

In 2-dimensional space, the Fourier transform becomes

f& = [ fla)e o da
RQ

= | f(w1, me)e 2 @0H228) gy dry  for all € = (£1,&) € R
RQ

And, the inversion formula is

Hay =) J@ermsmae

N / f(&1, &)ePmimsiteta) ge, de;  for all x = (z1,22) € R%
R2

We assume that functions f and g are pointwise continuous and absolutely integrable on

the plane. The convolution of f and ¢ is defined and denoted by

(f % g)(x) = / " fw)glr — ) dy.



We then have

and

1.5 The Holder Regularity

Let f be a real-valued function defined on R%and #:q € RY. We recall the following definitions
of uniform and pointwise Hoélder regularity with exponent o where o > 0.
Definition : Uniform Holder Regularity
For o ¢ N. A locally bounded function f : R? — R is uniform Holder regular with exponent
o, denoted by f € CY(R?), if there exists a constant C' > 0 for which at any zo € R
there is a polynomial P, of degree less than « such that, for all x in a neighborhood of x,
[f (@) = Pay(x — w0)| < C || — @0|* (1.3)
Definition : Pointwise Holder Regularity

i. f:R?Y — Ris pointwise Holder regular at z with exponent «, denoted by f € C(zo),
if there exist a constant C' > 0 and a polynomial P,, of degree less than a such that, for
all z in a neighborhood of zg, |f(z) — Py, (2 — x0)| < C' ||z — x0]|“ .
It can be shown that if f € C®(zg), then f belongs to C%(ag) for any 8 < a.
Remark: For 0 < a < 1, Pyy(x — x0) = f(20). Indeed if o < 1 then P = constant. If
x =z we have | f(xg) — Pa, (ko —xq)| < C'|lxo — 20]|” = 0, then Py, (z—x0) = f(x0). Thus,
for 0 < a < 1, the inequality (1.3) becomes |f(z) — f(zq)| < C' ||z — zo]|*

ii. The pointwise Holder exponent, ht(xg), of f at xp is defined by

hy(zg) =sup{a: f e Cxo)},

where we say that h¢(zg) = 0 if f is not in C*(x) for any o > 0. That is, we are taking
the supremum of the set of a > 0 for which f € C%(xg) as a subset of [0,00). Note that

the function hy(xo) takes value in [0, 00]. This exponent measures the pointwise regularity



of the function f at xo. The larger the exponent h¢(xg) is, the ‘smoother’ the function f

is at the point xg.

Note that (1) If f is Holder continuous with exponent « then for each 8 < «, f is Holder
continuous with exponent 3.

(2) The uniform Hoélder exponent of a function need not be the infimum of the
pointwise Holder exponents. For example the function f(z) = zsin (%) is C! at the origin
and C* elsewhere, while its uniform Holder exponent is only 1/2. The following example
demonstrates that an irregular function, in this case a continuous nowhere-differentiable

function, might not be a multifractal function.

Example It is well known, see also [2,3,4], that the Weiertrass function

> sin(2z
Wafa =3 T
=0

is continuous but nowhere differentiable for a@ € (0,1). We shall prove that the Holder
exponent of the Weierstrass function is « everywhere. That is, we show that for all 8 <

a <y, Wy € CB(xq) but W, ¢ C¥(xp) at a point g € R.

Proof. We shall only show that W, € C#(xg) for all # < « and for all o € R. Let 29 € R
and 8 < a. By the mean value theorem, |sin(2/z) — sin(2’zp)| < 2/|x — zo|. But from the
boundedness of the sine function, we also have 2 as another upper bound of the left hand
side. So we will have to.choose better bounds for each 4. Suppose that |x — x9| < 1. Then

Q,I%S\x—a:g\<2inforsomen20.

Isin(27x) — sin(272q)| | sin(272) — sin(27x)|
Wal) < Walaoh <\ Y I 4 L = -
2/2-n<2 272—1>2



By the mean value theorem and boundedness of sine function, we have

(Wa(x) — Wa(z0)] < Z MJF Z | sin(27z) — sin(27x¢)]

_ 2je _ 2je
2i9-n<2 212-1>2
11— 2
<z — x| g 2(1=a) 4 E —
27«
j<n+1 j>n+1

9(n+2)(1-a) _ 9l—a 9—a(n+2)
< fz = o ol=a 1 2T

|l‘ . :L,O|/6 2(n+1)(1—a) —9l-a 9 1 o
S o) ol-a 1 19 <2|x N :c0|>

4 3 21—« poat. 1 2 1
it L b e i oy ey ) Bl 5 oy

< Op.ola—mol°.



CHAPTER 11
CONTINUOUS WAVELET TRANSFORM AND

CHARACTERIZATION OF HOLDER REGULARITY

A concise exposition of the theory of characterization of the uniform and pointwise Holder
regularity (irregularity) of funetions via the continuous wavelet transforms is given, see also
[1,2,3,4,5]. Section 2.1 introduces the definitions and theorems of the continuous wavelet
transforms. Some characterizations of the uniform(global) Holder regularity by the wavelet
transform are then listed and proved in section 2.2. The last section, gives and proves some

characterization of the pointwise(local) Holder regularity.

2.1 Continuous Wavelet Transform

We will not give an exhaustive definition of what we will call a wavelet, since in the liter-
ature the term wavelet is used for various kinds of functions depending on the application.
However, to fix the ideas, we shall consider a locally integrable complex-valued function

) € L%, which is in general well localized and regular in the sense that

C

| < W for some fixed constant €' > 0, € > 0.

[P+ (1)

In addition, suppose that the first two moments of ) vanish:

/Zw(t) dt = /Z Y(t)tdt = 0.

These two conditions are maximal in the sense that all theorems stated in this chapter
hold for those functions taken as wavelets. Depending on the problem we shall be able
to relax these conditions considerably. Since some moments of v vanish it necessarily has

some oscillations, which justify the term wavelet. Dilating and translating the wavelet v



we obtain a parameter family of functions

sl = v (1))

The parameter b € R is a position(translation) parameter, where as a > 0 may be inter-

preted as a scale parameter. We can define the wavelet transform of an arbitrary function

f € L?(R) with respect to a wavelet 1 as follows.

Definition (Continuous Wavelet Transform). The continuous wavelet transform of an

L*(R) function f is defined by

W(asb) = / F(2)Bas(@) de

TR

where this Lebesgue integral is well-defined for a € (0,00) and b € R.

Note that [Wy(a,b)| < || fll, ||#]|5, and it also should be noted that the continous wavelet

transform maps L?(R) function into L*(R™ x R, a"2da db).

Definition (Admissibility Condition). A function 1 is said to be admissible if
5 da

0<c¢:/0 @R < o,

Observe that for any £ € R,
oo X da oo da
200 2
| e = [T liwre.

In general, W is a smooth function over the position-scale half-plane. Analyzing a function
with the help of the wavelet transform amounts to analyzing it on different length scales
around arbitrary positions. This transform is a sort of mathematical microscope, where —

a

is the enlargement and b is its position over the function to be analyzed.

The wavelet transform is invertible. An explicit inversion formula is given by the fol-

lowing theorem.
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Theorem 2.1. (Inversion Formula)
Let ¢ € L2(R) be admissible. If f € LY(RN L*(R) and f € L'(R), then for each = € R, we
have the inversion formula

da
a2

1 o0
fla) = o /0 /R W (a,b)ban(x) db

and the Plancherel formula

e 77 2 pda
/R!f(x)l dm—%/o /R|Wf(a,b)| db-—.

Let @ > 0 and k = [«]. Here and below we choose a wavelet-type function ¢ satisfying

the following smoothness, decaying and oscillating properties
| z) < €@ + [z])F2 for i=0,...,k+1,

/:qu/)(x)dxzo for 7=0,...k,
R
and

/w@ﬁdgﬂ with (&) =0 if € <O0.
0

We use this wavelet-type function v to analyze uniform and pointwise Holder regularity by

the wavelet transform in the next two sections.

2.2 Wavelet Transform Analysis of Uniform(Global) Holder

Regularity

In this section we recall how to analyze uniform Hoélder regularity: by the wavelet transform.
Generally speaking the amount of uniform regularity of function is reflected in the decrease
of its wavelet transform at small scale as shown by the following well known theorem which

gives a necessary and sufficient condition.

Theorem 2.2. A bounded function f € L*(R) is Hélder continuous with exponent o, 0 <
a < 1 if and only if its wavelet transform with respect to a compactly supported wavelet-type

function 1 satisfies |W(a, b)| < Cat2 for some constant C > 0, for all (a,b) € (0,00) xR.
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o (52010 d =

Proof. Because of the oscillating property, / Y(y)dy = 0, we have /
R a

R
0. We apply the uniform Hoélder regularity of f and obtain

( ?)
e (757 o
</u vﬁ(x‘ﬁ

(6] w (0%
Sf/0|x—b| 1/)< )‘ since f € CY(R),
—oi/a“wwwnw

|Wfab

(0%
< Ca®*2 / C".ﬁlo.2 dy, by the decaying property,
R~ (I=+1y))

il
< C"a*t2, since 0 < a < 1.

Conversely, by the inversion formula we have

f(z) = 1/ / Wy (a,b)bep(x) db d—g for all z € R.
C¢ 0 —00 ’ a

Now, Cy = [ % dé =1. Let 0 < a < 1. We will break the interval of integration over
a into parts, a < 1 and a > 1, and call the respective integrals fss (small scales) and frg
(large scales).

