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Chapter I 
Introduction 

 

Cancer remains one of serious health problems across the world and caused 

over nine million deaths in 2018. In general, cancer arise from alteration of genes 

which control cell functions, especially in cell growth and division [1]. As the result, 

cells with certain genetic changes will divide out of control. These abnormal and 

malignant cells become invasive by spreading into surrounding tissues and inducing 

normal cells to form blood vessels for their oxygen and nutrients supply. In many 

cases, metastasis also occurs where cancer cells are able to travel through blood or 

lymph vessels to other parts of the body and form other cancerous tumors [2, 3]. 

Several effective cancer treatments have been developed, including chemotherapy, 

in which drugs having anticancer properties are used to inhibit growth of cancer cells 

and its metastasis, restrict cancer invasion, and increase cancer cells death [4]. 

Recent advance of chemotherapy has been developed by targeting specific enzymes 

and growth factor receptors involved in carcinogenesis as many previous 

chemotherapeutic drugs had broad spectrum of cells destruction causing numerous 

side effects [5]. 

Natural products play a pivotal role in an attempt to discover potential 

chemotherapeutic agents and over 60% of current anticancer drugs are bioactive 

substances originally produced by terrestrial plants, marine invertebrates (e.g. 

mollusks, sponges, echinoderms, cnidarians, and tunicates), and microorganisms (e.g. 

bacterial and fungal cultures) [6]. The secondary metabolites are produced in a 

limited number and used by specific living organisms as response to protect and 

adapt in various environmental conditions. Their roles in nature provide an insight to 

explore those bioactive compounds for human health benefit with the major use in 

cancer therapy [7]. Due to relatively ease to access in sample collection and 
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preparation, medicinal plants or herbs are frequently targeted to find potential 

anticancer candidates and a million of phytochemicals has been hitherto isolated 

and pharmacologically screened [8]. 

 
Figure 1.1. Natural product-derived compounds as anticancer agents. 

 

Vinblastine (1.1) and vincristine (1.2), two vinca alkaloids originally isolated 

from Catharanthus roseus G. Don. (common name: Madagascar periwinkle), were the 

first introduced anticancer drugs prescribed to combat childhood leukemia, 

Hodgkin’s lymphoma, and testicular teratoma. An extensive research revealed that 

both compounds were capable to destabilize microtubules and obstruct cancer cells 

during metaphase stage causing the cells apoptosis [9, 10]. Later, the discovery of 

paclitaxel (Taxol®) (1.3), a bioactive constituent isolated from the bark of Taxus 

brevifolia Nutt. (common name: Pacific yew), became one of great breakthroughs in 

cancer research area. This clinically effective chemotherapeutic drug was found to be 

active against a variety of human cancers, including ovarian, non-small cell lung, 
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breast, and Kaposi’s sarcoma by promoting tubulin heterodimers polymerization and 

suppressing dynamic changes in microtubules leading to mitotic obstruction [9]. 

Several structural modifications of the above natural product-based anticancer 

agents were also carried out to overcome clinical trials limitation, such as low 

solubility which affect drug delivery process, high toxicity causing several side effects, 

and drug resistance associated with the current drugs. Etoposide (1.4), a synthetic 

analog of podophyllotoxin isolated Podophyllum peltatum L. (common name: 

American mandrake/mayapple), was approved for ovarian, lymphoma, testicular 

teratoma, small-cell lung cancers treatment. The latter anticancer agent was found 

to have different mode of action to kill cancer cells via topoisomerase II inhibition 

and give higher efficacy than its precursor [7, 9]. 

The above-mentioned data illustrate a potency of natural products as 

chemotherapeutic agents and exploration of bioactive secondary metabolites, 

especially from medicinal plants, is highly recommended to be done. This research 

will focus on the phytochemical and biological investigation Garcinia plants which 

have been reported previously to contain many pharmacologically active substances. 

 

1.1. Genus Garcinia: botanical aspect, distribution, and beneficial uses 
The genus Garcinia, one of the largest genera to the family Clusiaceae, is 

widely distributed in tropical rain forests of Southeast Asia, South America, and West 

and Central Africa. This genus is pantropical and comprise high level of species 

diversity with more than 250 species of evergreen, lactiferous, dioecious, and small 

shrubs to medium-sized trees [11, 12]. There are approximately 77 species of this 

genus distributed throughout Indonesia, with the main population in Sumatera, 

Kalimantan, and Papua Islands [13]. In its natural habitat, Garcinia species can be 

found along rivers, swamps, and streams as wild plants or cultivated in garden and 

widely grow on sandy, clay, chalk, silt, peat, and loam soils [14, 15]. 
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Some Garcinia plants have been consumed traditionally by local people as 

Indonesian dishes and herbal medicines to prevent and treat several health 

problems. The fruits of G. mangostana (local name: manggis), well known as 

mangosteen, have mixed sweet and sour taste and become one of potential 

commodities in market. The pericarps of mangosteen are extracted for additive in 

herbal soap and food [12, 15]. G. atroviridis fruits (local name: Gelugur) are edible 

with sour taste and used for food spices after drying and grinding process and its 

leaves are prepared for food salad. In medical aspect, the infusion of the leaves of G. 

atroviridis and G. parvifolia (local name: Kandis) is consumed for stomach pain 

remedy associated with pregnancy. The latex of G. mangostana is topically applied 

for oral ulcer treatment, while the decoction of its inner bark is consumed to treat 

dysentery [15, 16]. The pericarps of G. mangostana are prepared as a gargling 

solution for oral hygiene protection [17]. Moreover, the pericarps of G. mangostana 

and G. cambogia are formulated as a herbal supplement for weight loss and natural 

antioxidant [18]. 

 

1.2. Biosynthesis of Garcinia secondary metabolites 
Phytochemical investigation of the genus Garcinia resulted in the isolation of 

structurally diverse secondary metabolites, especially phenolic compounds, such as 

xanthones, biphenyls, polyprenylated benzoylphloroglucinols, isocoumarins, 

depsidones, and biflavonoids. Biosynthetically, amino acids L-phenylalanine or L-

tyrosine, derived from shikimate pathway, act as a C6C3 building block and precursor 

for the phenolic metabolites. Plant employs phenylalanine ammonia lyase (PAL) 

enzyme to eliminate ammonia of the amino acids and produce cinnamic acid (Figure 

1.2). The hydration of cinnamic acid via coenzyme A ester substrate (cinnamoyl-CoA) 

and oxidation of the hydrated intermediate generate a β-ketoester and subsequently 

lose acetyl-CoA through reverse Claisen rearrangement to introduce a CoA-ester of 
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benzoic acid. The chain elongation of benzoyl-CoA with three malonyl-CoA derived 

from acetate pathway generates a shikimate-acetate intermediate I, which is involved 

later in an intramolecular cyclization to yield several Garcinia phenolics [19]. Claisen 

condensation of intermediate I catalyzed by benzophenone synthase (BPS), a type III 

polyketide synthase, afford a benzophenone, 2,4,6-trihydroxybenzophenone. This 

metabolite is oxidized by benzophenone 3ʹ-hydroxylase (B3ʹH) to give 2,4,6,3ʹ-

tetrahydroxybenzophenone and converted to xanthones by 1,3,5-/1,3,7-

trihydroxyxanthone synthases (TXSs) via intramolecular oxidative C-O coupling 

reaction [20]. Further oxidation of xanthones via Baeyer-Villiger rearrangement by 

specific enzymes gives a depsidone, which is rarely found in higher plants. In general, 

depsidones are well known as lichen secondary metabolites derived polyketide 

biosynthesis pathway [21]. A biphenyl-type compound, 3,5-dihydroxybiphenyl, is 

constructed through aldol condensation and enolization of the intermediate I by 

biphenyl synthase (BIS) [22]. 

As depicted in Figure 1.3, a simple benzophenone can be converted to more 

complex structure, so-called polyprenylated benzophenone 

(PPB)/benzoylphloroglucinol (PPBP), via polyprenylation which utilize plant enzymes 

and DMAPP (dimethylallyl pyrophosphate), a C5-building block from mevalonate 

pathway [23].  Multiple prenylation of benzophenone generate two type-D PPB 

intermediates and different attacking position at phloroglucinol A-ring results various 

type of PPBs. A C-5 enol attack to the double bond of prenyl unit at C-1 generates 

type-C PPB, while C-1 and C-3 attacking position to a prenyl moiety at C-5 introduce 

type-A and –B PPBs, respectively. Such enzyme-catalyzed modifications afford 

various PPBs with a high degree of complexity [24]. 
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 7 

 

Figure 1.3. Biosynthesis of polyprenylated benzophenone in plant. 

 

The biosynthesis of flavonoid and isocoumarin lie to the precursor CoA-ester 

of cinnamic acid with three malonyl-CoA which give intermediate II with chain 

extension, as described in Figure 1.4. Later, this intermediate is cyclized via Claisen 

condensation, followed by enolization to form naringenin, a flavonoid-type 

secondary metabolite. Intermolecular oxidative C-C and C-O coupling reaction 

initiated by specific plant enzymes (e.g. peroxidase) produce biflavonoid structures 

[19]. The aldol condensation and enolization of intermediate II give intermediate III 

which is subsequently hydrated and lactonized to generate an isocoumarin [25]. 
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Figure 1.4. Biosynthesis of isocoumarin, flavonoid, and biflavonoid in plant. 

 

1.3. Diverse structures of Garcinia secondary metabolites 
In this section, several secondary metabolites which have been reported 

previously are briefly reviewed based on the core structures and substituent 

modifications. The biological and pharmacological results of the isolated compounds 

are also described and restricted to those having potent activities, particularly in 

anticancer study. This is due to the fact that Garcinia phytochemicals, particularly 

xanthone and benzophenone derivatives, are well recognized to exhibit significant 

effects on cancer growth inhibition, such as α-mangostin (1.8), gambogic acid (1.32), 
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and garcinol (1.76), wherein detailed mechanism of action of those compounds 

against cancer cells are described below. 

 

1.3.1. Xanthones 
 

 

Figure 1.5. Simple oxygenated and prenylated xanthones (1.5–1.19) from Garcinia 

plants. 

 

Xanthone is an oxygenated heterocyclic compound bearing dibenzo-γ-pyrone 

skeleton and derived biosynthetically from shikimate-acetate pathway, as described 
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in Figure 1.2. Xanthone derivatives can be found in higher plants, microorganisms, 

marine sources, and lichens, while they are isolated as a chemotaxonomic marker 

and major component of the genus Garcinia with high chemical diversity [26]. 

Most common xanthones found in Garcinia plants bear oxygenated 

functional groups such as hydroxy and methoxy substituents, as well as prenyl and 

geranyl side chains (Figure 1.5). For example, three tri- and tetra-oxygenated 

xanthones, 1,3,6,7-tetrahydroxyxanthone (1.5), 1,6-dihydroxy-7-methoxyxanthone 

(1.6), and 1,6-dihydroxy-3,7-dimethoxyxanthone (1.7), were obtained from the leaves 

and twigs of G. multiflora [27]. Another phytochemical investigation led to the 

isolation of prenylated xanthone α-mangostin (1.8) and its analogues, garcinone D 

(1.9) and fuscaxanthone D (1.10), with hydrated and hydroxylated prenyl side chains 

from the roots of G. cowa and all compounds showed moderate cytotoxicity against 

KB and HeLa cancer cells with IC50 values ranging from 11.7 to 33.5 µM. Moreover, α-

magostin, originally isolated from the pericarps of mangosteen (G. mangostana), had 

a cytostatic effect on colon cancer cells by inducing G1 cell cycle arrest and 

promote the suppression of breast tumor growth in vivo [28]. Xanthones with 

modified prenyl moieties were found in the leaves of G. bracteata and G. polyantha, 

such as allaxanthone A (1.11) and bracteaxanthone VIII (1.12) bearing a dimethylallyl 

unit and O-prenylated polyanxanthone A (1.13) [29, 30]. 

Three furanoxanthones were obtained from the roots of G. fusca and the 

stem bark of G. dulcis, including garbogiol (1.14), garciniaxanthone D (1.15), and 

subelliptenone C (1.16), whereas three pyranoxanthones, ananixanthone (1.17) and 

nigrolineaxanthones Q and X (1.18 and 1.19), were isolated from the leaves of G. 

nigrolineata [31-33]. The five- and six-membered ring moieties of the six xanthones 

are formed from cyclization of prenyl unit and its adjacent hydroxy group (Figure 1.5). 

Compound 1.14 was found to inhibit α-glucosidase enzyme with IC50 value of 21.2 
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µM, while 1.18 exhibited antibacterial activity against Micrococcus luteus with MIC 

value of 8 µg/mL. 

 

 
Figure 1.6. Xanthones with extended prenyl units (1.20–1.25) from Garcinia plants. 

 

 The extension of C5-prenyl side chain on a xanthone skeleton was found in 

the extracts of Garcinia species, such as cowanol (1.20) with a C10-geranyl 

substituent, garciniacowone H (1.21) bearing a C15-farnesyl unit, and garciniacowone I 

(1.22) substituted by a C20-geranylgeranyl side chain (Figure 1.6) [34]. The three 

phytochemicals were obtained from fractionation of the acetone extract of G. cowa 

leaves and they demonstrated NO (nitric oxide) production inhibition in LPS-induced 

RAW 263.7 macrophage cells and α-glucosidase inhibition with IC50 values in the 

range of 5.8–13.4 µM and 15.4–28.7 µM, respectively. Modification of a geranyl 

functionality was observed in kaennacowanol B (1.23) and fuscaxanthone J (1.24) 

isolated from G. cowa and G. fusca roots via intramolecular cyclization to give furan 

and pyran rings [31, 35], while a metabolite with an uncommon 7-oxo-[2.2.1]-bicyclic 
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system, parvixanthone I (1.25), was obtained from the bark of G. parvifolia (Figure 

1.6) [36]. 

 

Figure 1.7. Rearranged polyprenylated and caged xanthones (1.26–1.34) from 

Garcinia plants. 

 

 Extensive phytochemical studies on the leaves and twigs of G. oligantha 

resulted in discovery of unique xanthones, including dihydro and 

tetrahydroxanthones garoliganthin I (1.26) and garoliganthin H (1.27), as well as (–)-

garoliganthin F (1.28), (–)-garoliganthin G (1.29), (+)-oliganthin T (1.30), and (–)-

garoliganthin B (1.31) featuring structurally rearranged xanthone cores (Figure 1.7). 

The formation of such unprecedented scaffolds in the ring A of 1.28–1.31 was 

biosynthetically proposed by pinacol rearrangement to form 1.28 and 1.29 and an 

oxidative ring cleavage followed by a series of enzyme-catalyzed oxidation and 

hydration reactions and intramolecular cyclization to achieve 1.30 and 1.31 [37, 38].
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 Gambogic acid (1.32), gaudichaudiic acid (1.33), and epi-gambogic acid C 

(1.34), originally exist in G. hanburyi and G. gaudichaudii, represent another class of 

complex modified xanthones with 4-oxo-tricyclo[4.3.1.03,7]dec-8-en-2-one ring system 

containing a highly substituted tetrahydrofuran moiety, so-called caged xanthones 

[28, 39, 40]. Additionally, compound 1.34 also bears a bridged tricyclic ring moiety 

which is derived from an unusual cyclization of geranyl functionality at the xanthone 

skeleton (Figure 1.7). Cytotoxic evaluation showed that 1.33 was active against 

P388/DOC and Messa cell lines with IC50 values of 3.4 and 3.8 µg/mL. Moreover, 

pharmacological study revealed that 1.32 was capable to induce apoptosis, reverse 

multidrug resistance of cancer cells, inhibit cell proliferation, and anti-angiogenic 

activities and it has been completed a phase IIa clinical trial in China for patients with 

lung, colon, and renal cancers. 

A xanthone possessing an unusual α,β-unsaturated-γ-lactone unit, 

garcinexanthone F (1.35), was obtained from G. xanthochymus bark with its 

scavenging potential against DPPH and OH radical at IC50 values of 22.3 and 1.2 µM 

[41]. Garciduol A (1.36), isolated from the stem bark of G. dulcis, was found to be a 

trioxygenated xanthone connected with 2,4,6-trihydroxybenzophenone [33]. The 

isolation of schomburgkixanthone (1.37) from G. schomburgkiana twigs and 

garmoxanthone (1.38) and garcinoxanthone B (1.39) from the bark and pericarps of G. 

mangostana revealed the existence of bixanthone structures, the coupled xanthones 

via C–C or C–O bond formation (Figure 1.8) [42-44]. Compound 1.38 significantly 

inhibited the growth of MRSA ATCC 43300 and CGMCC 1.12409 strains with MIC 

values of 3.9 µg/mL and was moderately active against Vibrio strains with MIC values 

in the range of 15.6–31.2 µg/mL, whereas 1.39 showed NO production inhibition at 

IC50 value of 11.3 µM and suppressed iNOS expression in a concentration-dependent 

curve. 
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Figure 1.8. Unusual substituted xanthones (1.35–1.39) from Garcinia plants. 

 

1.3.2. Depsidones 
This secondary metabolite class contains two benzene rings connected by 

ester and ether bridges to generate 11H-dibenzo[b,e][1,4]-dioxepin-11-one moiety. 

The compound is found in lichens as the main constituents with common structures 

containing methyl groups at C-1, C-9, and/or C-6 and oxygenated substituents at C-3 

and C-8, based on its biosynthetic occurrence via polyketide pathway. However, a 

limited number of depsidones are existed in higher plants which are putatively 

generated from hydroperoxylation reaction of a xanthone carbonyl to form an ester, 

as described in Figure 1.2 [21, 45]. In Garcinia plant, not over than 40 depsidones 

have been discovered with a typical 1,3,6- or 1,3,8-trioxygenated form, together with 

other functionalities, such as hydroxy, methoxy, prenyl, and geranyl moieties. 

Brevipsidone (1.40) is the simple depsidone structure obtained from the stem bark of 

G. brevipedicellata with only hydroxy and methoxy groups attached to the skeleton 

[46]. A depsidone with unusual methyl groups, polyanthadepsidone (1.41), was 
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isolated from G. polyantha leaves, as methylated depsidones were commonly found 

in lichen materials (Figure 1.9) [29].  

 

 

Figure 1.9. Depsidones and its derivatives (1.40–1.51) from Garcinia plants. 

 

Six prenylated depsidones including those with modified prenyl units, 

garcinisidone (1.42), paucinervin Q (1.43), oliveridepsidones A–C (1.44–1.46), and 

garcinisidone D (1.47), were reported from four Garcinia species [47-50]. From the 

twigs of G. parvifolia, geranylated depsidones parvifolidones A and B (1.48 and 1.49) 

were well characterized (Figure 1.9) [51]. Biological activity studies demonstrated that 
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1.43 was cytotoxic against HL-60 and Caco-2 cancer cells with IC50 values of 3.1 and 

6.8 µM, while 1.47 was found to inhibit Eipstein–Barr virus early antigen (EPV-EA) 

activation induced by TPA with IC50 value of 360 mol ratio/TPA without significant 

cytotoxicity against Raji cells, which was better than positive control β-carotene.  

Pucinervin B (1.50), isolated from the stems of G. paucinervis, was identified 

as a pseudodepsione with two aromatic rings connected by ether linkage [50]. In 

addition, depside 2-O-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxypehnylacetic acid (1.51) 

was isolated from the pericarps of G. mangostana (Figure 1.9) [52]. This type of 

compound is considered the precursor of depsidones, characterized by two or more 

phenolic rings linked by an ester bond. Unfortunately, these two substances were 

reported to have no biological activities. 

 

1.3.3. Biphenyls 
 Among secondary metabolites structurally elucidated from the genus 

Garcinia, biphenyl is one of those having small structures with two aromatic rings 

linked by C-C bond and substituted by the same functional groups as xanthone and 

depsidone, including hydroxy, methoxy, and prenylated derivatives. Compared to 

depsidone, this class of compound is widespread to various Garcinia plants with 

more than 50 structures. Phytochemical investigation on the stems of G. speciosa 

resulted the isolation of two simple biphenyls garcibiphenyl C (1.52) and garciosine A 

(1.53), together with garciosine B (1.54) bearing methylenedioxy unit formed by an 

oxidative ring closure of hydroxyl phenol group and adjacent methoxy substituent 

(Figure 1.10) [53]. A biphenyl with an ester unit, 3-methoxy-5-methoxycarbonyl-4-

hydroxy-biphenyl (1.55), was identified from G. oligantha [54].  
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Figure 1.10. Biphenyls (1.52–1.67) from Garcinia plants. 

 

 A series of prenylated biphenyls were obtained from the twigs of G. 

bracteata and the stems of G. lancilimba, including bractebiphenyls B (1.56) and A 

(1.57) and garcilancibiphenyls A (1.58) [55, 56]. Biphenyls featuring furan and pyran 

units, including oblongifoliagarcinines C (1.59) and D (1.60), multibiphenyls B (1.61) 

and C (1.62), bractebiphenyl C (1.63), 2,2-dimethyl-3,5-dihydro-7-(4-

hydroxypehnyl)chromane (1.64), garciosine C (1.65), and 2-isopropenyl-6-methoxy-7-

hydroxy-(4-hydroxyphenyl)-dihydrobenzofuran (1.66), have been reported from five 

Garcinia species [53, 56-59]. Dibenzofuran paucinervin C (1.67) was obtained from the 
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leaves of G. paucinervis [60]. This compound is naturally formed via an 

intramolecular cyclization of hydroxyl group at either C-2 or C-2ʹ and aromatic 

carbon at opposite position [61]. 

 Bioactivities study revealed that compounds 1.52–1.54 and 1.65 had anti-

HIV-1 effect against ΔTat/RevMC99 virus in 11A2 cells with EC50 values of 14.2–56.3 µM, 

without significant cytotoxicity on the cells. Compound 1.55 showed potent 

cytotoxicity against SHSY5Y, A549, and MCF-7 cancer cells at IC50 values of 4.8–7.1 

µM, while 1.56 and 1.57 had cytotoxic effects against SHSY5Y and MCF-7 cells with 

IC50 values lower than 10 µM. Biphenyls 1.63 was cytotoxic against five cancer cells, 

including NB4, A549, SHSY5Y, PC3, and MCF-7, whereas 1.64 showed cytotoxic effects 

on NB4, SHSY5Y, and MCF-7 with IC50 values less than 10 µM. Compounds 1.58, 1.61, 

1.62, and 1.66 displayed anti-rotavirus activity on rotavirus infected to MA104 cells 

with EC50 values of 10.9–17.6 µM without any cytotoxicity against the cells (CC50>125 

µM). 

 

1.3.4. Benzophenones 
Biosynthetically, benzophenone is categorized as a xanthone intermediate 

composed by two aromatic rings connected via carbonyl linkage, so-called 

diarylketone. Benzophenones appear as one of major Garcinia phytochemicals in 

two forms, which are basic benzophenone with unmodified aromatic rings (Figure 

1.11) and polyprenylated benzophenone (PPB)/benzoylphloroglucinol (PPBP) 

possessing highly rearranged prenyl or geranyl side chains at the ring A of 

phloroglucinol backbone (Figure 1.12). The latter form commonly features a 

bicyclo[3.3.1]nonane-2,4,9-trione moiety or more complex cyclized derivatives 

attached to the 13,14-dihydroxylated benzoyl unit (B-ring), resulting diverse chemical 

architectures and many of which showed pharmacological potentials, especially as 

anticancer agent [24]. 
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Figure 1.11. Simple benzophenones (1.68–1.73) from Garcinia plants. 

 

Maclurin (1.68) and 2,3ʹ,4,5ʹ-tetrahydroxy-6-methoxybenzophenone (1.69) 

are two simple oxygenated benzophenones and garcihombrianone (1.70) is a 

benzophenone bearing benzoyl unit which is the first report of its appearance in the 

genus Garcinia. These compounds were reported from the leaves and twigs of G. 

multiflora and the roots of G. hombroniana [27, 62]. Two prenylated and geranylated 

benzophenones, garciosone B (1.71) and gakolanone (1.72), were successfully 

isolated from G. speciosa and G. kola [53, 63], while garcimangosone D (1.73), a 

benzophenone glycoside, was identified from the fruit hulls of G. mangostana (Figure 

1.11) [64]. 

Four PPBs-class compounds were characterized from G. multiflora and G. 

indica, including garciniagifolone A (1.74), garcinielliptone GC (1.75), garcinol (1.76), 

and symphonone H (1.77) (Figure 1.12). Compound 1.75 is classified to be a type-A 

PPB derivative with its benzoyl unit at C-1 of the phloroglucinol skeleton and 1.76 is 

identified as a type-B PPB with benzoyl ring linked to the C-3. Further cyclization of 

type-A yields a PPB having an adamantyl skeleton as compound 1.74, while oxidative 

coupling between hydroxyl group at C-2 and aromatic carbon at C-16 in type-B 

constructs a γ-pyrone ring as compound 1.77 [27, 28].  
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Figure 1.12. Polyprenylated benzophenones (1.74–1.82) from Garcinia plants. 

 

Two unusual PPBs containing unprecedented imine functionality at C-10, 

garciyunnanimines A and B (1.78 and 1.79), were identified from the chemical 

investigation of the whole parts of G. yunnanensis and were the first occurrence of 

natural PPBs class with such moiety [65]. PPBs with more complex polycyclic system 

were observed in garcimulin B (1.80) featuring a caged 

tetracyclo[5.4.1.11,5.09,13]tridecane on the phloroglucinol skeleton [66], as well as (–)-

garmultin A (1.81) composed by two coupled 2,11-dioxatricyclo[4.4.1.03,9]undecane 

and tricyclo[4.3.1.03,7]decane cage structures and its precursor, (–)-garmultin C (1.82). 

The isolated compounds were characterized from the leaves and twigs of G. 

multiflora [67]. 
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All PPBs compounds described above showed anticancer activities, including 

compounds 1.74, 1.75, 1.77, and 1.80–1.82 which displayed cytotoxic properties 

against five cancer cells (SMMC-7721, A-549, HL-60, MCF-7, and SW480) with IC50 

values ranging from 1.8 to 17.4 µM, while 1.78 and 1.79 were cytotoxic against Hep 

G2, A-549, and RPMI-8226 cancer cells with IC50 values of 1.7–10.1 µM. Compound 

1.82 also demonstrated moderate NO production inhibitory effect in LPS activated 

RAW 264.7 macrophage cells at IC50 value of 15.1 µM and was capable of inducing 

apoptosis in human erythroleukemia (HEL) cells and inhibiting the expression of Fli-1 

protein, an oncogene which plays an important role in carcinogenesis. Moreover, 1.76 

was found to induce apoptosis and cell cycle arrest in leukemia, pancreatic, and lung 

cancer cells, as well as modulate gene expression leading to inhibition of pancreatic 

cells growth. 

 

1.3.5. Flavonoids and biflavonoids 
Flavonoid, a group of polyphenolic compounds, is widespread in most of 

fruits and vegetables and has potent antioxidant and anti-inflammatory capacities. As 

its natural co-occurrence shares the similar building block and biosynthetic pathway 

with xanthone, this phytonutrient also appears in Garcinia plants with several 

flavonoid substructures (Figure 1.13) [68]. Pinocembrin (1.83), a flavanone-class 

compound, along with its glycoside and 3-hydroxy forms, naringenin-7-

rhamnoglucoside (1.84) and aromadendrin-8-C-β-D-glucopyranoside (1.85), were 

identified from three Garcinia species [64, 69, 70]. The flavone apigenin (1.86) and its 

prenylated derivative 5,7,4′-trihydroxy-6-[3″-methylbut-3″-enyl]-flavone (1.87), isolated 

from G. mckeaniana and G. xanthochymus, are the elimination products of a 

flavanone at C-2 and C-3 [71, 72], while hydroxylation of a flavone at C-3 gives a 

flavonol class, such as kaempferol (1.88) and quercetin (1.89) [32].  
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Figure 1.13. Flavonoids (1.83–1.95) from Garcinia plants. 