Let x € R. First of all, note that frg is bounded unifromly in x as a simple change of

variable and integrability of ¢ yield
s <) [ W@ ot 5

AN/ 171 193 s b
= *54’172
—c [ o R da

< (' < .
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Next, let h € R be such that |h| < 1. Then

fos(e+h) — frs(z)] < / e " W@, Wl ) — (2] db e

L Lo (5
() s

Since 1) is differentiable everywhere so there is a constant C' > 0 such that [ (z+t) —¢(z)| <

C|t| and, also, since supp(¢) € [~ R, R] for some R < o0, we can bound (1) by

o i (y b>‘ dy | dbd
= / /Iz b|<aR+1 @ </|y—b|§aR v |f(y)| dy a

" 4 y_b)|db dyd
< | / a /y_b'gaR¢f(y)l ( /u_b,gml ¢< - Jda
<Ml a ( [ W) y> .

<CWlIfl, [ aaR+2)b da

a>1

< C"|h|.

This holds for all |h| < 1. This, together with the uniform boundedness of frg, implies that
|frs(z+ h) — frs(x)] < Clh|® for all h € R, uniformly in z € R. The small scale part fsg

is also uniformly bounded as a simple change of variable and integrability of ¢ yield

/a<1/ Wla;b)ta (@ )db@
/aq/ W@ B s )] b g
<C/a<1/ a7 (xab>‘dbda

<o a2 [ ) dyda

=’ / a“lda
a<l
1"

=C <

| fss(x)
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We therefore again only have to bound |fss(z + h) — fss(x)| for small h, say |h| < 1.By

the assumtion, we have

|fss(x +h) — fss(x)] =

h d

/agl /_oo W(a,b) (Yas(@ +h) = ap(a) db =
h d

< /agl /_OO (Wi (a, )| |ap(z + h) — ap(z)| dba—g

< C/G<1 /_Ooa 2 ap(x 4+ h) — ap()] dbaizl- o)

We split the integral into fine and coarse scale ranges and using again | (z+t) —¢(z)| < C|¢]

o (= ()
(2) SC/a<h /_Ooa (}w( S + | . dbda
> A x+hb>_ (mb)‘
+C/|h|§a§1 Kma '¢<~—‘a () - dbda
<c [ a2 [ i)
a<|h| —00

+C'/ Ry / P
|h|<a<1 |lz—b|<aR+|h|

a

db) da  since supp(¢) C [ R, R)

_ c"/ a®Yda 4 C'|h| a3 (aR + |h]) da < C"|h|".
asihl Hi<a<t

This holds for all |h| < 1, which, together with the proven fact that fgg is bounded uni-
formly, implies that |fss(z + h) — fss(x)| < C|h|® for all h and uniformly in x. It follows

that f is Holder continuous with exponent . O

It already contains, in a very simple form, main ingredients of the proofs in the subse-

quent theorem.

2.3 Wavelet Transform Analysis of Pointwise(Local)

Holder Regularity

Above theorems gives a characterization of the Holder regularity over R but not at a point.
The next theorem proved by Jaffard [1,2,3,4,5] show that one can also estimate the Holder
regularity of a function precisely at a point. The theorems give a necessary condition and
a sufficient condition, but not a necessary and sufficient condition. We still assume that

satisfies the smoothness, decaying and oscillating properties in page 9.
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Theorem 2.3. If a bounded function f is Hélder continuous at xog with exponent o € (0,1),

then W (a, b+ z0)| < Ca2 (a + |b]*).

Proof. By translating everything of translation parameter b of the continuous wavelet trans-

form, we can assume that zg = 0.

Because [9(z)dz =0, we have [1),(x)f(0)dz = 0. We obtain

[Wi(a,b)| < /Iwa,b(x)\lf(a;) — £(0)| da.

Since f is Holder continuous at 0 with exponent «, it follows that

(S
a

b (073
SCa”%/‘era [v(y)| dy

o ( [1ol? wtas+ | 'b

As a result of the decay condition on @ and its integrability, the last two integrals are finite,

)

Wy(a,b)F € Cof Jo -~ ofa

) ()l dy) :

and hence

b

a

Wy(a,b)] < Ca®"> (1 . ‘

Clas-(a*+Jb|%)-

O]

We now turn our attention to the reciprocal proplem. The following theorem is similar

to a theorem proved before by S.Jaffard.

Theorem 2.4. Suppose that 1-is compactly supported, and f € L?(R) is bounded and

continuous. If, for some 3 >0 and a € (0, 1), there exists a constant C' such that
W (a,b)| < CaP*z

and

NI

b >
Wela, b+ x9)| < Ca <a°‘ + for all a,b.
Wtab o) [Tog [o]

then f is Hoélder continuous at xg with exponent «.
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Proof. We will split the integral over a into two parts, a < 1 and a > 1, and call the two
terms fgg (small scale) and frs (large scale). Clearly, the large scale part frg is always
regular by the same arguments as in the proof of Theorem 2.2.

Let x € R. We start by proving that fsg is bounded at z(y as a simple change of variable

and integrability of 1 yield

\ § d
sstaa)l < [ [ IWatl oo b 5

of [yt o
a<l a
<c/ ”“/ [bw)].dy da

= / a®da
a<l

£ " F <=0,

We therefore only have bound | fgs(zo+h)— fss(zo)| for small h, i.e. |h| < 1. By translating
everything, we can assume zg = 0. We split the integral into three ranges of the scale a

and get

s e'o)
Fss(h) — fssl0)] < /0 [ 1950, D)lnsh) = ) o

N da
< /0§a§’h|g /—oo |Wf(a’a b)| (|¢a,b(h)| + W}a,b(O)D dbi

o0 da
" / - / W0, 0)] (s ()] + s O)]) b

5 <
da

eIt vao) s
|h|<a<l1 a
Using the asumption,

[fss(h) = fss(0 |<C/0<a<|h|ﬁ/ ( b)‘dbda
0 o (0 ) o (50| @ %
+C/a<|h/ <a lllzc\yb\lﬂlb(_b)‘dbzg
e L () o (57) = ()]
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where we assume without loss of generality that o > 3. Let us denote the four terms on the

right-hand side of inequality by 17, 15, T3 and Ty, respectively. After a change of variable,
integrability of v yields

n=c [ [ ()| 0

0<a<|h|f J—oco a a

<o o a ([ wlady) da
0<a<|h|P —00

||
<[ ulide
0

< C|hl°.

By assumption,

I da
2 |h| B <a<|h| J—o0 'log |bH ¥ a?
<c [ Lt ([~ tilady) da
0<a<|h| —00

[e’e} @ _
+CH & a—2/ i ‘¢ <h b>‘ dbda
|n| P <a<|hl —os | log ||| a

For the second term, since supp(2)) € [—R, R] for some 0 < R < co we can bound the two

integrals in T5 as follows

Ty < C a® |1 da
0<a<|h|
= (aR + |h|)®
+C [ a |t da
Ih B <a<|h| log(al? + |hl)]

Since we integrate over a < |h|, for sufficiently small {h| < 1,

1

Ty < C'|n|® — [ a tda
llog [R|] Jjn 3 <a<nl

< O'|n|*.

Similarly, for sufficiently small || <1,

o0 b|e “b\| . da
3= Lo\ T o) [ )| Pz
_ _ R)~
< o1 da+/ 1 (a
/a el [ e

< Clhl°.
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Finally, we use the properties of ¢ that it has compact support and bounded derivative to

obtain the following bound of Tj:

o [ () ()
h C/h|<a<1/_oo<“uogrbu e ) )| e

(el + |h])*
|log(aR + [h)]

< C|hl| a”? [aa + ] (aR + |h|)da
|h|<a<1

< C'lA|[1+ (AT RN+ (R0 72)]

S C”‘h‘a~

Thus |fss(h) — fss(0)] < C|h| for all |h| < 1, which, together with the bound of fgg,
implies that |fss(h) — fss(0)] < C|h|* for all h. Hence f is Holder continuous at xg = 0
with exponent « as desired. Therefore by translating everything we can conclude that f is

Holder regularity at xg with exponent . O

. 2]
Sm(A x)7 a € (0,1) has
jo

2

o

It is well known that the Weierstrass function Ws(x) = Z
7j=1

Hoélder continuous exponent « everywhere, this can be proved by the continuous wavelet

transform.



CHAPTER I11
CONTINUOUS CURVELET AND SIMILAR

TRANSFORMS

Energized by the success of wavelets, the last two decades saw the rapid develop new field,
computational harmonic analysis, which aims to develop new systems for effecitively rep-
resenting phenomena of scientific interest. The curvelet transform is a recent addition
to the family of mathematical tools this community enthusiastically builds up. In short,
this is a new multiscale transform with strong directional character in which elements are
highly anisotropic at fine scale, with effective support shaped according to the parabolic
scaling principle length? ~ width. In this chapter we construct a continuous curvelet trans-
form, projects f € R? onto a curvelet Va0, Yielding coefficient I‘f(a,B, 0) = <f, 'ya7579>;
with parameter space indexed by scale a > 0, location b € R? and orientation 6 € [0, 27).
The corresponding curvelet 5, 7 5 is defined by parabolic dilation in polar frequency(Fourier)
domain coordinates. The continuous cuvelet transform is developed from the ridgelet trans-
form and it is also closely related to a continuous transform introduced by Hart Smith in
his study of Fourier integral operators. So we also study the continuous ridgelet trans-
form and the Smith transform. The ridgelet transform is a wavelet-like transform with
directional dilation, while the curvelet transform and the Smith transform is a wavelet-like
transform with directional parabolic dilation. The Smith transform is based on true affine
palabolic scaling of a single mother wavelet, while the continuous cuvelet transform can only
be viewed as affine palabolic scaling in Euclidean coordinate by taking a slightly different
mother wavelets at each scale. The geometry of a curvelet is now apparent: if the function
7 is supported near the unit square, we see that the envelope of v, 3, is supported near

an a by y/a rectangle with minor axis pointing in the direction 6. An important property
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is possibility to analyze and reconstruct an arbitrary function f as a superposition of such

templates.

contents: Section 3.1 we recall that the continuous ridgelet transform provides a repro-
ducing formula and Parseval relation and Section 3.2 then construct a continuous curvelet
transform based on a polar parabolic scaling and provides a Calderén reproducing formula
and the Parseval relation. Section 3.3 discusses our reformulation of Smith transform based
on true palabolic scaling. The last section discusses some properties of continuous curvelet

transfrom.

3.1 The Continuous Ridgelet Transform

The success of wavelets is mainly due to the good performance for piecewise smooth func-
tions in 1-dimension. Unfortunately, such is not the case in 2-dimension. To overcome the
weakness of wavelets in higher dimensions, Candés and Donoho recently pioneered a new
system of representations named ridgelets which deals effectively with line singularities in
2-dimensional space. The idea is to map a line singularity into a point singularity using the
Radon transform. Then, the wavelet transform can be used to effectively handle the point
singularity in the Radon domain. Their initial proposal was intended for functions defined
in the continuous R? d > 1 space. We start by briefly reviewing the ridgelet transform,
see [6,7], showing its connections with other transform in the domain and then present a

reproducing formula and Parseval relation. Now, we have introduced the parameter space
= {(a,ﬂ,b);a,b €Rja>0,u€e Sd_l}
with S%1 denoting the unit sphere in R%.

For each a > 0, b € R and % € S, we define the bivariate ridgelet Yaba DY

1 5
Vap,a(T) = ﬁ <3”;b) for all 7 € R?

where the ridgelet parameter (a,@,b) has a natural interpretation; a indexes the scale of

the ridgelet, @ represents its orientation and b is its location. The measure on space I is
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defined by %addad& where o4 is the surface area of the unit sphere S4 ! in dimension
d and da the uniform probability measure on S¢!. Finally, we will always asumme that
the wavelet-type 1-dimension function 1) : R — R belongs to the Schwartz space S(R). A
ridgelet is constant along the line u - £ = constant. Transverse to these ridges is a wavelet.
The results permented here hold under weaker conditions on .

Definition Let 1 : R — R satisfy the condition

I 2
|

Then 1 is called an Admissible Neural Activation Funection.

d€ < oo.

We will call the ridge function 1, 4 generated by an admissible function ¢ a ridgelet.

In 2-dimension, we have u = (cos#,sinf). Given an integrable bivariate function f, its

continuous ridgelet transform in R? is defined by

R @b:0) = | ol (2) do

where the ridgelets ¥.p9(Z) are defined from a wavelet-type function in 1-dimension v as

_ 1 x1co80 + rosinf — b
Va,b,6(T) = %w < : 2

As can be seen, the continuous ridgelet transform is similar to the 2-dimension contin-

> for all & = (21,29) € R%

a

uous wavelet transform except that the point parameters b = (b1,be) are replaced by the
line parameters (b, ). In other words, these 2-D multiscale transforms are related by:
Wavelets : — Yscate, point—position
Ridgelets : — scale, tine—position

As a consequence; wavelets are very effective in representing objects with isolated point
singularities, while ridgelets are very effective in representing objects with singularities along
lines. In fact, one can think of ridgelets as a way of concatenating 1-dimension wavelets along
lines. Hence the motivation for using ridgelets in image processing tasks is apparent since
singularities are often joined together along edges or contours in images. In 2-dimension,
points and lines are related via the Radon transform, thus the wavelet and ridgelet trans-

forms are lined via the Radon transform. More precisely, let us denote the Radon transform
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Rof(t) = / f(tcos® — ssinf, tsinf + scosh) ds
R

then the ridgelet transform is the application of 1-dimension wavelet transform to the slices

(also refered to as projections) of the Radon transform,

t—2>

R(f)(a,b,0) = / ) <a> Ry f(t)dt.

R
More specifically, for Fourier transform we have
feu) = Hgeost.&sing) = [ &S Ryf(e) dt = RoF ).
R
Theorem 3.1. (Reproducing formula) Suppose that f and f c LY (RY). If 4 is admissible,

then

1 _ da
f(z) = K—w / (f,%ap0) Yapo(r)oqdbdu prsy for all z € R%.

Remark In fact, the admissibility condition on ) is essentially equalivalent to the
requirement of vanishing moments. [#*y(¢t)dt = 0, k € {0, 1,..., [%] — 1}. This clearly
shows the similarity of admissibility condition to the 1-dimensional wavelet admissibility
condition, however, unlike wavelet theory, the number of necessary vanishing moments

grows linearly in the d-dimensional space.

Theorem 3.2. (Parscval relation) Assume f € L' N L*(RY) and 1) is admissible, then

1 _ da
U115 = g Mk ol g

3.2 The Continuous Curvelet Transform (A Transform Based

on Polar Parabolic Scaling)

Candés and Donoho [8,9,10,11] introduced continuous curvelet transform which has much
simpler inversion formula and still enjoys properties reminiscent to parabolic scaling. We
work throughout in R? with variable Z and frequency domain variable £ with polar coordi-

nates (r,w). We shall define a continuous curvelet with a continuous scale/location/direction



22

parameter space.

We begin by introducing the notation pair of windows.

i) Radial Window: W (r) is a positive real valued function on [0,00) with support in

(%, 2). This window will always obey the admissibility condition:
% d
/ WL —1
0 Jr

* oda
or we can say that / W(ar)>— =1 for all- 7 >0.
0 a

er

Indeed, since / W(r =1, by letting r = ar we get that

1—/ W (r 2dr /War2da /Wa,r2da

ii) Angular Window: V(¢) is a real-valued function for which supp(V) C [—1,1]. This
window will always obey the admissibility condition:
1
/ V(t)2dt = 1.
L)
We use these windows in the frequency domain to construct a family of analyzing ele-

ments with three parameters:

1. the scale parameter a € R with 0 < a < ap. Here and below, aq is a fixed number,
the coarsest scale for our proplem. It is fixed once and for all, and must obey ag < 72 for
the construction of continuous curvelet trasform to work property. ag = 1 seems a natural

choice.
2. The location(translation) parameter b € R2.

3. The oreintation (direction) parameter 6 € [0, 27) (or [—m, ) according to convenience

below).
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At scale a, the family of curvelets elements is generated by translation and rotation of

a basic element v, 5, For each z € R2, define

Yab.0(T) = Ya5,0 (Ro (T — D))

where Ry is the 2-by-2 rotation matrix effecting planar rotation by 8 radians. The generating

element at scale a ,7,,, is defined by going to polar Fourier coordinates
A 5
Ya0,0 (r,w) = atW (ar)V (w/\/&) ,

with radial variable » > 0 and angular variable w € [0, 27) being polar coordinates in the

frequency domain. Now we note the definition of 4, 7 g, if we put €, = (cosw, sinw);

Fap.0(r,w) = aiW (ar) V (@ —8) /va) .

The support of each 7,5 is a polar wedge defined by the supports of W and V, the

radial and angular windows, with scale dependent window widths in each direction. Since

1

W (r) is supported in (5, 2), we get that W (ar) is supported (i, %) Since V' (t) is supported

on [-1,1], we get that V (%) is supported in [—y/a, \/a]. Thus 400 (£) is supported on

ok 2
{(T,W)‘ STS—,—\/ESWS\/&},
2a a
and now from the definition of 4, 5 9, we see that its support lies in

Gl

2
—&STSE,O—\/&SwSHJr\/&}-

In effect, the scaling is parabolic in the polar variables r and w, with w being the thin
variable. In accordance with the use of the term curvelet to denote families exhibiting such
parabolic scaling, we call this system of analyzing elements curvelets. However, note that
the curvelet v, is not a simple affine change-of-variable acting on 7,5 for d # a. We
initially omit description of the transform at coarse scales. Note that these curvelets are

highly oriented and they become very needle-like at fine scales.
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Equipped with this family of high-frequency elements v, j 9, we can define a continuous

curvelet transfrom
Iy (a,b,0) = <7a,13797f> for 0 <a<ag, beR?* and 0 € [0,27).
This transform has an exact reconstruction formula and parseval relation.

Theorem 3.3. Let f € L? have a Fourier transform vanishing for || < a% Let V and W
obey the admissibility conditions. We have a Calderon-like reproducing formula, valid for

such high-frequency functions;

2w ag f | -
f(z) = / / / Iy (a,b,0) V.50 () d%l dbdf, for all T € R?
o Jr2Jo % g

and a Parseval formula for high-frequency funtions;

27 ag \ d B
: 2 da
I £117.2 =/0 /RQ/O Ty (@,6,0) " — dbdé.

3.3 The Smith Transform (A Transform Based on Affine

Parabolic Scaling)

Candés and Donoho [8,9,12,13] defined a wavelet-like transform in R? with parabolic di-
rectional dilation as follows. The three parameters are scale a > 0, location b € R?, and
orientation 6 € [0,27). Let P, be the parabolic directional dilation of R? given in matrix
by Po,p = D %R_g where D 1= diag (é, ﬁ) and R-y is planar rotation by —6 radians.
This matrix has ellipsoidal contours with minor axis pointing in direction 6.

Assume that ¢ & L?(R?) is a single mother wavelet, then we define the family elements

generated by parabolic dialation, translation and rotation of a single mother wavelet ;

apo = ¢ (Pug (T D)) Det (Pag)? = ¢ (Pag (T — ) a1

Classically, the term wavelet transfrom has been understood to mean that a single wave-

form is operated on by a family of affine transformations producing a family of analysing
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waveforms. So this transfrom fits in with the classical notation of wavelet family, except
that the family of parabolic affine transform is nonstandard.

Hart F. Smith (1998)[10] studied essentially this construction, with two inessential dif-
ferences. First, instead of working with scale a and direction 6, he worked with the frequency
variable £ = a~'eg and second, instead of using the L? normalizing factor Det (Pa,9)2, he
used the L' normalizing factor Det (P, ). In any event, we pretend that Smith has used
the scale/location/direction parametrization and the L? normalization and we can define a

Hart Smith directional wavelet transform based on affine parabolic scaling
I (a,B, «9) = <f, S%,B,0> where 0 < a < ap,beR? and 6 € [0,2n),

where ag is a fixed coarsest scale. Smith gave a reconstruction formula and a Parsevel

relation.