 

The flavanol (–)-epicatechin (1.90), an addition form of a flavonol, was 

reported in the pericarps of G. mangostana [73]. A 1,2-aryl shift of flavone initiated 

by radical rearrangement yields an isoflavone, such as pauciisoflavone A (1.91) and 

dulcisisoflavone (1.92) which were originally derived from daidzein and genistein and 

isolated from the stems of G. paucinervis and the green fruits of G. dulcis [74, 75]. 

Compound 1.91 was significantly cytotoxic against NB4, SH-SY5Y, and MCF-7 with IC50 

values lower than 10 µM. A chalcone, 4,4′-dihydroxy-2-methoxychalcone (1.93), and 

a dihydrochalcone, loureirin A (1.94), were reported from the seeds of G. dulcis [76]. 

Chalcone is a key intermediate to construct various flavonoid derivatives, including 
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pauciaurone A (1.95), an aurone molecule with five-membered ring in the C-ring of 

flavonoid skeleton [75]. 

It is worth noting that pinocembrin, apigenin, kaempferol, quercetin, 

epicatechin, daidzein, and genistein are common flavonoids that are exist in many 

dietary sources, including propolis, honey, soybean, green and white tea, grape and 

apple fruits, berries, spinach, and broccoli and they are considered as a basic 

framework to yield various flavonoid structures in genus Garcinia. They were also 

reported to have broad range of therapeutic potentials for cancer therapy, 

inflammatory treatment, immune booster, and other degenerative diseases 

treatment, including diabetes and Alzheimer’s disease [77]. 

Enzymatic coupling reaction of two or more flavonoids lead to the 

formation of a polymer of flavonoid, such as biflavonoid or flavonoid dimer, trimer, 

and tetramer, wherein the classification depends on the number of flavonoid 

molecules connected via C-C and/or C-O-C bonds (Figure 1.14). A previous study 

showed that a biflavonoid fraction containing morelloflavone (1.96), volkensiflavone 

(1.97), and amentoflavone (1.98) from G. madruno extract exhibited potent 

atheroprotective activity for cardiovascular diseases treatment by lowering the 

circulation level of cholesterol and lipid peroxidation product [78]. These three 

flavonoid dimers are commonly isolated from the polar part of many Garcinia 

species in large amounts. Paucinervin K (1.99) is a flavanone-chromone dimer 

isolated from the leaves of G. paucinervis [79]. Dulcisbiflavonoid B (1.100), isolated 

from G. dulcis green branches, is a prenylated biflavonoid which is rarely found in 

nature, while the other two prenylated analogs which are not described in this 

section, dulcisbiflavonoids A and C, were also isolated from the same species [80]. 
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Figure 1.14. Flavonoid dimers and trimers (1.96–1.104) from Garcinia plants. 

 

A flavonol dimer and trimer, proanthocyanidin A2 (1.101) and procyanidin 

C1 (1.102), were reported from the water-soluble fractions of pericarps of G. 

mangostana. The two molecules are obtained from the polymerization of monomer 

epicatechin and classified to be a group of proanthocyanidin or condensed tannin. 

Compound 1.101 showed antioxidant and α-glucosidase inhibitory activities with IC50 

values of 11.6 and 3.5 µM, respectively [52, 81]. A biflavonol and flavanone trimer 
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coupling with a trihydroxyxanthone, garcineflavonol A (1.103) and garcineflavanone A 

(1.104), were successfully characterized from the stem bark of G. atroviridis and both 

compounds were linked via ether C-O-C bonds. Compound 1.103 displayed AChE 

and BChE inhibitions with IC50 values of 14.0 and 14.5 µg/mL, while 1.04 selectively 

inhibited AChE enzyme with IC50 value of 28.5 µg/mL [82]. 

 

1.3.6. Terpenoid quinones 
Most of terpenoid quinones isolated from Garcinia plants are categorized as 

a group of fat-soluble vitamin E molecules, including tocotrienol (with unsaturated 

isoprene unit) and tocopherol (with saturated isoprene unit) derivatives. These 

constituents are naturally occurred from the building block homogentisic acid, a 

derivative of 4-hydroxypehyl-pyruvic acid, which is subsequently involved in 

alkylation reaction with phytyl diphosphate containing four isoprene unit and 

followed by decarboxylation and cyclization to form a δ-tocotrienol, while reduction 

isoprene double bonds gives a δ-tocopherol. Methylation on both compounds by 

SAM produces the other three derivatives which are defined based on the number 

and position of methyl units attached to the aromatic part, including α- (methylated 

at C-5, C-7, and C-8), β- (methylated at C-5 and C-8), and γ- (methylated at C-7 and 

C-8) forms [19]. 

Phytochemical investigation of the stem bark of G. virgata led to the 

purification of δ-tocotrienol (1.105), β-tocotrienol 2,8-dimethyl-2-[(3E,7E)-4,8,12-

trimethyldeca-3,7,11-trienyl]-5-formylchroman-6-ol (1.106), and γ-tocrotrienol 2,8-

dimethyl-2-[(3E,7E)-4,8,12-trimethyldeca-3,7,11-trienyl]-7-formylchroman-6-ol (1.107) 

(Figure 1.15) [83]. Meanwhile, 1-dotriacontanol (1.108), a metabolite isolated from G. 

multiflora, is formed via dihydropyran ring opening of α-tocopherol initiated by 

enzymatic radical reaction [84].  
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Figure 1.15. Terpenoid quinone derivatives (1.105–1.113) from Garcinia plants. 

 

Coupling reaction of two terpenoid quinones resulted the formation of 

various dimer products, including δ,δ-bi-O-amplexichromanol (1.109) and  δ,γ-

biamplexichromanol (1.110) with ether and C-C linkages on the chroman moieties, 

while linkage of two δ-tocotrienol derivatives via ester and peroxyl ester bonds at 

the side chains gives δ,δ-biamplexichromanoate A (1.111) and δ,δ-amplexichromanol 

peroxide (1.112). These four tocotrienol dimers were reported from the stem bark of 

G. amplexicaulis. In addition, a C-C bond formation of two δ-tocotrienol derivatives 

at methyl group of C-8 generates nigrolineaquinone B (1.113) and its putative 
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biosynthesis pathway has been proposed by A. Raksat et. al., 2019. Compounds 

1.109–1.112 were significantly active to inhibit lipid peroxidation enzyme with IC50 

values ranging from 1.7 to 9.9 µM [85]. 

 

1.3.7. Phloroglucinols 
From acetate biosynthesis pathway, many polyketide-derived natural 

products are formed, including benzenetriols, well-known as phloroglucinols, which 

are constituted from a series of coupled acetyl CoA/malonyl CoA units. 5,7-

dihydroxy-2,6,8-methylchromone (1.114) and 2,3-dihydrochromone derivative (1.115), 

isolated from the pericarps of G. mangostana, are two examples of phloroglucinol 

compounds derived from five and six acetyl CoA/malonyl CoA precursors which are 

involved in intramolecular cyclization and enolization to form a phloroglucinol 

skeleton and second cyclization to generate a γ-pyrone moiety. In addition, a 

chromone glycoside, eucryphin (1.116), and a chromone dimer, paucinervin R (1.117), 

were obtained from G. mangostana and G. paucinervis (Figure 1.16) [52, 76, 86]. 

Three metabolites 4-geranyl-2-(2′-methylpropionyl)-phloroglucinol (1.118), 

dauphinol F (1.119) and dauphinol C (1.120) isolated from the roots of G. 

dauphinensis are phloroglucinol derivatives containing geranyl side chains, as well as 

isobutyryl and 2-metylbutyryl units derived from precursor L-valine and isoleucine 

amino acids. An intramolecular cyclization of geranyl moiety generates dauphinol A 

(1.121), 3ʹ-methylhyperjovinol B (1.122), empetrikarinol B (1.123), and 

empetrifranzinan C (1.124) [87].  

Garcicowin A (1.125) from G. cowa and garsubelone B (1.126) and 

garsubelone A (1.127) from G. subelliptica represent polyprenylated phloroglucinols. 

Compound 1.127 is the first report of a phloroglucinol constituent possessing an 

unprecedented 6/6/6/6/6/6/6 heptacyclic ring system derived from its monomer 

1.126. Cytotoxic evaluation showed that compounds 1.118–1.121 and 1.123 
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inhibited the growth of A2780 ovarian cancer cells with IC50 values of 4.5–16.4 µM, 

while 1.126 was cytotoxic against HeLa and HepG2 cancer cells with IC50 values of 

6.0 and 7.3 µM, respectively. In addition, metabolites 1.118–1.122 displayed 

significant anti-plasmodial activity against P. falciparum with IC50 values of 4.7–14.1 

µM [88, 89]. 

 

 

Figure 1.16. Phloroglucinol derivatives (1.114–1.127) from Garcinia plants. 

 

1.3.8. Triterpenoids 
 Triterpenoid, a mevalonate-derived compound with 30 carbon atoms on the 

skeleton, is one of major non-phenolic substances that can be found in Garcinia 
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species. Two farnesyl pyrophosphate (FPP) containing C15 building block each 

incorporate through a series of enzymatic reaction, including electrophilic addition, 

proton and carbon rearrangements, and hydration to form squalene intermediate. 

This precursor is subsequently cyclized to generate various triterpenoid structures 

which mostly feature tetracyclic and pentacyclic ring system [19]. 

 

 
Figure 1.17. Tetracyclic triterpenoids (1.128–1.138) from Garcinia plants. 

 

 Lanosta-8,25-en-3β-ol (1.128), garcinielliptones Q (1.129), and 

garcihombronane D (1.130), isolated from three Garcinia species [90-92], are classified 

to be a lanostane-type structure which is considered to be a basic parent for other 

triterpenoid derivatives. The formation of a methylene bridge at C-9 and C-10 gives a 

cycloartane as in 23-acetoxy-mangiferonic acid (1.131) and mangiferolic acid (1.132) 
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[93]. An euphane triterpene from G. eugenifolia roots, euphadienol (1.133), differs 

from lanostane only in the orientation of methyls C-18 and C-30 [94], while the 

migration of methyl groups at C-13 and C-14 of lanostane generates a 

friedolanostane structure, such as (22Z,24E)-9α-hydroxy-3-oxo-17,13-friedolanosta-

12,22,24-trien-26-oic acid (1.134), (22Z,24E)-3-oxo-17,14-friedolanosta-8,14,22,24-

tetraen-26-oic acid (1.135), and (22Z,24E)-9α-hydroxy-3-oxo-13α,30-cyclo-17,13-

friedolanosta-22,24-dien-26-oic acid (1.136) from the bark of G. celebica [47]. Steroids 

β-sitosterol (1.137) and stigmasterol (1.138) are the most common phytochemicals 

found not only in genus Garcinia, but also in other higher plants as modified 

tetracyclic triterpenoids lacking methyl units at C-4 and C-14 (Figure 1.17). 

 

 
Figure 1.18. Pentacyclic triterpenoids (1.139–1.143) from Garcinia plants. 

 

Pentacyclic triterpenoid (Figure 1.18) consists five ring system with the new 

ring E formed via cyclization of the side chain at ring D of tetracyclic triterpenes. 

Betulin (1.139), betulinic acid (1.140), β-amyrin (1.141), messagenic acid (1.142), and 

2β-hydroxy-3α-O-caffeoyltaraxar-14-en-28-oic acid (1.143) are the examples of 

pentacyclic lupane and oleanane triterpenoids. The migration of one of methyl 
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groups at C-4 to C-5 and C-20 to C-19 allows the formation of friedelane and ursane 

types, respectively, as in endodesmiadiol (1.144), canophyllol (1.145), canophyllal 

(1.146) and α-amyrin (1.147) [87, 95-97]. 

Cycloartane 1.131 displayed melanin deposition inhibition with IC50 values 

of 19.4 µM by downregulated the expression of tyrosinase gene. The cholinesterase 

inhibition of compounds 1.140 and 1.143 was reported against AChE and BChE 

enzymes with IC50 values in the range of 10.6–24.2 µM, while 1.139 selectively 

inhibited AChE activity with IC50 value of 28.5 µM. Three friedelanes 1.144–1.146 

showed anti-plasmodial activity on P. falciparum W2 strain with IC50 values of 13.0–

18.2 µM. The combination of 1.141 with cisplatin was capable to induce apoptosis 

and cell cycle arrest, mediate ROS formation in NTUB1 human bladder carcinoma 

cells, and reduce the side effect and drug resistance of cisplatin. Oleanane glycoside 

1.142 showed apoptosis induction of HL-60 human leukemia cell line at a 

concentration of 4.0 µM and caused the cell cycle arrest at sub-G1 stage. 

 

1.3.9. Miscellaneous compounds 
 (−)-Hydroxycitric acid (1.144), a citric acid from G. cambogia fruits, was found 

to block fat accumulation and this substance have been marketed as a weight loss 

supplement (Figure 1.19) [18]. Two phenolic glycosides, (2R)-1-O-4-hydroxy-benzoyl-

3-O-α-d-glucuronosyl glycerol (1.145) and garcinophenylpropanic acid (1.146) and 

chlorogenic acid (1.147) were obtained from three Garcinia species [52, 98, 99]. 

Angelicoin B (1.148) and 8-hydroxy-6-methoxy-3-pentylisocoumarin (1.149) isolated in 

the twigs of G. xanthochymus the stem bark of G. dulcis are classified as isocoumarin 

derivatives which are constructed through acetate pathway [33, 100]. In some cases, 

isocoumarin metabolites bearing a phenyl ring at C-3, instead of alkyl chains, were 

recorded and their biosynthesis is proposed to be similar with that of flavonoid. This 

class of compound is abundant in microbes, such as fungi, bacteria, and lichens, 
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while it is limited in some higher plant families, including Leguminocease, Asteraceae, 

Moraceae, and Umbelliferae [101]. 

 

 
Figure 1.19. Miscellaneous compounds (1.144–1.156) from Garcinia plants. 

 

 A benzofuran glycoside, 2R,3R-2,3-dihydro-2-(4ʹ-hydroxy-3ʹ-methoxyphenyl)-3-

(glucosyloxymethyl)-7-methoxy-benzofuran-5-propanol (1.150) was reported from 

the pericarps of G. mangostana [81]. Anthraquinones vismiaquinone A (1.151) and 3-

geranylemodin (1.152) were isolated from the bark of G. schomburgkiana and they 

shared the same biosynthesis pathway with isocoumarin and phloroglucinol [102]. 