Theorem 3.4. There is a Fourier multiplier M of order 0 so that whenever f is a high-

- : * E)
frequency function supported in frequency space Hf H > s

27 (e’ d _
1@ = [ [ CGuseMS) @anelo) 55 b8 for ail 5 € B2
o Jr2Jo yT " a

and
2m o'e) 2 d _
2 1 a
- r 0 M 4 % dbdo.
5= [ [ | Keusod20)| 5
The function Mf is defined in the frequency domain by a multiplier formula ]\/4\f(§) =

m(||€])f(€), where the multiplier such that logm(exp(u)) — 0 as u — oo, together with

all its derivaties.

Observe that the reconstruction formula for the Smith’s transform is not as simple as those

of many other variants of wavelet transform.

Now, one has to work not with the coefficients of f but with those of M f. An alternate
approach is to define dual elements ¢, = My, ;o and change the transform definition to

either

= [ (T s 2
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or

da -
f - / <90a,5,97 f> 90:;’5’9 ;g dbdf.

This more complicated set of formulas gaives a few annoyances which are avoided using the
continuous curvelet transform defined in the previous section. However, for many purposes,
the two transfroms have similar behavior. For an elementary example; see also [2], we have

the following lemma.

Lemma 3.5. Suppose that the windows V' and W underlying the continuous curvelet trans-
form are C™ and that the mother wavelet generating the Smith transform T’ has the frequency-

domain representation

Buflo(&) = CatW(ag)V ( o < G

& )
Vagy )’
for the same windows V. and W, where C is some normalizing constant, and ag s the

transform’s coarsest scale. Then at fine scales we have sup H’ya 50— Pab 9H2 — 0asa— 0.
be bt "

)

3.4 Some Properties of Continuous Curvelet Transform

3.4.1 Directional Transform

In the standard wavelet transform there is a way to create a directional wavelet transform.
Suppose we have a classical admissible wavelet ¢ which is centered at the origin. We stretchs
it preferentially in one direction, say aceording to p(x1,x2) = ¢(10x1,22/10), so it has an
elongated support ( in this case, one hundred times longer than its width ), and consider
each rotation ¢y(z) = @(RyZ) of that wavelet, where Ry is rotation by € radians. Next, we
take the generated scale-location family

Papp(T) = ésﬁe <j_6) = %6 (iRa(f—B)).

a

This would provide a wavelet transform with strongly oriented wavelets and a direction

parameter.
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3.4.2 Parabolic Scaling

In harmonic analysis there have been a number of important applications of decompositions

based on parabolic dilations

1 1
fa(z1,22) = f <a331, \/am)
so called because they leave invariant the parabola x; = x3. In the above equation the

dilation is always twice as powerful in one fixed direction as in the orthogonal one. Decom-

positions also can be based on directional parabolic dilation of the form

Jod@1, 22) = ful Ro(, 22)) = f (D1 Ro(z1,22))

where Ry is a rotation matrix by 6 radians, and D N diag (é, ﬁ) The directional
transform we defined uses curvelets 7, 7 o which are essentially the result of such directional
parabolic dilations. This means that at fine scales they are increasingly long compared to
their width : width ~ length?.

The motivation for decomposition into parabolic dilations comes from several sources.
Starting in the 1970’s they were used in harmonic analysis, for example by Fefferman and
later Seeger, Sogge, and Stein to study the boundedness of certain operators. More recently,
Hart Smith proposed parabolic scaling in defining molecular decompositions of Fourier inte-
geral operators, while Candés and Donoho proposed its use in decompositions of image-like

objects which are smooth apart from edges. So parabolic dilations are useful in representing

operators and singularities along curves.

3.4.3 Localization

From definition of the continuous curvelet transform, in this thesis we always suppose that
V and W are C° ; this will imply that %7579(3?) and it derivatives are each of rapid decay
as [|z]| — oo:

Vg0 (®) = O(Z|7Y), YN >0
We can describe the decay properties of v, ; g much more precisely; roughly the right norm

to measure distance from b is associated with an anisotropic ellipse with sides a and y/a and
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minor axis in direction 6 radians, and v, 3, decays as a function of distance in that norm.
"

So, suppose we let P, g be the parabolic directional dilation of R? given in matrix form by
P,op=D1R 4

where D1 = diag(1/a,1/y/a) and R_g is planar rotation by — radians. For a vector o € R?,

define the norm
2llap = I1Pao(@) = | DaFe-o o)

this norm has ellipsoidal unit ball with minor axis pointing in direction 6. It follows imme-

diately that % <|ollg9 < @ The following pointwise bound of their curvelets transform
will be needed in the next chapter, see [8,9]. Also, here and below, we use the notation

(y) = (1 +9y*)Y2 for all y € R.

Lemma 3.6. Suppose that the windows V and W are C*° and have compact supports.

Then, for each N = 1,2,... and corresponding constant Cpy,
3/4 7 -¥ )
ago@)] < Cn a2 ([|z =Bl ;) for all = € R2,

These estimates are compatible with the view that curvelets are affine transforms
of a single mother wavelet, where the analyzing elements are of the form ¢(P,¢(Z —
B))Det(Paﬂ)l/ 2. However, it is important to emphasize that v, does not obey true

parabolic scaling, i.e., there is not a single mother curvelet v, 5 so that

Yoo =100 Pap (@ = b))Det(P,p) /2.

A transform based on such true parabolic scaling can of course be defined. In fact, essentially

this has been done by Hart F. Smith.



CHAPTER IV
CHARACTERIZATION OF HOLDER REGULARITY
WITH THE CONTINUOUS CURVELET AND SIMILAR

TRANSFORM

A classical tool for measuring the Holder regularity of a function f is to look at the asymp-
totic decay of its Fourier transform f. One can prove that a bounded function f is uniformly
Hoélder exponent a over Riif [*° | f(w)| (1 + |w|*) dw < 0. This condition is sufficient but
not necessary. It gives a global regularity condition over the whole real line but from this
condition, one can not determine whether the function is locally more regular at a partic-
ular point xg. This is because the Fourier transform unlocalizes the information along the
spatial variable x. The Fourier transform is therefore not well adapted to measure the local
Holder regularity of functions. As an efficient mathematical microscope, wavelets has been
one of the better tools for analyzing regularity of functions. Holschneider and Tchamitchian
[4] have given chacterizations of uniform and pointwise Holder regularity of functions. See
also [3,5,6,7,8]. It says roughly that a function has Holder regularity with exponent « if
and only if its wavelet-transform satisfies a; corresponding bound condition across scales.
In Section 1, we show how the uniform and pointwise Holder regularity of a function can
be characterized by its ridgelet transform. Similar characterizations by the Smith transform
are given in Section 2. We then give bounds of the continuous curvelet transform of uni-
form and pointwise Holder continuous functions in Section 3. Since the system of functions
used in the ridgelet transform depends on the direction parameter, it is belived that this
transform can be adapted to studying the directional regularity. So in the last section we
give some idea of the directional regularity and use it to analyze the bounds of the ridgelet

transform.
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4.1 Characterizations of Holder Regularity by The Ridgelet
Transform

Let > 0 and k = [a]. We pick a smooth univariate wavelet-type function ¢ : R — R

satisfying the following smoothness, decaying and oscillating properties
WD (2)) < CA+|2z))*2 for i=0,1,....k+1 for some constant C > 0,

/avjd}(x)d:t:O for 57=0,...,k,
R2

and

/oo 'ﬁ;‘g“ d¢ =1 with (&) =0 if £<0.
0

This wavelet-type function @) gives rise to the ridgelet transform used to analyze uniform and
pointwise Holder regularity of functions. In this section, we show how to analyze uniform
and poinwise Holder regularity by the ridgelet transform. Generally speaking, the amount
of uniform and pointwise regularity of a function is reflected in its ridgelet transform by the

decrease of the ridgelet coefficients at small scales as shown by the following theorem.

Theorem 4.1. If f :R? — R has compact support and uniform Hélder exponent v € (0,1]
on R?, then there is a constant C' > 0 such that |R(f)(a,b,0)] < Ca®*z foralla > 0,b e R,

and 0 € [0, 2m).

Proof. We write the ridgelet transform in terms of the Radon transform,

IR(f)(a,b,0)] = ‘\}a/Rz f(tcos® — ssinf, tsinh + scos )y (t_b) dsdt‘

A LoER g

Since f is compactly supported and / Y(x)dx =0 we have
R

‘Rm(“’b’@)’:‘\}a/ﬂﬂ( )/Rf(Rg(t,s))dsdt_\}a/RwC;b
= ;a/le <1:b> ‘ | Ry f(t) — Ro f(b)] dt.

t—>
a

) /Rf(Rg(b, s))dsdt‘
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Since f is Holder continuous with exponent o and supp(f) C [—R, R] x [—R, R] for some

R < 00, we can bound |Ryf(t) — R f(b)| by

Rof(t) — Ref (b)) < /R F(Ro(t,9)) — F(Ro(b,5))] ds

2R
< C||((t —b)cos, (t —b)sind)||* ds

—2R
2R o
:C/ [((t—b)cosH)Q—|—((t—b)sin€)2 * ds
—2R
2R
— |t —b|% ds

—2R

=Ct—b* 1%ds
—2R

= (' |t—b*.
Thus we have
IR(f)(a,b,0)| < . / W (LT X Ot — b|* dt
C T Ik a
A o

—Cla L i)y dy

— C//aoz—i—%
since the last integral is finite as-a result-of the decay condition on ). O

The following is a converse theorem.

Theorem 4.2. Suppose that 1) is compactly supported. Suppose also that f € L'(R) is
bounded, continuous, and compactly supported. If, for some o € (0,1), there is a constant
C > 0 such that |[R(f)(a,b,0)] < C|a|°‘+% for all a >0,b € R, and 0 € [0,27), then f is

Holder continuous with exponent c.

Proof. Let Z,h € R?. By the reconstruction formula of ridgelet transform we have

t@ =5 [ [ R Toe (TR cdban s

where % = (cos 0, sin 0) belongs to S'. Note that K, = 1 and o3 is the surface area of S.

We will split integral over a into two parts, |a| <1 and |a|] > 1, and call the two terms fgg
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(small scale) and frg (large scales). First of all, note that frg is bounded uniformly in &

as a simple change of variable and integrability of 1 yield

)

T-u— da
< b,0)] dbdu —
ns@i<c [T [ [T rn@nol e (T4 avan s
C/ /Sl/ ‘/ a a3
(5o o (57)] wens
a a
<o [T [ [ el Reglpf (* )| dvand,
S1
Since f has compact support, we have ||Rgf||, < || fll5. So the integrability of ¢ and f yield
= / a 2+1// y)| dy du da
Sl
ZC”/ a”2 da
1

(e (o

<[ TIL 1Y g

s(@ <€ 7 Tk Ul o (5 | avanda
=" £ 0

Next, we show |frs(Z+ h) = frs(@)| < C||r]|* for ||R|| < 1;

fuste+ B -pd@l =0 [~ [ [ iR@@ 0017

\f

‘¢< u—b) w(az—i—h >‘dbd‘da
< o ot B R0l a
b (* u—b)_@b(M%%)‘dbdada 1)

Since 1 is differentiable everywhere with uniformly bounded derivative, there is a constant

C such that |y (z) —

(y)] < Clx —y| for all z,y € R. Consequently,

() o ()

T-u—b (x+h)-u—b‘
a

a
_Chu
a

_ ol

Q
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and, since supp(¢) C [-M, M] for some M < oo, if ¢ <7b) # 0 then
(Z+h) a— b‘ u
a

which implies that |Z-%—b|— |h-@| < aM and hence |Z-4—b| < aM + |h-u| < aM + ||h|| <

aM + 1. ||Rof(t)|l5 < || fll, since f is compact support, we can bound (1) by

o0 _ h
<o ["[at] </ |¢<”>||Ref<t>rdt>””dbdada
1 Jst |Z-a—b|<aM-+1 \ J|t—bl<aM a a
=0’HBH/ /5/ (/ (=0, db) [Rof ()| dt duda
1 s1 |Z-a—t|<2aM+1 |Z-a—b|<aM-+1 a
gc"HhH/ / a5+1/ |Rg f(t)| di dii da
1 St |Z-a—t|<2aM+1

N
'S D)
<" ||A|l ||Rgf(t)|]2/ a4 (/ 1dt> da
1 |Z-a—t|<2a M +1

< il 1l [ artvEad F 1 da
1
< e

This estimate holds for all HBH < 1. Hence, together with uniformly boundedness of frg,
we conclude that |f1s(Z + h) — frs(h)| < C ||k]|* for all h, uniformly in z.
Next, by the assumption on the decay of the ridgelet transform of f, the small scale part

fss is also uniformly bounded as a simple change of variable, and integrability of ¥ yield

e |_//Sl/°° IR ab9>w<“; b)‘dbdui;‘
gc/o [gl/—maa+2__ (‘“fl )‘dbduda
-cf et ( /. |¢<y>|dy) o
—C/ a® Yda
_C[a]o

=C < .

Finally, we again only have to check |fss(Z+h)— fss(Z)| < C H}_LHa for small h, say Hl_zH <1.

We apply the asummed inequality on the ridgelet transform and split the integral into fine
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and coarse scale ranges,

’fss(f +h) — fss(z)]

<C/ /y/
C/()hlfql/oo“a 2
s

By the decay condition of 4 and its is differentiability everywhere with uniformly bounded

derivative, there is a constant C' > 0 such that [ (z) — ¢ (y)| < C |z —y| for all z,y € R.

Also, since supp(y)) C [—M, M], we can bound (2) by

1]
%) < c/ / a® 7 [y, duda
0 51
! 2]
+ C’/ / / a® 2 gb dii da
||A|| /st \ﬂ~i’—b|<a]ﬂ—l—”ﬁ” a

1]
gc’/ a® tda+C"A|| | a®" 3/ ~ 1dbda
0 ]h” |a@-z—b|<aM+||h|

go’/“ H a""da+C"||h)| a*=*(aM +|R]|) da
0 |17
a7 ll7]l 4 a- Allac—2]"
e %] e []‘j“_l + H(JfQ
: _
2]l
h Vs Al |17]|* 2
_g +c~|<hH[ 0 ol (AR s (AL ]
7 ||& e M T — 1 - —
<Gt & € (sl ) et =)

< e e

Since this holds for all HBH < 1, which, together with the uniformly boundedness of fgg,
we conclude that |fss(Z + h) — fss(h)| < C HEHQ for all h, uniformly in 7. It follows that

f is Holder continuous with exponent . O

Theorems 4.1 and 4.2 give a necessary condition and a suffficient condition for a function
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to be in C%(R?) in terms of its ridgelet transform, respectively. The last two theorems in

this section provide a characterization of pointwise regularity by the same transform.

Theorem 4.3. If f is compactly supported and Hélder continuous at To with exponent

€ (0,1), then there is a constant C > 0 for which
IR(f)(a,b,0)] < Ca? (a* +|b—a-Zp|“+1) forall a>0,beR, and b € [0,27)

where @ is the unit vecter forming the angle 0 radians counter clockwise with the positive

z-axis, i.e. 4 = (cosf,sinf).

Proof. By translating everything we assume that zo = 0. Using the assumptions [ ¢ (y) dy =
0 that is [ g pe(z)de=0foralla > 0,0 € R, 0 € [0,27), and that f has Holder continuous

at xo with exponent o, we have

rMﬂmaWS/i

U —
Al
1 T-U—0b
< [ (BT Ncwwaw
B > 1 x1cos6 + xosinf — b
C/ [l )

a
Put z1 = tcosf — ssinf and w9 = tsinf + scosf and, using the assumption that f is

(m% + w%) 2 dxy dzs.

compactly supported, we have

|Mﬁwawso/m/M'-¢C‘ﬂ“ﬁ+ﬁ3$ﬁ

R e G | LRSS A ( =)
c// N0 ||ay+b|”‘dyds+0// ()] |s|* dy ds

<c/ /«ww | (layl® + [b[°) @@+c/ | atwwlise dps

|s|*ds dt

< Claz ((a)* + ]b]a)/ 1ds + C'a2 / |s|*ds
M _

< C"a3(a + b + 1),

where we have used the integrability of [ |¢(y)|ly|* dy and [ |4 (y)|dy . O
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We can see that the amount of pointwise Holder regularity of function is reflected in
its ridgelet transform by the decrease of the ridgelet transform at small scales. However,
the decay dose not depend on the exponent a of a. In Section 5.4, we shall obtain a better
bound by means of directional regularity.

However, we can characterize the pointwise Holder regularity of function by the ridgelet

transform in the following theorem.

Theorem 4.4. Suppose that 1) is compactly supported and suppose also that f € L'(R?) is

bounded and continuous. If, for some B € (0,1), there is a constant C' > 0 such that
IR(f)(a,b,0) < Ca’ 2 for alla>0,b€ R and 0 € 0,2n),

and for some « € (0,1), there is a constant C' > 0 for which

oo

IR(f)(a,b,0)| < Ca (wwMﬁL) for alla > 0,b € R and 8 € [0,27)

|log [b— Zo - |
where U is the unit vecter forming the angle 0 radians counter clockwise with the positive

x-azis, i.e., u = (cos@,sinf), then f is Holder continuous with exponent o at Z.

Proof. We will split the integral over a into two parts, a < 1 and a > 1, and call the two
terms fsg (small scale) and frg (large scale). Clearly the large part frg is always regular.
See the proof of the large scale part of Theorem 4.2. Thus we start the proof by showing

that fgg is bound for each z € R2.

1

ul Z-u—>0 _da
st [ L oo oy o (52 | aban g
g1 T-u~—0b _
T T
:C/<1/51/Raﬁ_2+1 |V (y)| dy duda
—C'/ a’~Yda
a<l
B 1
—o|Z
5,

=" < .
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We therefore only have to check |fss(Zo+h) — fss(Zo)| < C ||h||” for small h, say ||h|| < 1.
By an overall translation and dilation which does not change the local regularity of f, we
may suppose that the support of 1 is contained in [— R, R] for some 0 < R < % and assume

Zo = 0. We then obtain

fss(h) — fss(0)]

< [ L [ Sl (F5=) - o (32) | avan
<[ [ Firpiaho T

< o iRl (St waa s
<" LGP e

o o L R sl i (R2) v (3) | wass

where we have assumed « > 3. (If @ < 3, since f is Holder continuous with exponent (3,

Q

it is Holder continuous with exponent «). Let us denote the four terms on the right-hand
side of inequality by 17,75, T3, and T}, respectively.

Using the uniform Hélder continuous of f we have |R(f)(a,b,0)| < Ca’*2 which leads to

I R
T gc/ / /aﬁ+3—%—3 ¢<h 4 b)'dbdﬂda
0 St JR a
2] 2 . _
=0/ / /aﬁ b (y)[ dy duda
0 ST JR
Ll
—c [ @ ([ 1w wldy)da
0 R

ALY
:C'/ a da
0

a7 lI#13
—o Y }
5],

= C"||n]|"
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By the assumption, we get
14| ble hoi—b
// 33 (g4 Y e db di da
||B]| % /st " Tlog ol a
14| o
// (h 4 b)‘dbduda
[7][# /s @
/ o o Lo (150 o
7)) /s |log [?]| '

h-u—

N)\O«

in both terms, and for the second term,

After a simple change of variable y =

since supp(¢) C [—R, R], we have |b| < aR + ||h| and then [b] < (R + 1) ||h|| because we

T, gc/“h” /Sl/aa—“l [V (y)| ddada

WA ok Nl
+1 )
|h||3 /51/ ‘log R+ HhHl v (y)| dy du da.