Two diterpenes, cembrene A (1.153) and 2-cyclohexene-γ,η,2,6,6-pentamethyl-1-

nonanol (1.154), and two megastigmane sesquiterpenes, dihydrophaseic acid (1.155) 
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and 4-O-sulpho-β-d-glucopyranosyl abscisate (1.156), were identified from the leaves 

of G. paucinervis and the pericarps of G. mangostana, respectively [52, 60, 81]. 

 

1.4. Cytotoxic evaluation of natural products for preliminary anticancer 
screening 
The MTT assay is one of the most widely used biological tests for preliminary 

screening of both natural products and synthetic compounds as an anticancer drug 

candidate. The colorimetric based assay is readily performed on a wide range of cell 

lines and measure the number of living cells. In this assay, NADH or NADPH produced 

by mitochondrial dehydrogenase enzymes inside the living cells reduce the 

tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) into a 

colored formazan product at 37oC. The amount of formazan formed is directly 

proportional to the number of viable cells present in the culture (Figure 1.20). IC50 

value is the concentration of a tested sample that is required to cause the death of 

50% of the cells. This value is commonly used to define the degree of cytotoxicity of 

the substance. The lower the value, the more cytotoxic is the anticancer drug 

candidate [103, 104]. 

 
Figure 1.20. Formazan formation through NADH-catalyzed MTT reduction in live cells. 
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1.5. Anti-inflammatory evaluation of natural products on COX enzymes 
inhibition 
Several evidences were reported that severe inflammation can induce 

apoptosis inhibition as well as increase angiogenesis, genome damage, and cellular 

proliferation which are typical in carcinogenesis. During the chronic symptom, pro-

inflammatory molecules such as cytokines, reactive oxygen species (ROS), and 

inducible nitric oxide synthase (iNOS) are upregulated causing the exponential growth 

of malignant cells [105]. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) in 

inflammation and cancer treatment have been reported since significant indications 

were found that NSAIDs can decrease primary and recurrent cancer incidence. The 

long term-administration of a NSAID, aspirin, may lower the incidence of esophageal, 

colorectal, lung, breast, and bladder cancers and the use of other NSAIDs, such as 

sulindac, ibuprofen, and piroxicam, decreases the risk of existing cancer development 

[106]. Therefore, eliminating severe inflammation is one of strategies in cancer 

prevention and the cytokine molecules involved in the process can serve as 

biomarker for therapy decision.  

In this dissertation, we focus on searching anti-inflammatory agent from 

natural products to inhibit COX enzymes activity. Cyclooxygenase (COX), also known 

as prostaglandin-endoperoxide synthase (PGHS), is key enzyme comprising two main 

isoforms, which are COX-1, activated and expressed with constant level by 

physiological and pathological stimuli, and COX-2, a highly inducible enzyme by pro-

inflammatory stimuli [107]. The COX enzymes catalyze the biotransformation of 

arachidonic acid (AA), a lipid-derived substance released as an intracellular 

messenger when body tissues get injured or infected, to prostaglandins (PGs) which 

are responsible as mediators to inflammation reactions in damaged tissues (Figure 

1.21) [108]. Nevertheless, uncontrolled biosynthesis of the PG metabolites may also 

initiate cancer cell development. For example, COX derived prostaglandin E2 (PGE2), 
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a key mediator in acute inflammation, can induce cancer cells growth by binding its 

receptor and trigger the signal pathway controlling cell proliferation, migration, 

apoptosis, and angiogenesis and COX-2 expression was found being elevated in many 

human cancers. Advanced research in regulation of COX enzymes have been 

conducted to inhibit the enzyme activities (Figure 1.21) [105, 109]. 

 
Figure 1.21. Prostaglandins production via arachidonic acid metabolism and a strategy 

in COX activity inhibition. 

 

The COX inhibition assay is commonly used to screen bioactive compounds 

from nature or synthetic products as anti-inflammatory agents. The reaction in the 

assay starts by adding arachidonic acid to the mixtures of COX enzyme, sample, and 

other reagents. The concentration of PGE2 generated from the AA transformation by 

COX enzymes is quantified using prostaglandin E2 (PGE2) EIA kit, a competitive 

immunoassay for quantitative determination of PGE2 in biological fluids. PGE2 in the 

sample mixture is bound by either PGE2 monoclonal antibody or alkaline 

phosphatase enzyme in competitive manner [110]. A chromogenic pNPP substrate is 

added to react with conjugated enzyme (alkaline phosphatase–PGE2) during second 

incubation. The absorbance of final reaction mixture is measured at 405 nm using 

UV/Vis spectrophotometer. Sample with high PGE2 antigen concentration results in 

lower signal intensity since less substrate react with bound enzyme (blue color) to 
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produce p-nitrophenol (yellow color). This implies that the intensity of the yellow 

color is inversely proportional to the PGE2 concentration in the standard or samples 

(Figure 1.22) [111, 112]. 

 
Figure 1.22. Reaction between pNPP and alkaline phosphatase enzyme to produce p-

nitrophenol. 

 

1.6. Objectives of the research 
In agreement with the above data, exploring phytochemicals from Garcinia 

plants is of high importance to discover and identify novel compounds with 

promising biological activities, particularly as anticancer candidates. In this work, three 

Garcinia species collected from Indonesia, including G. cylindrocarpa, G. picrorhiza, 

and G. tetrandra, will be studied since there have been a few reports conducted in 

terms of their secondary metabolite isolation, with the main objectives of research as 

follows: 

1. To isolate the chemical constituents from the stems of Garcinia 

cylindrocarpa and the stem bark of Garcinia picrorhiza and Garcinia 

tetrandra; 

2. To elucidate the chemical structure of isolated compounds by spectroscopic 

analysis, including UV-Vis, FT-IR, 1D (1H and 13C) and 2D (COSY, HSQC, and 

HMBC) NMR, and HRMS; 

3. To evaluate the cytotoxic properties of the isolated compounds against five 

human cancer cells (KB, HeLa S-3, HT-29, MCF-7, and Hep G2) and anti-

inflammatory activity towards COX-1 and COX-2 enzymes inhibition. 
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Chapter II 
Phytochemical and biological investigation of the stems of Garcinia 

cylindrocarpa 
 

2.1. Botanical and chemical aspects of G. cylindrocarpa 
 

  
Figure 2.1. The whole plant, leaves, and fruit of Garcinia cylindrocarpa. 

 

Family   : Clusiaceae 

Genus   : Garcinia 

Species  : Garcinia cylindrocarpa 

Common name : Kogbirat 

Local name  : Kogbirat (in Maluku Island) 

 

Garcinia cylindrocarpa Kosterm is a woody plant and native to Maluku 

Islands, Indonesia (Figure 2.1). In its place of origin, the species is found in lowland 

tropical rainforest at altitude of 100 m. It is a medium to large evergreen tree and 

reaching heights of 15–20 meter with a girth of 20–30 cm. Its leaves are broadly 

elliptic, and its fruit is turning pink when ripe, which contain 5–6 seeds inside. The 

ripe fruit is edible but acidic. This species, locally named as Kogbirat, has been used 

as a traditional medicine for fever remedy [13, 15]. The first report on the chemical 

constituents of G. cylindrocarpa revealed the presence of three pyranoxanthones, 
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cylindroxanthones A–C (2.1–2.3), from the methanol extract of its stem bark (Figure 

2.2). The cytotoxic activity of three compounds was evaluated against five human 

cancer cell lines (KB, HeLa S-3, HT-29, MCF-7, and Hep G2). The results showed that 

cylindroxanthone A (2.1) exhibited a potent cytotoxicity against KB cells with IC50 

value of 2.36 µM, while the others showed moderate to inactive against the five 

cancer cells [13]. 

 

 
Figure 2.2. Cylindroxanthones A‒C (2.1–2.3) from the stem bark of G. cylindrocarpa. 

 

As a continuation of our research interest to explore bioactive compounds 

from G. cylindrocarpa, we describe herein the isolation and structure elucidation of 

four new xanthones, cylindroxanthones D–G (GC1–GC4), and two new biphenyls, 

cylindrobiphenyls A and B (GC5 and GC6), along with 28 known compounds from the 

stems of this plant. The cytotoxic evaluation of the isolated compounds against five 

human cancer cell lines were also reported. 
 

2.2. Experimental 
2.2.1. General Experiment Procedures 

Melting points were determined by Fischer-Johns melting point apparatus. 

Optical rotations were measured on a Jasco (Oklahoma City, OK, USA) P-1010 

polarimeter. IR data were obtained using a Nicolet (Thermo Scientific, Waltham, MA, 

USA) 6700 FT-IR spectrometer using KBr discs. UV–visible absorption spectra were 

obtained on a Shimadzu (Kyoto, Japan) UV-2550 UV–vis spectrometer. NMR spectra 
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were recorded on a Bruker 400 AVANCE spectrometer (400 MHz for 1H and 100 MHz 

for 13C) in CDCl3 and acetone-d6. HRESIMS spectra were recorded using a Bruker 

MICROTOF model mass spectrometer. Silica gel 60G (Merck), silica gel 70–230 mesh 

(Merck), and Sephadex LH-20 (GE Chemical Corporation) were used for column 

chromatography. Radial chromatography (Chromatotron model 7924 T, Harrison 

Research, Palo Alto, California, USA) was carried out on silica gel 60 GF254 containing 

gypsum (Merck). For TLC analysis, precoated silica gel 60 GF254 (0.25 mm; Merck) was 

used. 

 

2.2.2. Plant Material 
The stems of Garcinia cylindrocarpa were collected from Saumlaki Forest, 

Southeast West Maluku Islands, Indonesia. The plant was identified by Mrs. Rismita 

Sari (a botanist at Bogor Botanical Garden, Indonesia). A voucher specimen (No. 630) 

was deposited at the Herbarium Bogoriense, Bogor Botanical Garden, Indonesia. 

 

2.2.3. Extraction and Isolation 
The air-dried stems of G. cylindrocarpa (3.0 kg) were ground into powder and 

extracted by maceration at room temperature with MeOH (3 x 15 L) for three days. 

The solvent was evaporated under reduced pressure to obtain a residue (31.4 g). The 

crude extract was then suspended in distilled H2O and partitioned with CH2Cl2 and 

EtOAc to afford a CH2Cl2 fraction (6.04 g), an EtOAc fraction (9.23 g), and the 

remaining aqueous solution. The CH2Cl2-soluble fraction was subjected to VLC on 

silica gel (125.0 g) using a gradient of hexanes:EtOAc (90:10–0:100) to obtain nine 

fractions (D1–D9). Fraction D2 (488.8 mg) was chromatographed on Sephadex LH-20 

column (50.0 g) eluted with CH2Cl2:MeOH (1:1, v/v) to yield subfractions D2.1–D2.3. 

Subfraction D2.1 (93.2 mg) was separated by repeated Sephadex LH-20 CC (50.0 g) 

using CH2Cl2:MeOH (1:1, v/v) to afford compounds GC4 (4.3 mg) and GC7 (4.2 mg). 
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Compound GC8 (16.7 mg) was yielded from subfraction D2.2 (70.4 mg) by separation 

using radial chromatography (chromatotron) with hexanes:EtOAc (95:5) as eluent. 

Subfraction D2.3 (112.0 mg) was separated by repeated chromatotron eluted with 

hexanes:EtOAc (95:5) to afford compounds GC9 (3.1 mg), GC10 (2.0 mg), GC11 (2.6 

mg), GC12 (9.3 mg), GC13 (1.5 mg), and GC14 (4.4 mg).  

Fraction D3 (270.3 mg) was loaded to Sephadex LH-20 column (50.0 g) eluted 

with CH2Cl2:MeOH (1:1, v/v) to provide three subfractions (D3.1–D3.3). Compound 

GC1 (2.7 mg) was obtained by purification of subfraction D3.1 (54.6 mg) using 

chromatotron with hexanes:CH2Cl2 (25:75) as eluent. Fraction D4 (229.6 mg) was 

chromatographed using Sephadex LH-20 column (50.0 g) with CH2Cl2:MeOH (1:1, v/v) 

as eluent to give four subfractions (D4.1–D4.4). Compounds GC15 (11.6 mg) and 

GC16 (1.4 mg) were yielded from subfraction D4.3 (56.5 mg) using chromatotron 

eluted with hexanes:EtOAc (85:15). Subfraction D4.4 (29.1 mg) was purified by 

chromatotron using hexanes:CH2Cl2 (25:75) as eluent to obtain compound GC3 (1.2 

mg). Fractionation of fraction D5 (202.1 mg) using Sephadex LH-20 CC (50.0 g) with 

CH2Cl2:MeOH (1:1, v/v) as eluent was performed to obtain subfractions D5.1–D5.4. 

Compound GC17 (6.0 mg) was yielded from subfraction D5.1 (67.4 mg) using 

chromatotron eluted with hexanes:EtOAc (85:15), while compound GC18 (1.7 mg) 

was obtained from subfraction D5.2 (42.7 mg) using the same technique with 

hexanes:acetone (75:25) as eluent.  

Fraction D6 (581.0 mg) was subjected to Sephadex LH-20 column (50.0 g) 

using solvent system of CH2Cl2:MeOH (1:1, v/v) to obtain subfractions D6.1–D6.6. 

Compounds GC5 (7.2 mg), GC19 (24.7 mg), and GC20 (3.6 mg) were successfully 

afforded from subfraction D6.2 (97.2 mg) using chromatotron with CH2Cl2:MeOH (97:3) 

as eluent. Fractionation of subfraction D6.3 (102.1 mg) was conducted using 

chromatotron with CH2Cl2:MeOH (97:3) as eluent to furnish compounds GC6 (31.1 

mg), GC21 (1.4 mg), and GC22 (1.7 mg). A separation technique using chromatotron 
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was employed to obtain compounds GC23 (7.2 mg) and GC24 (11.6 mg) from 

subfraction D6.4 (45.3 mg) with eluent system of CH2Cl2:MeOH (97:3). Subfraction 

D6.5 (85.4 mg) was applied to chromatotron with CH2Cl2:MeOH (97:3) as eluent to 

give compounds GC25 (14.4 mg) and GC26 (15.5 mg). Compound GC27 (14.0 mg) was 

afforded using chromatotron with hexanes:EtOAc (70:30) as eluent from subfraction 

D6.6 (41.0 mg).  