Since 1 € LY(R), we obtain that

o (19 (R 1
L <C'||p]%+ e /Hhuﬁa ﬂog((R"‘l)W}H)’da‘

i (Rl
<! Hh”a 4 C”’/ ol v ——da
g flog
=+ ey L s ) s
e

_ et e [1 1

For the 'second term, we can see that costant >0. Thus 75 < C' HfLHa

n<o | |h||/51/ (g ) 9 (7)) | oo
a
ok e (G
B a _
L Lo g ()| v

By the assumption,

l\)\w

+
)’ dbduda
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—b

After a simple change of variable y = — in both terms, and for the second term, since
a

supp(¢)) C [~R, R], we have |b| < aR and then [b] < R||h|| because we have under the

integral a < HBH For sufficiently small HBH,

I P
ngc/ / / + 119 W) dy da
0 \1082

Since ¢ € LY(R) and for sufficiently small “ﬁ

, we obtain that

aO{

N\ |||
T SC/ h 04_1_0//1/ — .
s = A S Toadln ]

h
scwmﬁ+cm/””w4da
0

<Cp)f +¢”

< C'[A||™

Finally, by assumption, we derive

s bjo hoi—b ) )
nse fo [ L gl () v (5| o

Since 1 is differentiable everywhere so there is a constant C' > 0 such that

U

e

a

el

S

and, also, since supp(¢) C [-R, R] we have |b] < aR + HBHv we can bound Ty by

T4<C/ // a® 4 (aficffplpo |IAll ) o
||A]| /st b|<aR+||h|| [log(aR + |[h])))) a
(aR + ||h[))> _
Sl ~N e 18 R+ |Flf) d
i ( A o i

This integral runs over HEH <a <1, we get

, e CBEDNN
fr=cinl w ( +1%WWN>(R+MWd

" -3 a® L a 7 a
<Al 1w < +|1og(HhH)l>(R+HhH)d
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For sufficiently small Hﬁ

Y

1
T, < C"||h|| - a®~3(aR + ||h||) da
h

1 1
< C//// HBH [/H_H aa72 da + /H_H aafB HEH da]
h h

=c~~>|hu( R L i LI HBH“‘1>

a—1 a—1 a—2 oa—2
mr e [ L= HBHI_Q o H}_LH2_Q
=c HhH 11—« g 2—«

— " HBH@

Thus |fss(h)— fss(0)| < C Hﬁ”a for HﬁH < 1. Together with the bound of fgg, we conclude
that | fss(h) — fss(0)] < C HEHQ for all h € R?. It follows that f is Holder continuous at 0

and hence at any g, with exponent «. O

4.2 Characterization of Holder Regularity by The Smith Trans-

form

Partial derivative of function f : RY — R is denoted by 9" f = 0} 05?...0" f where 0; means
the partial derivative with respect to the i*’-coordinate and the index v = (vy, 10, ...,14) €
N¢ with |v| = 11 + va + ... + v4. We pick a wavelet-type function ¢ € L?(R?) is compactly

supported function obeying
0" o(@)] <C+z]))=2 for |v] <2,7€R?

and [ @up9(2) dz = 0-for all 0 < @ < ap,b € R?, and 6§ € [0,27). This wavelet-type function
1) gives rise to the smith transform used to analyze Uniform and poinwise Holder regularity
of functions.

In this section we show how to analyze uniform and pointwise Holder regularity by
Smith transform. Generally speaking the amount of uniform and pointwise regularity of a
function is reflected in its Smith transform by the decrease of the Smith transform at small

scales as shown by the following theorem.
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Theorem 4.5. If a bounded function f € L?>(R?) has Hélder continuous exponent o for

some 0 < a < 1, then there is a constant C > 0 such that
T4(a,b,0)] < Ca®%1 forall 0<a<1,beR2 andf € [0,27).
Proof. We have

Ty(a,b.0)| =

Lo Py -b) 1@ as

/2 a_%so(yl,yz)f(:m,xz)dx
R

where y1 = 1 ((z1 — b1) cos 0 + (w5 = by) sin ) and ys = ﬁ (—(x1 — b1)sinf + (x2 — ba) cosh).

A simple change of variable yields
=, 7 _ 343
|Ff(a7 b, 9)’ < - A 2 |§0(ylay2)’
| f(ayy cos @ — \/ayssin O + by, ay sin @ + /ays cos 0 + by)| dy; dys.
Since [ (z)dz =0, we apply the uniform Hélder regularity of f and get
= T 343
Ty(a,b,0)] < U o (Y1, y2)|

| f(ay1 cos @ — /aya sin O + by, ayy sin 0 + \/ayy cos @ + ba) — f(b1,be)| dyy dyz
<c [ ot o)

|ay1 cos 0 — \/aya sin 6, ayy sin 6 + v/ays cos 0| dyy dys
= /Rz a5 3 olyr, yo) | (0202 4 a9d) 2. dyydys
= Cat ™t [ lpla)] (ar} +33)

a3 _ i i
< Cat A o) 91 4

S]]

dy

Since the last integral is finite as a result of the decay condition on ¢, we get

Ty(a,b,60)| < C'aS+5.

The following is a converse theorem.
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Theorem 4.6. If, for some o € (0,1), there is a Fourier multiplier M of order 0 so that
whenever f € L*(R?) is a high-frequency function supported in frequency space HEH > 2

and a constant C' > 0 for which
{eu50: M f)] < Cla5t1 for all 0 <a< ap,becR? and 6 € [0,27),
then f is Holder continuous with exponent c.

Proof. Without loss of generality, we suppose that ag = 1 (otherwise is always see the proof
of the large scale part of Theorem 4.2). First of all, note that f is bounded uniformly in x

as the decay of Smith transform, a simple change of variable and integrability of ¢ yield

1 27 _ da
@< | /t<soaw,Mf>M%be<x>|dbdeag
2T
<0// [atrtaife
2T o
o [ [7 [a4 11 @) daoda
0 0 R
1
—C"/ a? da
0

_ 2
= {2—#0[}

=" < Q.

DlR (m—B))‘ dBdG%

Let Z,Zo € R%. Next, we look at |f(2) — f(@o)| < C ||z — Zo||* for |2 — Zo| < 1. We apply
the inequality of Smith transform bounds and split the integral into fine and coarse scale

ranges.
1 21
1F(@) — f(@)] < / / / [(2a 6 M) aia @) PusalFo)] dbdh oo

27
<C/ / / % ‘QoabG 'f) @ab@ ‘dbd&da
|lz—zo||? pom ay da
<c/ / / 8 o0 @) + [Pagol@o)]| B8 G

27
a da
+c/ //a2+4\s0a,5,9( ~ pupolm)] dbd8 5. (3)
lz—zo® O R

By the decay condition of ¢ and all its first and second derivatives, ¢ is differentiable

da

everywhere with uniformly bounded gradients and so there is a constant C' > 0 such that
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lp(Z) —p(To)| < C' ||z — Tol|. Also, since supp(yp) is contained in a ball of radius R for some

R > 0, we can bound (3) by

[|z— xo|| 27
<C/ / /a2+4 i+3 ‘90( ’dydgi

2m
a d
+C/ / / af Y 7 — o dbag =
|z—z0||? |ac b||<fR+||x xo||

la—zol §
:C’/ a? da+ C" ||z — Zo| az” / )
0 s=<olf? |7-b| <vaR+l1z—zoll

M\U‘

dbda

_ C/I/ ”i‘ . :i()Ha+2

1

+ C" ||z — Zo a® 2r(\aR + ||z — Zo|))? d
ll7—zol|>
1 o, A 1 |z — @l | ||z — %o
=C" ||z — Zo|| ¥ +C"|Z ~ 0| + +
a—1 o—2 a—3

" |1z — 70| & — Tl * = & — @) * n & — @) *
— T — a0
0 a—1 AP a—3

_ Cl// H-i' - j;OHa—‘rQ

- 1= |lz=m|™* 1—|lz—Zol* ™  1—|&—a|°°
C// _ «
+ Hx xOH [ 1l—« 3 2—« + 3—«

< Oz — 2o

This holds for all ||z — Zy|| < 1. Together with the uniform bounded of f in Z, we conclude
that | f(Z) — f(zo)| < C ||z — Zo||* for all Z, 7y € R. Therefore f is Hélder continuous with

exponent . ]

The pointwise (local) regularity of a function implies an equivalent local decrease of its

Smith transform at small scale as shown by the following theorem.

Theorem 4.7. If a bounded function f € L*(R?) is Hélder continuous at To with exponent

€ (0,1), then there is a constant C' > 0 such that

Zo

L o b -
T¢(a,b,0)] < Caz T (1—|—HH> forall 0<a<1,beR? and f € [0,27),
a

R

Proof. By translating everything we can assume that o = 0. Using the assumption that

Jo(@)dz =0, ie., [@,54(Z)dz=0forall 0 <a<1,beR?and 6 € [0,27) and that f is
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Holder regular at 0 with exponent «, we again have

y(ab+0.0) < [ leusol@]1£2) - FO)] do

3
< (Ca 2

(D1 R —b) ‘Hm—OH d7

< Ca” /\@ b HyH+HbH)a dg
O HEH ;
= Ca> IsD gl + dy
I_)OL
Clat* / (7 (nyna ”!>dg
2
a b
s </ el a1 L )
= (a3t 4(1+-Hbu >
a2

where we have used the integrability of [o(9)]]|7]|* and |¢(7)| in the last inequality. Thus

l\)\»—‘

IDf(a,b+ To,0)| < Ca2* 2<1+ e )
a

2
2

(1+ Hé—foua) |
a?2

Above theorem shows that the Smith wavelet transform can also be used to characterize

Therefore

[

IT4(a,b,0)} < Ca2t

O]

local regularity. The following is a converse theorem.

Theorem 4.8. If, for some 3> 0 and a € (0,1), there is a Fourier multiplier M of order
0 so that whenever f is a high-frequency function supported in frequency space H{H

0

and a constant C' >0, such that

+

[
o

{©ate- M f)| < Ca for 0 < a<ag uniformly in b € R

and there is a constant C' > 0 for which

K(pa,g,@,MfMgC 3t Z(l—i—”l)_z?()H) forall 0 <a<1,beR? and 6 € [0,27),

az2

then f is Holder continuous at Tog with exponent a.
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Proof. First of all, note that f is bounded uniformly in Z as a simple change of variable

and integrability of ¢ yield

7@ 5/1/%/ (Patr M) [£aso()] dbdd e
e[ [ foric
_c/ /2ﬂ/a2+ 5310 ()| dj db da
= /OaZda
B 2

— (e 1 :
C[2+[3]*C & N6

We therefore only have to check | f(zg + k) — f(zg)] < C Hﬁ”a for small h, i.e. Hi_LH <1. By

Dle(x - b))) dbcw@

translating everything, we can assume g = 0, and we obtain

h 0 Y. A = - da
!f(h)—f(o)léfo/o /RK(Pa,b,enyﬂ‘<,0a7b79(h)—<pa’b’9(0)|dbd9a3

&l %1 2 -

o [ [ oo s

IR p2m o

/|h||ﬁ/0 /RK@Da,b,eaMfH|‘Pa,b,9(h)‘dbd9a3

[R]]* p2m ]

+/ //K%be’MﬁH%be 0)| dbdo =5

2m ] ]
/|h|| / /‘ Papor M) |#ag.alh) @abg(o)\dbde a

By the assumption, we get

R

Let us denote the four terms on the right-hand side by 17, T», T3, and Ty.
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After a change of variable, integrability of ¢ yields

h B 27
1_0/|” / / a1 o
|hHB 2 3,3
—o [T [T [at o) dyasda

[dka
= C'/ ag da
0

DlR,g(:z b))) dbcw@

a

For T,, we have

|hH <7 Iy 3
/’h” @ / /CL2 y & .SO
h 27 bl
/HH / /aginLU e (D1 Rey(h ~1))| dbao da.
R|| e 9 !

After a change of variable in both terms by § = D1 R_g(h — b), since supp(p) C B(0, R),
the support of ¢, p5(h) = <D1 R_g(h — )) lies in the ball B(h,/aR) for each h € R%,0 <
a < 1and 6 € [0,27). Using this fact, we obtain that ||b|| < ||h|| + va|g|| < ||r|| + VaR,

we can bound the two integrals in 75 as follows

[ L S
C/ / / 2+3 y)| dydf da

/|‘h” /2/ 273 (VaR + |[5]))* | ()| dg 6 da

[l
P R 111 .
:o/ a2 da+ C / s (VaR + ||B]])* da
0 [l
< Cli’ HhHa+2+C,///HhHa/HhHZ .
(NN IA01%

T T T 2
= " | + IR (IR - 117l )

= C Al

where we have used a < HFLHZ in the last inequality. Estimate of T3 can be derived in the



same fashion as that of T5.

/!hl! /2w/ Castios ( ||j\3}a> |20 5.6(0)| dbdé da

+c/”h” // az~2|\/aR[* | (y)] dgidf da

[/ [l
:C'/ a?z da+C’”/ |[VaR|“ da
0 0
)2 7 ||e+2 |7 || ||E||2
<o aFf el [T tda
2+Oé 0

= " |ulf* +. & 18] (1)
= C|[A["

where we have again used a < HBHQ in the last inequality.

Finally for Ty,

/Ihll /%/ - i<1+ ’ ))*" (DIR o(h— B)>—¢(D%R_a(—5))‘d5d9%.
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We then use the properties of ¢ that it has bounded derivatives so there is a constant C' > 0

such that

‘80 (Dl R_g(h - 5)) — ¢ (DIR—e(—B)N <C HD%R—G(E —b) - D%R—e(—E)H

dooin uof

< < R0

C .-
= — |l

a
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and, also, since ¥ has compact support, we have HBH < +aR+ HBH we can bound Ty by

1 27 . IR
Ty < C/ 2/ / FERS B (1 ¥ WW) 1 12| dbdf da
2] Jo el <var+{|a] 2 “

Sl ! s ( VB#WW)) (VaR+ [H])? d

Since we have integrate over HEH <a<l1, we get

T<cwwyw i1 (14 N (an + )
edi e af 75 (aR*+ 2y/aR + ||B[*) da
3 L 1 e e Va2 e 12
- o1 (et b Ny e+

ofthHa(QR (Al 5o (1= Al + fa(l“ﬁ”?’»

— o i
Thus | fss(h) — fss(0)] < C Hﬁ“a for HﬁH < 1. Together with the bound of fgg, we conclude

fss(0) < C Hﬁ”a for all h € R%. Therefore, f is Holder continuous at 0 and

that |fss(h) —
O

hence at Zgy, with exponent « as desired.

Theorem 4.5 gives a characterization of the Holder regularity over an interval but not
at a point. Theorem 4.7 shows that one can also estimate the Holder regularity of function

precisely at a point xg. Both uniform and local Holder regularity give a necessary condition

and a sufficient condition, but not a necessary and sufficient condition

4.3 The Curvelet Transform of Functions with Holder Reg-

ularity
In this section we show how to analyze uniform and pointwise Holder regularity by curvelet
transforms. Generally speaking the amount of uniform regularity of a function is reflected

in its curvelet transform at small scales as shown in the following theorem
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Theorem 4.9. Suppose the windows V and W are infinitely differentiable and of compact
support. If a bounded function f is Hélder continuous with exponent o , 0 < o < 1, then
there is a constant C' > 0 such that |T¢(a,b,0)| < Cas Tt for all 0 < a < 1,b € R? and,

0 € [0,27).
Proof. Since W(0) = 0 we have 4,5 ,(0) = 0 we get that [ 7,3(7)dz = 0. By Lemma 3.6,
_ —N
Yapa(@)] < Cxa=3 (&= b]),,)  forall ¥ = 4 then
Ty(a.b 0L [ s o®) | £ = 10)] a2
<Cf busgt@lla = b dz
R2

5 =N T g
<G eyt (o =By, Jlo =8| a

L+ [z =0,
: T — b||”
< C/a—g/ Hx H — T (4)
% ( Hf—bH2>2
5=
where we have used the fact that [, , > l\‘-}g in the last inequality.

In polar coorinates, (4) becomes

a

0 jat+l,2+1

:C’"a_i/ %% ;aé dy
® BN
00 a-+1

—cratth [Ty~ crait

0 (1+y?)=2

Note that we let y = = and the last integral is integrable for all N > 4. O

va
The pointwise (local) regularity of a function implies an equivalent local decrease of its

curvelet coefficients at small scale as shown in the following theorem.
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Theorem 4.10. Suppose the windows V and W are infinitely differentiable and of compact
support. If a bounded function f is Holder continuous at Ty with exponent a , 0 < a < 1,

then there is a constant C' > 0 such that

A _ ||«
T}(a.5.6)] < Ca+h (1 . Hb—mH)

a2

for all0 < a < 1,b € R? and, 0 € [0, 27).

Proof. Since W(0) = 0 we have 9,3,(0) = 0, i.e., [7,34(Z) dz = 0. By translating everything

we can assume that Zo = 0. Then we consider |I';(a, b+ Z¢, 0)| at zo = 0.
Ts(a.b+ 0GOS Fidp@)] 1£2) = £(0)] da
€[ 1rug @l Iz <0 da

. —N _
< C/RQ ova i (JlF = bf,,)" Iz -0l

=C'a”

]

/‘ |z ]| _
dz
9 N
= (14 |z -]l ,)

=5

a i

where we have applied Lemma 3.6 with N > 4. Using the fact that Hi — I_)Hz 0 =

we get

Uf(a,b.0) < Cla i /

R (1 d ||xjrf>

After a change of variable,

In polar coodinates,

2
IT4(a,b,0)| < // [Ghal G S dodr

1+T2

<C"q 1 /00 77‘ * HbH)N rdr.
0

2\ 2
(1+%)
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We again have, after a change of variable y = %’
b +||b
|]‘—‘f(a/’ b7 9)| S C//a_i/ Mfyfdy
0 (I+y?)2

ydy

cont [T
B 0

(1+42)%

o o0 ya+1 . [e%s} y
ot TR [
0 (149322 0 (1+4y?)2

and so

4.4 Directional Regularity

See also [14,15] for the following definition.

Definition Let Z € R?, d > 1 and let-o > 0, ® be a vector in R? of modulus 1. A function
f:R? — R belongs to C2¢(z) if the one dimensional function g : t +— f(z + ®t) belongs to
C“(0), i.e., there exists a constant C' > 0s.t. |g(t) —g(0)| < C|t|* for all +in a neighborhood

of 0. We can say that |f(z + &t)— f(2)] < C[t|~.

For d = 2 a given vector ® of modulus 1 is of the form ® = (cos ¢, sin ¢) for some ¢ € [0, 27).
Example Let a : S! — R and # € R?, then 7 = 7® = 7(cos ¢,sin ¢) where r € [0,00) and
¢ € (0,27]. Define f : R? — R by f(z) = r(®) Then f has the directional Holder exponent

a(®) at 0, ie. feC2P(0).
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Proof. Let g : R — R be defined by g(t) = f(t®) for all t € R. Let t be in a neighborhood

of 0. Then

l9(t) = 9(0)] = 17(t®) — FO)] = [[t|*® ~ 0] = [¢]*(®)
Thus g € C*®)(0) and then by definition we have f € C’g@) (0). O
Theorem 4.11. Suppose that f has compact support. Let ¢ € [0,27) and ® = (cos ¢, sin ¢).