Fraction D7 (204.3 mg) was separated by Sephadex LH-20 CC (50.0 g) with 

CH2Cl2:MeOH (1:1, v/v) as eluent to obtain five subfractions (D7.1–D7.5). A 

chromatotron technique using eluent system of CH2Cl2:MeOH (97:3) was performed 

to obtain compounds GC28 (1.4 mg) and GC29 (1.7 mg) from subfraction D7.1 (17.2 

mg) and compound GC2 (5.8 mg) from subfraction D7.4 (24.5 mg). The same 

separation technique was conducted to afford compounds GC30 (20.4 mg) and GC31 

(7.6 mg) from subfraction D7.2 (80.8 mg) using hexanes:EtOAc (60:40) as eluent. 

Subfraction D7.3 (56.2 mg) was applied on Sephadex LH-20 CC (25.0 g) with 

CH2Cl2:MeOH (1:1, v/v) as eluent to get compound GC32 (7.7 mg). Finally, fraction D8 

(92.1 mg) was separated using Sephadex LH-20 CC (50.0 g) with CH2Cl2:MeOH (1:1, 

v/v) to obtain compounds GC33 (10.5 mg) and GC34 (18.9 mg). 

 

2.2.4. Cytotoxicity Assay 
Compounds GC1–GC34 were tested to in vitro cytotoxic evaluation against 

KB, HeLa S-3, MCF-7, Hep G2, and HT-29 cancer cell lines using MTT colorimetric 

method as previously described [113]. Doxorubicin was used as the positive control. 

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (Sigma Chemical 

Co., USA) was dissolved in saline to make a 5 mg/mL stock solution. Cancer cells (3 × 

103 cells) suspended in 100 µg/wells of MEM medium containing 10% fetal calf 

serum (FCS, Gibco BRL, Life Technologies, NY, USA) were seeded onto a 96-well 

culture plate (Costar, Corning Incorporated, NY 14831, USA). After 24 h of pre-
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incubation at 37 °C in a humidified atmosphere of 5% CO2/95% air to allow cellular 

attachment, various concentrations of test solution (10 µL/well) were added and 

these were then incubated for 72 h under the above conditions. At the end of the 

incubation, 10 µL of tetrazolium reagent was added into each well followed by 

further incubation at 37 °C for 4 h. The supernatant was decanted, and DMSO (100 

µL/well) was added to allow formazan solubilization. The optical density (OD) of 

each well was detected using a Microplate reader at 550 nm and for correction at 

595 nm. The 50% inhibition concentration (IC50 value) was determined by curve 

fitting. 

 

2.3. Results and discussion 
The CH2Cl2-soluble fraction from the stems of G. cylindrocarpa was subjected 

to various chromatographic methods to afford four new xanthones, 

cylindroxanthones D–G (GC1–GC4), and two new biphenyls, cylindrobiphenyls A and 

B (GC5 and GC6), along with 28 previously described xanthones and biphenyls (GC7–

GC34). The structures of the new compounds were elucidated using extensive 

spectroscopic analyses. The known compounds (Figure 2.3) were identified as 

trapezifolixanthone (GC7) [114], cylindroxanthone A (GC8) [13], 1,2-dihydro-5-

hydroxy-10-methoxy-1,1,2-trimethyl-6H-furo[2,3-c]xanthen-6-one (GC9) [115], 6-

hydroxy-11-methoxy-2,2-dimethyl-3H,7H-pyrano[2,3-c]xanthen-7-one (GC10) [115], 6-

desoxyjacareubin (GC11) [116], 6-desoxyisojacareubin (GC12) [117], 1,6-dihydroxy-5-

methoxy-6,6-dimethylpyrano[2',3':2,3]-xanthone (GC13) [118], pancixanthone B 

(GC14) [119], cylindroxanthone B (GC15) [13], osajaxanthone (GC16) [120], 1,3,5-

trihydroxy-2-prenylxanthone (GC17) [116], α-mangostin (GC18) [121], garciosine A 

(GC19) [53], garciocine C (GC20) [53], 2,3-dihydro-4,7-dihydroxy-2(1-hydroxy-1-

methylethyl)-5H-furo[3,2-b]xanthen-5-one (GC21) [122], 1,3,5-trihydroxy-4-

prenylxanthone (GC22) [117], 2-deprenylrheediaxanthone B (GC23) [123], 1,3,5-
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trihydroxy-4-(3'-hydroxy-3'-methylbutyl)xanthone (GC24) [117], 4',5'-dihydro-1,6,7-

trihydroxy-4',4',5'-trimethyl-furano[2',3':3,4]xanthone (GC25) [124], neriifolone C (GC26) 

[125], 1,3,5-trihydroxyxanthone (GC27) [126], garcimangosxanthone E (GC28) [127], 

11-hydroxy-1-isomangostin (GC29) [128], garcinone D (GC30) [129], cratoxylone 

(GC31) [129], 1,3,7-trihydroxy-2-(3-hydroxy-3-methylbutyl)-9H-xanthen-9-one (GC32) 

[130], 1,3,5,6-tetrahydroxyxanthone (GC33) [128], and 1,3,6,7-tetrahydroxyxanthone 

(GC34) [126] after comparing  their 1H and 13C NMR spectroscopic data with 

previously published data. 

 

2.3.1. Structural elucidation of compound GC1 
Physical and spectroscopic properties of cylindroxanthone D (GC1): Yellow 

needles; mp: 264–266 °C; UV (MeOH) λmax: 328, 260, and 213 nm; IR νmax (KBr): 3295, 

2929, 1657, 1440, and 1255 cm−1; for 1H (400 MHz, acetone-d6) and 13C (100 MHz, 

acetone-d6) NMR spectroscopic data, see Table 2.1; and HRESIMS m/z 311.0937 [M –

 H]¯ (calcd. for C18H15O5, 311.0919). 

Compound GC1 was isolated as yellow needles. The molecular formula was 

deduced as C18H16O5 based on HRESIMS data (m/z = 311.0937 [M – H]¯, calcd. for 

C18H15O5, 311.0919). The UV spectrum showed absorption bands at λmax 328, 260, and 

213 nm, which were characteristic absorbances of a xanthone chromophore. The IR 

spectrum exhibited strong bands at 3295 and 1657 cm-1, assigned the presence of 

hydroxy group and conjugated carbonyl group [117]. The 1H NMR spectrum (Table 

2.1) exhibited resonances of two gem-dimethyl protons at δH 1.39 (each 3H, s, H-4' 

and H-5'), two sets of methylene protons at δH 1.93 (2H, t, J = 6.8 Hz, H-2') and 2.94 

(2H, t, J = 6.8 Hz, H-1'), one aromatic proton at δH 6.15 (1H, s, H-2), and an 

intramolecular hydrogen-bonded hydroxy group at δH 12.73 (1H, s, 1-OH). Moreover, a 

characteristic spin system of a 1,2,3-trisubsituted benzene moiety in ring B were 

observed at δH 7.28 (1H, t, J = 8.0 Hz, H-7), 7.38 (1H, d, J = 8.0 Hz, H-6) and 7.69 (1H, 
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d, J = 8.0 Hz, H-8), which was further corroborated by COSY correlations of H-6/H-7 

and H-7/H-8. The 13C NMR and HSQC experiments displayed 18 carbon signals, 

including two methyls at δC 27.0 (C-4') and 27.0 (C-5'), two methylenes at δC 17.0 (C-

1') and 32.4 (C-2'), four methines at δC 99.9 (C-2), 116.6 (C-8), 121.8 (C-6), and 125.0 

(C-7), nine quaternary carbons at δC 77.3 (C-3'), 101.4 (C-4), 104.2 (C-9a), 122.5 (C-8a), 

146.5 (C-10a), 147.2 (C-5), 155.6 (C-4a), 162.0 (C-1), and 162.7 (C-3), and one carbonyl 

carbon at δC 181.9 (C-9). The 1H and 13C NMR data of GC1 were closely related to 6-

desoxyisojacareubin (GC12), except for the double bond of a pyran moiety in GC12 

was reduced to be dihydropyran unit in GC1. The COSY correlation of H-1'/H-2' and 

the HMBC cross-peaks of H-1' with C-3 (δC 162.7), C-4 (δC 101.4), C-4a (δC 155.6), C-2' 

(δC 32.4), and C-3' (δC 77.3), H-2' with C-4 and C-1' (δC 17.0), and H-4' and H-5' with C-2' 

and C-3' confirmed the presence of this unit which was fused at C-3 and C-4 with an 

ether linkage at C-3 (Figure 2.4). Consequently, GC1 was a dihydro derivative of GC12. 

 

2.3.2. Structural elucidation of compound GC2 
Physical and spectroscopic properties of cylindroxanthone E (GC2): Yellow 

powder; [𝛼]𝐷20+ 8.3 (c 0.50, MeOH); mp: 276–278 °C; UV (MeOH) λmax: 316, 252, and 

206 nm; IR νmax (KBr): 3256, 2900, 1630, 1454, and 1250 cm−1; for 1H (400 MHz, 

acetone-d6) and 13C (100 MHz, acetone-d6) NMR spectroscopic data, see Table 2.1; 

and HRESIMS m/z 327.0895 [M – H]¯ (calcd. for C18H15O6, 327.0869). 

Compound GC2 was isolated as a yellow powder with a molecular formula of 

C18H16O6, as suggested by HRESIMS data (m/z = 327.0895 [M – H]¯, calcd. for C18H15O6, 

327.0869). The 1H NMR data of GC2 were closely related to GC1, except for the 

replacement of the –CH2–CH2– unit in the dihydropyran ring of GC1 with a –

CH(OH)CH2– moiety in GC2 as deduced from the resonances of a set of methylene 

protons at δH 2.87 (1H, dd, J = 20.0, 11.2 Hz) and 3.18 (1H, dd, J = 20.0, 5.2 Hz), an 

oxygenated methine proton at δH 3.92 (1H, dd, J = 11.2, 5.2 Hz), and a hydroxy 
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proton at δH 4.48 (1H, d, J = 5.2 Hz) (Table 2.1). The position of the hydroxyl methine 

proton at C-2' was assigned by HMBC correlations of H-1' to C-2' (δC 69.0) and C-3' (δC 

80.1) and H-4' at δH 1.41 (3H, s) and H-5' at δH 1.35 (3H, s) to C-2' and C-3' (Figure 2.4). 

The Mosher’s method was applied to confirm the absolute configuration at C-2' by 

treating 2 with (S)-MTPACl and (R)-MTPACl [131]. Unfortunately, the NMR spectral 

data of the MTPA esters of GC2 showed a mixture of the diastereomers. Therefore, 

GC2 was a 2'-hydroxy derivative of GC1. 

 

2.3.3. Structural elucidation of compound GC3 
Physical and spectroscopic properties of cylindroxanthone F (GC3): Yellow 

powder; UV (MeOH) λmax: 333, 280, and 238 nm; IR νmax (KBr): 3280, 2910, 1655, 1438, 

and 1263 cm−1; for 1H (400 MHz, acetone-d6) and 13C (100 MHz, acetone-d6) NMR 

spectroscopic data, see Table 2.1; and HRESIMS m/z 267.0305 [M – H]¯ (calcd. for 

C15H7O5, 267.0293). 

Compound GC3 was isolated as a yellow powder with a molecular formula 

C15H8O5 determined by HRESIMS (m/z = 267.0305 [M – H]¯, calcd. for C15H7O5, 

267.0293). The 1H and 13C NMR spectroscopic data were closely related to the 

structure of GC1, except that GC3 possessed characteristic signals of a furan ring 

instead of dihydropyran moiety in GC3. In this respect, the 1D NMR (Table 2.1) and 

HSQC experiments showed resonances of two cis-olefinic protons at δH 7.38 (d, 1H, J 

= 1.6 Hz, H-2')/δC 105.3 (C-2') and 7.87 (d, 1H, J = 1.6 Hz, H-1')/δC 145.9 (C-1') [132]. 

The presence of this furan ring attached at C-3 and C-4 of ring A was further 

supported by COSY correlation of H-1'/H-2' and HMBC cross-peaks of H-1' with C-3 (δC 

161.7), C-4 (δC 109.9), and C-2' and H-2' with C-3 and C-4 (Figure 2.4). 
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2.3.4. Structural elucidation of compound GC4 
Physical and spectroscopic properties of cylindroxanthone G (GC4): Yellow 

needles; mp: 135–136 °C; UV (MeOH) λmax: 344, 281 and 245 nm; IR νmax (KBr): 3327, 

2978, 2929, 1640, 1602, 1455 and 1196 cm−1; for 1H (400 MHz, CDCl3) and 13C NMR 

(100 MHz, CDCl3) spectroscopic data, see Table 2.1; and HRESIMS m/z 385.1291 

[M + H]+ (calcd. for C21H21O7, 385.1287). 

Compound GC4 was obtained as yellow needles. A molecular formula of 

C21H20O7 was suggested by HRESIMS data (m/z = 385.1291 [M + H]+, calcd. for 

C21H21O7, 385.1287). The UV and IR spectra indicated a similar pattern as those of 

xanthone core structures [13]. Comparison of the 1H and 13C NMR data of GC4 with 

those of GC8 [13] showed the replacement of the proton signal of a methoxy group 

in GC8 with that of an aromatic proton at δH 7.40 (1H, s) in GC4 which was assigned 

as H-8 based on its HMBC correlations to C-6 (δC 150.3), C-7 (δC 148.4), C-8a (δC 116.1), 

C-9 (δC 180.2), and C-10a (δC 147.4) (Figure 2.4). From the above evidences and 

comparison with literature data, the structure of GC4 was determined as 

cylindroxanthone G. 