If f belongs to C ( ) for all & € R? such that TL® then |R(f)(a,b, ¢)| < Ca? (ao‘@) + |b|°‘(‘i)>

fora >0, and b € R.

Proof. Let ¢ € [0,27) and ® = (cos®,sin¢). Suppose that f € C’ (@ )( ) for all € R?
such that z1®, i.e., there is a one-dimensional function gz : R — R defined by gz(k) =
f(z + (kcos ¢, ksing)), k € R, satisfying the inequality |gz(t) — gz(0)| < C|¢|*® for some
constant C' > 0, for all ¢ in a neighborhood of 0, i.c. | f(Z+(tcos ¢, tsin¢))— f(z)| < C|t|*®
for all ¢ in a neighborhood of 0. Letting x1 =t cos ¢ — ssin ¢ and z9 = tsin ¢ + scos ¢, we

have

21 €08+ xosing — b

R(f)(%ba(ﬁ)_/l‘{/;{\}af(xlaaa)w( - )dwldfﬁg
::}‘a/Rwa;b) (/Rf(tCOS(]ﬁ—ssinqﬁ,tsinqb—i-scosqb)ds) dt.

Since / ¥(z)dz = 0, we have
R

R b = 7 [ (5
ks

L (5)

|f(tcosp — ssing,tsin g + scosp) — f(—ssin @, scos@)| dsdt.

b) / f(tcosp — ssing,tsing + scos @) dsdt
R

b) / f(—ssing,scos @) dsdt.
R

Thus

!R(f)ab¢!<
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Since f is compactly supported and f € Cg(é) (z) for all Z € R? such that 71 ®, we have

R(@ bl <= [ " [ " ‘zp (t"’> ‘ Ol ® ds it
f/ 1ds/ ’¢< >‘tya
(s

lﬁb

f

C/ N B _
ol e @)ay + b ®ady

< Cla} / o) (1ol ® + pp®)

&£ " a (ao‘(é) -+ |b|°‘(&>)> g

Example: Let 6 € [0,27), we apply the Weierstrass function in 2-dimensional;

Wago(x1,22) = e~ [ rsiEr, oisd] Z o' sin (B (z1 cos O + xosin b))

n
where 3 is assumed to be larger than 1, so that the series is lacunary, and « is assumed to
be smaller than 1, so that the series converges normally. This function is continuous but

nowhere differentiable if o3> 1.

Proof. Let a > 0 and b € R, we have

1 .
R(Wap,0)(a,b,0) = Ja /RZ e TI=T1sin6-+a3 cos | Z o sin (0" (z1 cos @ + x2sin b))

n

¥ (acl cos 0 4+ z9sinf — b) dordes.
a

Putting 21 = tcos = ssinf and'xo = tsin @ + s cos 6, we obtain that

R(Wap0)(a,b,0) = 1/ _|S|Za sin (3"t) ( )dsdt

() e s ()
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2miz 76_27”.2

Because of the integrable of e8! and sinz = 57—, we have
27r2,6" —27ri[3"t t—b
R ,b,0) dt
- G [ [ 2
an —-b
— n 2mi3"t
w&;a /_of ‘”( a >dt
C n * —2mifB"t t—b
—fza / A, () dy
N Qﬁzan/ 6727riﬁ"(ay+b)w (y) dy
(3 A
- 7\/‘20671 2w 3™ b/ 27mﬁ"ay¢( )

o0

e 2Ty (y) dy

_»\/_Zan —27i 37 b/oo
4 »\/’Zan QWZﬁ"bw ﬂn %\/&Zn:aneﬁmﬂnbd;(_ﬂna)‘

[e.°]

Since 1h(z) = 0 for all z < 0, we get

RWap,0)(a:6,6) \f Z ") ().

Thus [R(Wa,g.6)(a, b 0} = S/a >, all(5"a)].

Choosing a,, = 7™ — 0 as m — 00, we have

R(Wap6)(amsh,0)] = = amam|«/3<1>|+9 amam%(m

2
2-C 3" fan,

— Car 143

provided 1 is chosen in such a way that supp(¢)) C [1, 5]. Thus W, g9 ¢ C'(R?). O

log

Let us check that W, g g is C" 2% () for any 7o € R2. In the difference

Wa,8,0(Z) = Wap0(To)| < a" Z |sin (8" (21 cos 0 + x2 sin 6)) — sin (8" (201 cos 6 + xg2 sin h))] .

n



5}

We can either bound the difference of sines simply by 2 or, using the mean value theorem,
by 37| ( — o) - (cos 0, sin 8)] < 5 |7 — o]
Let N = W. Using the first bound for n > N and the second one for n < N, we

get

Wa50(2) = Wago(To)] < D a8 |7 —Zof +2 ) a”

n<N n>N
N+1 _ N+1
< ||z — @0l (W) 2 <(11— a) '

We have to sum up two geometric series. Because of the value taken for N, the first sum

is bounded by C(aB)N < C|jz - :f0||_%, and the second one is bounded by Ca® <

_loga
C ||z — Zo|| T=5.
log o log
Indeed, log ™ = Nloga = %22% log ||Z — Zp|| = log ||z — jdfﬁ, then oV = ||z — jOH_loiﬁ
log||Z =7 LA\
and log BN = Nlog 3 = ~3gy;T—;”” log 3 = —log ||Z — Zol|, thus g = Hf—l'oll'

_loga
Therefore |W, 5,6(Z) — Wa,g,0(%0)] < C ||z — Zgl|” =5
log a
Next we can show that [R(Wq.g0)(a,b,0)| < Cai b if af > 1.

Proof. Let a > 0. We can see that 8~ < a < ™! for some integer m > 0 and then
for each integer n, B~ < af™ < B* ™1 Suppose that ¢/ is chosen in such a way that

supp(d;) C (1, 8], the only nonvanishing integral corresponds to n = m. Then
¢ n|,7(an
[R(Waipo) (a:b,0)| = & va 3 a"d(5"a)

= C'Vaa™ ()|
= C"\/aa™.

log o
We have to show that o™ < a_@. Since a8 > 1 we have % < o« and then /8% < a™.

Thus loga > log([%m) = —m/log 3, then m > —%ggg. Since 0 < a < 1 < 8 we obtain that
m loga . _loga m _loga
log o —mlogag—logﬁloga—loga g thus o™ < a Teh.

Hence |R(Wa,50)(a,b,0)] < Ca? 155, O
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Example: Let 0 € [0,27), we again apply the Weierstrass function in 2-dimensional;
Wapo(x1,x2) = Z o sin (0" (z1 cos + xosin b))
n

where ( is assumed to be large than 1, so that the series is lacunary, and « is assume to
be smaller than 1, so that the series converges normally. This function is continuous but

nowhere differetiable if a3 > 1, we can prove by the Smith transform.

Proof. We can see that, for any a > 0 and b € R?,

3

£ \

/ Za sin (3" (21 COSH—I—:L'QSIHH))QO(DlR_g(f—B)> dzx.

Ty, 50(a,b,0) =a”

Putting 41 = £ [(z1 — b1) cos0 + (22 — by) sin 0] and yo = ﬁ [—(x1 — b1)sinf + (z2 — by) cosb)].

So, we have x1 = ay cos § — y/ayzsin§ + by and x9 = ay; sin 6 + \/ays cos 6 + be and obtain

that

T T 3,3
PWa,so(0b,0) =a™3 / Z o sin (5" (ays + by cos 0 + ba sin0)) p(y1,y2) dy1dys
R2
% / Z an 27ri,5'"ayl e2mﬂn(b1 cos 0+ba sin ) __ e_Qm/B”ayl e_Qﬂi/Bn(bl cos §+bs sin 6)
R 2
o(y1;y2) dy1dys

3
_ 0(1'4 Z an€2wﬁnb.(cos 0,sin G)Q(ﬁna’ 0) - Z O[ne—27|—13nb.(cos 0,sin 9)@(_ﬂna’ 0)
n

n

We also to suppose that @(z1,22) = 0if 21 < 0 or 25 < 0, then

3
> 4 Ca1 ' £
IWapol@,0.0) = =5 > a"p(Ba,0)].

Choosing a;, = 8= — 0-as.m — 0o, we have

3

_ e R C 5 i
‘FWa”g,e (am7 b7 0)’ :Eama |§0(17 O)‘ + Eama |§0(57 0)’
3 3
> Clafi" + Clafys ™!
3
> Clamf™™

3
74'_
— C//a/m

provided ¢ is choosen in such a way that supp(¢) C [1, 5] x R. d
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log «

Let us check that W, gg is C 183 (Z¢) for any 7o € R2.

In the difference

Wa,8,0(Z) = Wap,o(To)| < a” Z |sin (8" (21 cos @ + w9 sin6)) — sin (8" (xo1 cos O + zp2 sin b)) .

n

log o
Similar the previous example we show that [W, 50(Z) — Wa,g,0(Z0)| < C||Z — :E0||_10§ﬁ.

log o

Finally, we can show that [Ty, ., (a,b,0)| < Cat 185,

a,B,0

Proof. Let a > 0. We can see that 7™ < a < B "*! for some integer m > 0 and then
for each integer n, A"~ < af™ < A7 ~™*+1. Suppose that v is chosen in such a way that

supp(lﬂ) C (1, 5] x R, the only nonvanishing integral corresponds to n = m. Then
B h P C s n|,7(Q3n
D, 0 B0 = Gt D70
= O'Vaa™ ! [4(3,0)|
= 1™

L loga——0
We have to show that o < a 2B Since o3 > 1 we have % < « and then B}” < a™.

Thus loga > log(ﬁ%) = —mlog B, then m > —}ggg. Since 0 < a < 1 < 8 we obtain that

log o log

__log . _OF
loga™ = mloga < —%ggg logar = log a™ 128, thus o™ < aq” 1585.,
— — 3_loga
Hence [Ty, ;,(a,b,0)] < Cat Toe5. O
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