 

2.3.5. Structural elucidation of compound GC5 
Physical and spectroscopic properties of cylindrobiphenyl A (GC5): Pale 

yellow gum; [𝛼]𝐷20 –17.2 (c 0.70, CHCl3); UV (MeOH) λmax: 274 and 213 nm; IR νmax 

(KBr): 3359, 1613, 1510, and 1463 cm−1; for 1H (400 MHz, CDCl3) and 13C (100 MHz, 

CDCl3) NMR spectroscopic data, see Table 2.2; and HRESIMS m/z 269.1190 [M – H]¯ 

(calcd. for C17H17O3, 269.1178). 

Compound GC5 was obtained as pale-yellow gum. Its molecular formula was 

determined as C17H18O3 by HRESIMS measurement at m/z 269.1190 [M – H]¯ (calcd. 

for C17H17O3, 269.1178). The UV absorptions at λmax 274 and 213 nm indicated the 

presence of benzene chromophore [133]. The IR spectrum showed absorption bands 
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of hydroxy group (3359 cm−1) and aromatic ring (1613 cm−1). Comparison of the 1H 

and 13C NMR data with those of GC20 showed that GC5 differed from GC20 in the 

presence of a 2-hydroxy-3,3-dimethylpyran ring instead of a 2-(1,1-dimethyl-1-

hydroxymethyl)dihydrofuran unit, which was characterized by resonances of two 

methyl protons at δH 1.33 (3H, s, H-5'')/δC 24.7 and 1.39 (3H, s, H-4'')/δC 22.4, a set of 

methylene protons at δH 2.75 and 2.95 (each 1H, dd, J = 17.2, 5.2 Hz, H-1'')/δC 26.3, 

one oxygenated methine proton at δH 3.86 (1H, t, J = 5.2 Hz, H-2'')/δC 69.5 and a 

quaternary carbon at δC 76.9 (Table 2.2). Attempts to determine the absolute 

configuration at C-2'' using the same Mosher’s analysis as that of GC2 were also 

unsuccessfully achieved due to a racemic mixture of GC5. 

 

2.3.6. Structural elucidation of compound GC6 
Physical and spectroscopic properties of cylindrobiphenyl B (GC6): Pale 

yellow powder; mp: 101–102 °C; UV (MeOH) λmax: 270, 231, and 206 nm; IR νmax (KBr): 

3364, 1636, 1619, 1500, and 1467 cm−1; for 1H (400 MHz, CDCl3) and 13C (100 MHz, 

CDCl3) NMR spectroscopic data, see Table 2.2; and HRESIMS m/z 245.0827 [M – H]¯ 

(calcd. for C14H13O4, 245.0814). 

Compound GC6 was obtained as a pale-yellow powder. Its molecular formula 

was deduced as C14H14O4 by HRESIMS data (m/z = 245.0827 [M – H]¯, calcd. for 

C14H13O4, 245.0814). The 1H NMR spectroscopic data of GC6 were observed to have 

similar features with those of GC19, except the absence of a methoxy proton signal 

and the replacement of proton signals of 4-subsituted 1-hydroxy-2-methoxyphenyl 

ring with those of a para-disubstituted benzene ring at δH 6.88 (each 1H, d, J = 8.4 Hz, 

H-3'/H-5') and 7.42 (each 1H, d, J = 8.4 Hz, H-2'/H-6') in GC6 (Table 2.2). The COSY 

spectrum showed correlations of aromatic protons H-2'/H-3' and H-5'/H-6' whereas 

the HMBC spectrum showed cross-peaks of H-2' and H-6' with C-4' (δC 155.3) and H-3' 

and H-5' with C-1' (δC 133.9) and C-4' (Figure 2.4). In agreement with the afore-
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mentioned data, the structure of GC6 was unambiguously assigned as 

cylindrobiphenyl B. 

 

 

Figure 2.3. Isolated compounds (GC1–GC34) from the stems of Garcinia 

cylindrocarpa.
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Table 2.2. 1H (400 MHz) and 13C (100 MHz) spectroscopic data of compounds GC5 
and GC6 

Position 
GC5 (in CDCl3) GC6 (in CDCl3) 

δH (J in Hz) δC δH (J in Hz) δC 

1 
 

141.3 
 

137.4 

2 6.60 s 106.0 6.63 d (1.6) 103.2 

3 
 

154.9 
 

152.6 

4 
 

105.8 
 

134.9 

5 
 

154.2 
 

149.5 

6 6.71 s 108.6 6.78 d (1.6) 106.7 

1' 
 

140.7 
 

133.9 

2' 7.51 d (8.0) 127.0 7.42 d (8.4) 128.4 

3' 7.38 t (8.0) 128.8 6.88 d (8.4) 115.7 

4' 7.31 t (8.0) 127.5 
 

155.3 

5' 7.38 t (8.0) 128.8 6.88 d (8.4) 115.7 

6' 7.51 d (8.0) 127.0 7.42 d (8.4) 128.4 

1'' 2.75 dd (17.2, 5.2) 26.3 
  

 
2.95 dd (17.2, 5.2) 

   

2'' 3.86 t (5.2) 69.5 
  

3'' 
 

76.9 
  

4'' 1.39 s 22.4 
  

5'' 1.33 s 24.7 
  

5-OH 
  

5.83 brs 
 

4'-OH 
  

5.04 brs 
 

3-OMe 
  

3.92 s 56.1 

4-OMe     3.93 s 61.2 
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Figure 2.4. Key COSY and HMBC correlations of GC1–GC6. 
 

2.3.7. Cytotoxic activities of the isolated compounds 
Xanthones and biphenyls isolated from plants were well known to exhibit 

cytotoxic activities against cancer cells and some of which were reported to have a 

remarkable cytotoxicity [28, 127, 134]. Moreover, our previous works showed that 

cylindroxanthone A (GC8), 6-desoxyjacareubin (GC11), and cylindroxanthone B (GC15) 

isolated from two Garcinia species displayed moderate to good cytotoxicity against 

several human cancer cells [13, 21]. Thus, we evaluated the cytotoxicity of 

compounds GC1–GC34 against KB and HeLa S-3 cancer cell lines using modified MTT 

method [113]. Seven compounds (GC14, GC22, GC23, GC25, GC31, GC33, and GC34) 

with IC50 values lower than 30 µM against these two cancer cells were selected to 

further investigate their cytotoxicity against MCF-7, Hep G2, and HT-29 cancer cell 

lines. The results are summarized in Table 2.3. The tested compounds mostly 

showed moderate to inactive against KB and HeLa S-3 cells. However, a potent 

cytotoxicity was observed for compound GC23 against four human cancer cell lines 

including KB, HeLa S-3, MCF-7, and Hep G2 with IC50 values of 3.41, 5.04, 2.20, and 

6.00 µM, respectively. In addition, compound GC25 selectively showed good 
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cytotoxicity against MCF-7 cells with IC50 value of 8.77 µM and compound GC31 

exhibited good cytotoxicity against HT-29 cells with IC50 value of 9.18 µM. Structure-

activity relationship studies (Figure 2.3 and Table 2.3) suggested that the presence of 

hydroxy groups at C-5 and C-6 of furanoxanthones might be improved the 

cytotoxicity, as inferred from the comparison of their cytotoxicity with compounds 

GC9, GC14, GC23, and GC25. Among linear pyranoxanthones (GC4, GC7, GC8, GC11, 

GC13, GC15, GC16, and GC28), only compound GC8 selectively exhibited potent 

cytotoxicity against KB cell line with IC50 value of 2.36 µM due to the methoxy groups 

which were fully substituted at B-ring. 

 

Table 2.3. In vitro cytotoxicity of compounds GC1–GC34 

Compound 
IC50 (µM) ± SD 

KB HeLa S-3 MCF-7 Hep G2 HT-29 

GC1 47.06 ± 0.29 inactive NT NT NT 

GC2 32.28 ± 1.09 50.79 ± 0.71 NT NT NT 

GC3 inactive inactive NT NT NT 

GC4 inactive inactive NT NT NT 

GC5 inactive inactive NT NT NT 

GC6 inactive inactive NT NT NT 

GC7 35.20 ± 0.88 38.08 ± 0.04 NT NT NT 

GC8 2.36 ± 0.01  75.12 ± 0.81 98.54 ± 6.16 10.41 ± 0.15 25.51 ± 3.26 

GC9 inactive inactive NT NT NT 

GC10 73.24 ± 0.43 inactive NT NT NT 

GC11 18.56 ± 0.15 19.69 ± 0.46 17.53 ± 0.06 39.35 ± 1.05 69.29 ± 0.79 

GC12 78.62 ± 0.54 inactive NT NT NT 

GC13 inactive inactive NT NT NT 

GC14 12.13 ± 0.04 20.73 ± 0.56 15.61 ± 0.32 22.84 ± 0.39 inactive 

GC15 57.24 ± 2.56 71.38 ± 0.81 inactive 59.53 ± 0.49 inactive 
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Compound 
IC50 (µM) ± SD 

KB HeLa S-3 MCF-7 Hep G2 HT-29 

GC16 inactive inactive NT NT NT 

GC17 36.50 ± 0.44 59.28 ± 0.40 NT NT NT 

GC18 36.83 ± 0.46 54.94 ± 0.58 NT NT NT 

GC19 89.05 ± 3.11 95.25 ± 2.74 NT NT NT 

GC20 inactive inactive NT NT NT 

GC21 36.06 ± 0.78 32.41 ± 1.11 NT NT NT 

GC22 22.65 ± 0.08 29.74 ± 1.22 28.59 ± 0.87 50.27 ± 0.47 39.43 ± 1.16 

GC23 3.41 ± 0.08 5.04 ± 0.04 2.20 ± 0.05 6.00 ± 0.07 46.50 ± 0.45 

GC24 39.93 ± 0.44 40.73 ± 0.48 NT NT NT 

GC25 13.37 ± 0.17 16.09 ± 0.11 8.77 ± 0.30 11.65 ± 0.06 58.70 ± 1.08 

GC27 73.15 ± 0.14 79.02 ± 0.17 NT NT NT 

GC28 48.95 ± 1.57 43.94 ± 0.82 NT NT NT 

GC29 inactive inactive NT NT NT 

GC30 30.11 ± 0.54 23.91 ± 0.98 NT NT NT 

GC31 13.43 ± 0.33 18.90 ± 0.37 32.40 ± 1.32 47.28 ± 1.25 9.18 ± 0.52 

GC32 43.63 ± 0.54 44.06 ± 0.32 NT NT NT 

GC33 21.69 ± 0.47 29.66 ± 0.46 20.93 ± 0.38 20.66 ± 0.26 inactive 

GC34 11.31 ± 0.34 26.40 ± 0.28 21.77 ± 0.14 99.69 ± 0.36 77.86 ± 0.57 

Doxorubicin 0.02 ± 0.01 0.13 ± 0.01 0.61 ± 0.06 1.07 ± 0.16 0.34 ± 0.07 

Note: IC50 ≤ 10 µM = good cytotoxicity, 10 µM < IC50 ≤ 30 µM = moderate cytotoxicity, 30 µM < 

IC50 ≤ 100 µM = weak cytotoxicity, IC50 > 100 µM = inactive, NT = not tested. 
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Chapter III 
Phytochemical and biological investigation of the stem bark of 

Garcinia tetrandra 
 

3.1. Botanical and chemical aspects of G. tetrandra 
 

  
Figure 3.1. The whole plant, stem, and stem bark of Garcinia tetrandra. 

 

Family   : Clusiaceae 

Genus   : Garcinia 

Species  : Garcinia tetrandra 

Common name : Kandis Watu 

Local name : Kandis Watu (Sulawesi Island), Laru (East Nusa Tenggara 

Province), Mapau (Maluku Island) 

 

Garcinia tetrandra Pierre originally exist in Sulawesi, East Nusa Tenggara, and 

Maluku Islands and commonly named as Kandis Watu (Figure 3.1). In its natural 

habitat, it is found in tropical rainforest from 30–600 m altitudes and grows on clayey 

soil. The species is a medium-sized evergreen tree and can reach heights of 18 meter 

with a girth up to 30 cm. Its fruiting season starts from December to February and the 

woods are commonly utilized for building construction materials [15, 135]. 
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Phytochemical studies on the stem bark of this species led to the isolation of several 

types of secondary metabolites such as xanthones (3.1–3.3), polyprenylated 

benzophenones (3.4 and 3.5), and triterpenoids (3.6–3.8) (Figure 3.2) and some of 

them showed antioxidant and antibacterial activities [136].  

 

Figure 3.2. Isolated compounds (3.1–3.8) from the stem bark of G. tetrandra. 

 

As part of our studies to explore novel and bioactive compounds from 

Garcinia species [21, 35, 137], a CH2Cl2 extract from G. tetrandra stem bark was 

investigated. Herein, the separation, structural characterization, and cytotoxic 

evaluation of the isolated compounds (GT1–GT31) are described. 
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3.2. Experimental 
3.2.1. General Experimental Procedures 

The chromatographic materials and instruments information were the same 

to those previously reported [137, 138] and as described in Chapter II section 2.2.1. 

The experimental ECD data were recorded on a JASCO J-815 circular dichroism 

spectropolarimeter and Semi-preparative HPLC utilized a Waters Delta 600 

instrument (Waters Corporation) with a Waters 2996 photodiode array detector using 

an Apollo C18 5 µm, 250 x 10.0 mm column. 

 

3.2.2. Plant Material 
Garcinia tetrandra stem bark was collected from Baluran National Park, 

Banyuwangi, Indonesia (7°55ʹ3ʺ S 114°23ʹ25ʺ E) in November 2016. The plant material 

was identified by Mr. Deden Mudiana, and a voucher specimen of this plant (no. 

XVII.J.11.22) was deposited at Purwodadi Botanical Garden, Indonesia. 
 

3.2.3. Extraction and Isolation 
G. tetrandra stem bark (3.0 kg) was macerated with MeOH (each 15 L x 3 

days). The filtrate was concentrated by a rotary evaporator to give a residue (71.0 g). 

The crude extract was suspended in water and partitioned with CH2Cl2 and EtOAc to 

obtain a CH2Cl2 and an EtOAc fractions. The dried CH2Cl2 fraction (18.6 g) was 

separated to a quick column chromatography (QCC) separation on silica gel (500.0 g) 

with a gradient of hexanes-EtOAc (95:5–0:100) to yield seven fractions (A–G). Fraction 

B (3.5 g) was subjected to a Sephadex LH-20 column (50% CH2Cl2/MeOH) to afford 

subfractions B1–B3. Subfraction B2 (1.1 g) was subjected to a Chromatotron using 

hexanes-acetone (95:5) to give three subfractions (B2.1–B2.3). Subfraction B2.1 (17.2 

mg) was separated by a Chromatotron using hexanes-acetone (95:5) to obtain GT25 

(7.4 mg). Subfraction B2.3 (78.4 mg) was separated on a Chromatotron using hexanes-
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chloroform (60:40) to yield compound GT1 (8.1 mg) and a subfraction that was 

further purified by semi-preparative HPLC using 100% CH3CN to give GT2 (3.6 mg, tR = 

23.9 min) and GT3 (4.6 mg, tR = 22.7 min). Subfraction B3 (41.0 mg) was separated on 

a Chromatotron with hexanes-CH2Cl2 (60:40) to obtain GT26 (8.4 mg) and GT28 (4.2 

mg). 

Fraction C (2.2 g) was separated on a Sephadex LH-20 column (50% 

CH2Cl2/MeOH) to obtain four subfractions (C1–C4). Subfraction C2 (43.0 mg) was then 

separated on a Chromatotron with hexanes-CH2Cl2 (10:90) to afford compounds 

GT10 (3.2 mg) and GT11 (3.0 mg). Subfraction C3 (80.9 mg) was separated using a 

Chromatotron with hexanes-CH2Cl2 (20:80) to yield GT6 (2.9 mg) and GT23 (4.1 mg). 

Subfraction C4 (65.5 mg) was subjected to a Sephadex LH-20 column (50% 

CH2Cl2/MeOH) to obtain GT19 (6.6 mg) and GT30 (5.0 mg). Fraction D (2.4 g) was 

passed through a Sephadex LH-20 column (50% CH2Cl2/MeOH) to give three 

subfractions (D1–D3). Subfraction D2 (67.1 mg) was purified using a Chromatotron by 

elution with 100% chloroform to afford GT24 (8.9 mg). Subfraction D3 (482.4 mg) was 

then separated on a Chromatotron using hexanes-chloroform (1:1) to give 

subfractions D3.1–D3.4. Compounds GT18 (2.8 mg) and GT27 (2.1 mg) were obtained 

from subfraction D3.2 (18.9 mg) using a Chromatotron with hexanes-chloroform (1:1). 

Subfraction D3.3 (227.5 mg) was purified using a Chromatotron with hexanes-CH2Cl2 

(20:80) to afford GT7 (4.1 mg), GT8 (3.8 mg), GT12 (8.4 mg), GT15 (8.5 mg), and GT31 

(1.2 mg). 

 Fraction E (2.1 g) was separated on silica gel CC using CH2Cl2-MeOH (98:2) to 

obtain subfractions E1–E5. Compound GT29 (13.1 mg) was purified from subfraction 

E1 (59.4 mg) by Sephadex LH-20 column using 50% CH2Cl2/MeOH. Compound GT4 

(5.2 mg) was purified from subfraction E2 (15.5 mg) using a Chromatotron with 

hexanes-acetone (30:70). Subfraction E3 (34.7 mg) was separated on a Chromatotron 
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with CH2Cl2-MeOH (30:1) to afford GT5 (3.7 mg) and GT9 (4.5 mg). Subfraction E4 

(100.6 mg) was purified on a Chromatotron using hexanes-EtOAc (65:35) to obtain 

GT13 (8.4 mg), GT14 (2.9 mg), GT16 (8.3 mg), and GT17 (14.5 mg). Fraction F (507.1 

mg) was subjected to a Sephadex LH-20 column (50% CH2Cl2/MeOH) to obtain four 

subfractions (F1–F4). Subfraction F3 (15.9 mg) was separated on a Chromatotron 

using CH2Cl2-MeOH (30:1) to yield GT21 (6.1 mg). Compounds GT20 (3.3 mg) and 

GT22 (5.7 mg) were afforded from subfraction F4 (31.1 mg) by a Sephadex LH-20 

column (50% CH2Cl2/MeOH). 

 

3.2.4. Cytotoxicity Assay 
The isolated compounds (GT1–GT31) were tested for their cytotoxicity 

against Hep G2, HeLa S3, MCF-7, HT-29, and KB cell lines using an MTT colorimetric 

method with incubation of cells for 72 h [113], as previously described in Chapter II 

Section 2.2.4. 

 

3.3. Results and discussion 
Nine new xanthones (GT1–GT9) and 22 known analogues (GT10–GT31) were 

isolated from the CH2Cl2 extract of G. tetrandra stem bark through a series of 

chromatographic techniques (Figure 3.3). Comparison of NMR spectroscopic data with 

reported data led to the identification of the previously described xanthones as 

isocowanin (GT10) [139], parvifolixanthone C (GT11) [51], α-mangostin (GT12) [140], 

garcinone D (GT13) [129], xanthochymone A (GT14) [100], rubraxanthone (GT15) 

[139], parvixanthone G (GT16) [36], butyraxanthone D (GT17) [141], 

nigrolineaxanthone E (GT18) [142], euxanthone (GT19) [143], gentisein (GT20) [143], 

1,3,6,7-tetrahydroxyxanthone (GT21) [126], 1,3,5,6-tetrahydroxyxanthone (GT22) 

[126], nitidaxanthone (GT23) [118], cylindroxanthone B (GT24) [13], cylindroxanthone 

A (GT25) [13], 9-hydroxycalabaxanthone (GT26) [144], macluraxanthone (GT27) [145], 
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3-isomangostin (GT28) [146], 3-isomangostin hydrate (GT29) [146], 

dihydroosajaxanthone (GT30) [147], and toxyloxanthone B (GT31) [148].  

 

 

Figure 3.3. Structures of isolated xanthones (GT1–GT31) from the stem bark of G. 

tetrandra. 

 

3.3.1. Structural elucidation of compound GT1 
Physical and spectroscopic properties of tetrandraxanthone A (GT1): Yellow 

gum; UV (MeOH) λmax (log ɛ) 316 (4.26), 245 (4.15), 205 (4.19) nm; IR (KBr) νmax 3427, 
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2922, 1635, 1620, 1579, 1462, 1296, 1159 cm− 1; 1D NMR data (Tables 3.1 and 3.2); 

and (–)-HRESIMS m/z 545.2922 [M – H]¯ (calcd for C34H41O6, 545.2903). 

The (–)-HRESIMS analysis of tetrandraxanthone A (GT1) indicated a [M – H]¯ 

peak at m/z 545.2922, assigning to the molecular formula C34H42O6. The 1H NMR 

spectrum indicated signals for a hydrogen-bonded hydroxy group at δH 13.68 (1H, s, 

OH-1), an aromatic methine proton at δH 6.85 (1H, s, H-5), and a methoxy group at δH 

3.81 (3H, s, OCH3-7) (Table 3.1). A geranyl unit was identified from the resonances of 

two olefinic protons at δH 5.24 (1H, t, J = 6.8 Hz, H-2'') and 5.05 (1H, t, J = 6.4 Hz, H-

6''), three methylene protons at δH 3.51 (2H, d, J = 6.8 Hz, H-1''), 2.09 (2H, m, H-5''), 

and 2.03 (2H, m, H-4''), and three methyl groups at δH 1.86 (3H, s, H-10''), 1.64 (3H, s, 

H-8''), and 1.57 (3H, s, H-9''), which was also corroborated by the observed HMBC data 

(Figure 3.4). The remaining signals of two olefinic protons at δH 5.28 (1H, t, J = 6.8 Hz, 

H-2') and 5.26 (1H, t, J = 6.0 Hz, H-2'''), two methylene protons at δH 4.10 (2H, d, J = 

6.0 Hz, H-1''') and 3.45 (2H, d, J = 6.8 Hz, H-1'), and four methyl groups at δH 1.84 (3H, 

s, H-5'''), 1.83 (3H, s, H-5'), 1.76 (3H, s, H-4'), and 1.68 (3H, s, H-4''') suggested the 

presence of two prenyl moieties. The 1D NMR data of GT1 indicated that it has the 

same xanthone skeleton as cowagarcinone A [149], with the major differences being 

in the positions of geranyl and two prenyl units. The HMBC cross-peaks of H-1' with 

δC 158.7 (C-1), 109.0 (C-2), and 160.1 (C-3) and the deshielded H-1''' with δC 142.7 (C-

7), 137.2 (C-8), and 112.2 (C-8a) confirmed unambiguously the positions of the two 

prenyl moieties at C-2 and C-8 (Figure 3.4). The attachment of the geranyl unit at C-4 

in the A-ring was determined from the cross-peaks of H-1'' with δC 160.1 (C-3), 104.5 

(C-4), and 152.2 (C-4a). The configuration of the Δ2'',3'' alkene unit was determined as 

(2''E) according to 13C NMR data comparison with the geranyl unit of previously 

reported xanthones [150], wherein in GT1, the resonance of the methylene carbon 

at C-4'' was more deshielded (ΔδC +8.0), and that of the methyl carbon at C-10'' was 

more shielded (ΔδC –6.9), than those of garcinianone B (with Z configuration). 
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Compound GT1 was named tetrandraxanthone A, as shown in Figure 3.3. It is worth 

noting that the trivial name “tetrandraxanthone” has been used previously for a 

compound isolated from the title plant [136]. 

 

3.3.2. Structural elucidation of compound GT2 
Physical and spectroscopic properties of tetrandraxanthone B (GT2): Brown 

gum; UV (MeOH) λmax (log ɛ) 329 (4.31), 244 (4.33), 212 (4.16) nm; IR (KBr) νmax 3399, 

2926, 1651, 1600, 1575, 1464, 1286, 1176 cm− 1; 1D NMR data (Tables 3.1 and 3.2); 

and (–)-HRESIMS m/z 475.2161 [M – H]¯ (calcd for C29H31O6, 475.2121). 

The (–)-HRESIMS analysis of tetrandraxanthone B (GT2) indicated a [M – H]¯ 

peak at m/z 475.2161, assigning to the molecular formula C29H32O6. The 1H and 13C 

NMR data of GT2 were nearly identical to those of isocowanin (GT10), except that 

the signals for the prenyl moiety in GT10 were absent. The 1D NMR data combined 

with an HSQC experiment indicated signals for cis-olefinic protons at δH/δC 6.77 (1H, d, 

J = 10.0 Hz, H-1')/115.3 and 5.57 (1H, d, J = 10.0 Hz, H-2')/127.0, gem-dimethyl groups 

at δH/δC 1.47 (6H, s, H-4' and H-5')/28.4, and an oxygenated sp3 carbon at δC 78.1 (C-

3'), revealing the presence of a dimethylpyran unit. The HMBC correlations of H-1' 

with C-3 (δC 160.1) and H-2' with C-4 (δC 100.5) indicated that this unit is fused at its 

ether linkage C-3 and C-4 in the A-ring (Figure 3.4). 

 

3.3.3. Structural elucidation of compound GT3 
Physical and spectroscopic properties of tetrandraxanthone C (GT3): Brown 

gum; [𝛼]𝐷20 +5.8 (c 0.72, CHCl3); UV (MeOH) λmax (log ɛ) 321 (4.27), 258 (4.04), 210 

(4.11) nm; IR (KBr) νmax 3400, 2926, 1649, 1579, 1465, 1278, 1217, 1157 cm− 1; 1D NMR 

data (Tables 3.1 and 3.2); and (–)-HRESIMS m/z 475.2134 [M – H]¯ (calcd for C29H31O6, 

475.2121). 
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The (–)-HRESIMS analysis of tetrandraxanthone C (GT3) provided a [M – H]¯ 

peak at m/z 475.2134, indicating to the molecular formula C29H32O6. Analysis of the 

1D NMR data suggested that GT3 has a scaffold similar to parvifolixanthone C (GT11). 

The notable differences were in the presence of cis-olefinic protons at δH/δC 6.81 (1H, 

d, J = 10.0 Hz, H-1')/115.7 and 5.52 (1H, d, J = 10.0 Hz, H-2')/125.9 and an oxygenated 

sp3 carbon at δC 80.6 (C-3') in GT3 instead of the C-1' methylene, C-2' olefinic 

methine, and C-3' quaternary sp2 carbon signals in GT11. The key COSY cross-peaks 

of H-1'/H-2' and H-4'/H-5' and HMBC cross-peaks from H-1' to C-3 (δC 160.5) and C-3', 

H-2' to C-4 (δC 100.3) and C-3', H-4' to C-2' and C-5' (δC 22.8), and H-10' to C-3' and C-

4' (δC 41.8) indicated the geranyl unit at C-4 to be cyclized (Figure 3.4). The 

experimental ECD spectrum showed no Cotton effects, indicating that GT3 was 

obtained as a racemic mixture. 

 

3.3.4. Structural elucidation of compound GT4 
Physical and spectroscopic properties of tetrandraxanthone D (GT4): Brown 

gum; UV (MeOH) λmax (log ɛ) 315 (4.26), 243 (4.34), 209 (4.10) nm; IR (KBr) νmax 3392, 

2920, 1645, 1612, 1579, 1462, 1429, 1296, 1153 cm− 1; 1D NMR data (Tables 3.1 and 

3.2); and (–)-HRESIMS m/z 495.2425 [M – H]¯ (calcd for C29H35O7, 495.2383). 

The (–)-HRESIMS analysis of tetrandraxanthone D (GT4) indicated a [M – H]¯ 

peak at m/z 495.2425, attributing to the molecular formula C29H36O7. Comparison of 

the 1D NMR data of GT4 with those of GT11 suggested the principal difference to be 

the absence of resonances attributed to a prenyl unit in GT11. The signals of two 

methylene groups at δH/δC 3.46 (2H, m, H-1'')/23.3 and 1.75 (2H, m, H-2'')/45.8, two 

methyl groups at δH/δC 1.30 (6H, s, H-4'' and H-5'')/29.3, and one oxygenated sp3 

carbon at δC 70.6 (C-3'') were observed instead. The COSY cross-peak of H-1''/H-2'' 

and key HMBC correlations from H-1'' to C-7 (δC 144.7), C-8 (δC 140.1), C-8a (δC 111.9), 

and C-2'', H-2'' to C-3'', and H-4''/H-5'' to C-3'' revealed the presence of a 3-hydroxy-3-
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methylbut-1-yl fragment at C-8 (Figure 3.4). Thus, GT4 was assigned as a hydrated 

derivative of GT11. 

 

3.3.5. Structural elucidation of compound GT5 
Physical and spectroscopic properties of tetrandraxanthone E (GT5): Brown 

gum; [𝛼]𝐷20 +1.2 (c 0.40, MeOH); UV (MeOH) λmax (log ɛ) 320 (4.37), 241 (4.12), 208 

(4.28) nm; IR (KBr) νmax 3395, 2922, 1643, 1616, 1580, 1465, 1292, 1150 cm− 1; 1D NMR 

data (Tables 3.1 and 3.2); and (–)-HRESIMS m/z 495.2415 [M – H]¯ (calcd for C29H35O7, 

495.2383). 

The (–)-HRESIMS analysis of tetrandraxanthone E (GT5) provided a [M ‒ H]¯ 

peak at m/z 495.2415, indicating to the molecular formula C29H36O7. The close NMR 

data similarities between GT5 and GT10 were evident, and these compounds 

differed only in the chemical shifts corresponding to the geranyl side chain at C-8. A 

methine group at δH 5.18 (1H, t, J = 6.8 Hz, H-6'') and four methylene groups at δH 

3.44 (2H, m, H-1''), 2.19 (2H, m, H-5''), 1.77 (2H, m, H-2''), and 1.58 (2H, m, H-4'') were 

observed in the 1H NMR spectrum, indicating that one of the double bonds in the 

geranyl unit is hydrated in GT5. The COSY correlations of H-1''/H-2'' and key HMBC 

correlations from H-1'' to C-7 (δC 144.7), C-8 (δC 140.2), and C-2'' (δC 43.7), H-4'' with an 

oxygenated sp3 carbon C-3'' (δC 72.5), and H-10'' with C-2'', C-3'', and C-4'' (δC 42.8) 

suggested that the double bond at position C-2'' was also hydrated (Figure 3.4). The 

ECD spectrum showed no Cotton effects, indicating that GT5 was obtained to be 

racemic. 

 

3.3.6. Structural elucidation of compound GT6 
Physical and spectroscopic properties of tetrandraxanthone F (GT6): Brown 

gum; UV (MeOH) λmax (log ɛ) 316 (4.22), 244 (4.14), 210 (4.13) nm; IR (KBr) νmax 3423, 
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2924, 1641, 1610, 1583, 1458, 1280, 1162 cm− 1; 1D NMR data (Tables 3.1 and 3.2); 

and (‒)-HRESIMS m/z 409.1682 [M ‒ H]¯ (calcd for C24H25O6, 409.1651). 

The (‒)-HRESIMS analysis of tetrandraxanthone F (GT6) gave a [M ‒ H]¯ peak 

at m/z 409.1682, assigning to the molecular formula C24H26O6. The NMR 

spectroscopic data confirmed that GT6 is a positional isomer of α-mangostin (GT12), 

in which the prenyl moiety of GT6 is attached at C-4. Confirmation for this 

hypothesis was obtained from the HMBC spectrum, wherein the methylene proton at 

δH 3.52 (2H, d, J = 6.4 Hz, H-1') correlated with a quaternary carbon at δC 104.4 (C-4) 

and two oxygenated sp2 carbons at δC 161.1 (C-3) and 154.0 (C-4a) (Figure 3.4). 

 

3.3.7. Structural elucidation of compound GT7 
Physical and spectroscopic properties of tetrandraxanthone G (GT7): Brown 

gum; [𝛼]𝐷20 +3.2 (c 0.35, MeOH); UV (MeOH) λmax (log ɛ) 311 (4.05), 243 (4.16), 211 

(4.25) nm; IR (KBr) νmax 3429, 2922, 1643, 1606, 1579, 1467, 1298, 1161 cm− 1; 1D NMR 

data (Tables 3.1 and 3.2); and (‒)-HRESIMS m/z 409.1680 [M ‒ H]¯ (calcd for C24H25O6, 

409.1651). 

The (‒)-HRESIMS analysis of tetrandraxanthone G (GT7) gave a [M ‒ H]¯ peak 

at m/z 409.1680, attributing to the molecular formula C24H26O6. The 1D NMR data of 

GT7 resembled those of rubraxanthone (GT15), with two meta-coupled aromatic 

protons at δH 6.28 (1H, d, J = 2.0 Hz, H-4) and 6.25 (1H, d, J = 2.0 Hz, H-2), implying 

the presence of a 1,3-disubstituted A-ring. Key differences between GT7 and GT15 

occurred for the resonances of the geranyl side chain at C-8. For GT7, 1D NMR data 

combined with HSQC correlations (Table 3.1 and 3.2) indicated characteristic signals 

for a terminal methylene unit at δH/δC 4.31 and 3.84 (each 1H, s, H-10')/109.9, a 

benzylic methylene group at δH/δC 3.81 (1H, H-1')/26.1 and 3.32 (1H, t, J = 11.6 Hz, H-

1')/26.1, a methine group at δH/δC 2.24 (1H, dd, J = 11.6, 3.6 Hz, H-2')/55.0, and three 

methylene groups at δH/δC 2.36 (1H, td, J = 13.2, 5.2 Hz, H-4')/31.2, 1.93 (1H, d, J = 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 66 

13.6 Hz, H-4')/31.2, 1.59 (1H, m, H-5')/23.4, 1.48 (1H, tt, J = 12.8, 4.0 Hz, H-5')/23.4, 

1.66 (1H, m, H-6')/35.2, and 1.29 (1H, m, H-6')/35.2, wherein the methylene group 

signals were mutually coupled according to the COSY cross-peaks of H-4'/H-5' and H-

5'/H-6'. The remaining resonances attributed to two methyl groups were observed at 

δH/δC 1.21 (3H, s, H-9')/28.3 and 0.90 (3H, s, H-8')/28.1. The above data, supported by 

HMBC cross-peaks of H-1' with C-8 (δC 138.3), H-2' with C-1', C-3' (δC 149.4), and C-7' 

(δC 34.9), H-8' and H-9' with C-2', C-6', and C-7', and H-10' with C-2', C-3', and C-4', 

indicated a 6,6-dimethyl-2-methylenecyclohexylmethyl unit (Figure 3.4). The 

presence of this unit was also corroborated by the similarity of the NMR data to 

those reported in a flavonoid named ugonin J [151]. The ECD spectrum of GT7 

presented no apparent Cotton effects, suggesting its occurrence as a racemate. 

Compound GT7 was thus elucidated as a new xanthone bearing a cyclized geranyl 

unit, as shown in Figure 3.3. 

 

3.3.8. Structural elucidation of compound GT8 
Physical and spectroscopic properties of tetrandraxanthone H (GT8): Brown 

gum; UV (MeOH) λmax (log ɛ) 309 (4.12), 243 (4.16), 207 (4.38) nm; IR (KBr) νmax 3425, 

2921, 1640, 1600, 1573, 1466, 1295, 1168 cm− 1; 1D NMR data (Tables 3.1 and 3.2); 

and (‒)-HRESIMS m/z 409.1671 [M ‒ H]¯ (calcd for C24H25O6, 409.1651). 

The (‒)-HRESIMS data of tetrandraxanthone H (GT8) displayed a [M ‒ H]¯ 

peak at m/z 409.1671, assigning to the molecular formula C24H26O6. Hence, this 

compound was found to be isomeric with GT7. Detailed analysis of the 1D NMR data 

for GT8 revealed the absence of the methine signal at C-2' and the resonances 

attributed to the Δ3',10' alkene unit in GT7, which were replaced by resonances of a 

methyl group at δH/δC 1.27 (3H, s, H-10')/20.9 and two quaternary sp2 carbons at δC 

135.5 (C-2') and δC 126.7 (C-3'). In addition, the signal of the methylene group at C-1' 

in GT7 changed to a singlet at δH 4.32/δC 28.4 in GT8. The HMBC cross-peaks (Figure 
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3.4) of H-1' with C-2' and C-3', H-8'/H-9' with C-2', and H-10' with C-2', C-3', and C-4' (δC 

34.8) indicated that the exocyclic double bond of GT7 was replaced by an 

endocyclic double bond in GT8 as depicted in Figure 3.3. 

 

3.3.9. Structural elucidation of compound GT9 
Physical and spectroscopic properties of tetrandraxanthone I (GT9): Pale 

yellow powder; [𝛼]𝐷20 +3.0 (c 0.65, MeOH); UV (MeOH) λmax (log ɛ) 313 (4.22), 245 

(4.20), 210 (4.16) nm; IR (KBr) νmax 3392, 2920, 1645, 1612, 1579, 1462, 1429, 1296, 

1153 cm− 1; 1D NMR data (Tables 3.1 and 3.2); and (‒)-HRESIMS m/z 427.1797 

[M ‒ H]¯ (calcd for C24H27O7, 427.1757). 

The (‒)-HRESIMS analysis of tetrandraxanthone I (GT9) provided a [M ‒ H]¯ 

peak at m/z 437.1210, attributing to the molecular formula C24H26O6. The 1D NMR 

data confirmed the same xanthone moiety as for GT7, except for a modification of 

the side chain at C-8. The 1D NMR data showed signals of five methylene groups at 

δH/δC 3.43 (2H, m, H-1')/22.9, 1.79 and 1.75 (each 1H, m, H-5')/17.5, 1.72 (2H, m, H-

2')/45.9, 1.64 and 1.50 (each 1H, m, H-4')/35.4, and 1.50 and 1.40 (each 1H, m, H-

6')/37.7, and three methyl groups at δH/δC 1.34 (3H, s, H-10')/27.5, δH/δC 1.22 (3H, s, H-

8')/32.5 and 1.19 (3H, s, H-9')/29.9. The COSY cross-peak of H-1'/H-2' indicated that 

the two methylene groups at C-1' and C-2' were coupled. The presence of a 

dihydropyran ring substituted with gem-dimethyl groups at C-7' and a methyl group 

at C-3' was suggested by the COSY cross-peaks of H-4'/H-5' and H-5'/H-6', along with 

HMBC cross-peaks of H-4' with an oxygenated sp3 carbon C-3' (δC 74.0), H-8' and H-9' 

with C-6' and an oxygenated sp3 carbon C-7' (δC 71.6), and H-10' with C-3' and C-4' 

(Figure 3.4). The ring was connected to C-2', as deduced from the HMBC correlation 

of H-10' with C-2'. The experimental ECD spectrum showed no Cotton effects, 

indicating that GT9 was obtained as a racemic mixture. 
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Table 3.2. 13C NMR spectroscopic data (100 MHz) of compounds GT1‒GT9 (δ in ppm) 
position GT1a GT2a GT3a GT4b GT5b GT6a GT7a GT8a GT9b 

1 158.7 163.5 163.5 162.5 162.6 161.8 164.2 164.1 165.1 

2 109.0 99.3 99.1 98.4 98.5 98.6 98.3 98.4 98.9 

3 160.1 160.1 160.5 162.9 163.0 161.1 162.4 162.4 165.6 

4 104.5 100.5 100.3 106.4 106.5 104.4 93.4 93.4 93.9 

4a 152.2 151.2 151.1 155.2 155.2 154.0 157.1 157.1 158.1 

10a 154.6 154.8 154.8 156.6 156.7 154.8 154.4 154.7 156.5 

5 101.7 101.7 101.8 102.8 102.9 101.7 101.4 102.0 102.7 

6 155.9 155.8 155.8 157.7 157.7 156.0 156.1 155.9 157.7 

7 142.7 143.0 143.0 144.7 144.7 142.9 144.0 143.9 144.8 

8 137.2 137.4 137.4 140.1 140.2 137.3 138.3 139.5 140.6 

8a 112.2 112.4 112.4 111.9 112.0 112.2 112.6 113.6 112.3 

9 182.5 182.2 182.2 183.2 183.3 182.5 182.1 182.4 182.9 

9a 103.7 103.9 103.8 104.0 104.1 104.2 104.1 104.2 103.9 

1' 21.8 115.3 115.7 22.1 22.3 21.8 26.1 28.4 22.9 

2' 122.0 127.0 125.9 123.6 123.6 121.6 55.0 135.5 45.9 

3' 134.9 78.1 80.6 135.3 132.6 134.8 149.4 126.7 74.0 

4' 26.0 28.4 41.8 40.5 26.0 26.0 31.2 34.8 35.4 

5' 18.1 28.4 22.8 27.4 17.9 18.1 23.4 19.6 17.5 

6' 
  

124.0 125.1 
  

35.2 41.1 37.7 

7' 
  

132.1 131.7 
  

34.9 36.0 71.6 

8' 
  

26.0 25.8 
  

28.1 28.8 32.5 

9' 
  

17.8 17.7 
  

28.3 28.8 29.9 

10' 
  

27.2 16.5 
  

109.9 20.9 27.5 

1'' 21.9 26.7 26.7 23.3 23.0 26.7 
   

2'' 122.0 123.3 123.3 45.8 43.7 123.3 
   

3'' 137.6 135.8 132.4 70.6 72.5 132.4 
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position GT1a GT2a GT3a GT4b GT5b GT6a GT7a GT8a GT9b 

4'' 39.9 39.8 25.8 29.3 42.8 26.0 
   

5'' 26.6 26.7 18.4 29.3 23.5 18.4 
   

6'' 124.1 124.4 
  

126.4 
    

7'' 131.9 131.4 
  

131.7 
    

8'' 25.8 25.6 
  

26.0 
    

9'' 17.8 17.8 
  

17.9 
    

10'' 16.4 16.7 
  

27.6 
    

1''' 26.7 
        

2''' 123.4 
        

3''' 132.2 
        

4''' 26.0 
        

5''' 18.4 
        

OCH3-7 62.2 62.2 62.2 61.7 61.8 62.3 62.0 61.5 61.7 
aIn CDCl3. bIn acetone-d6. 
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Figure 3.4. Key 1H ‒ 1H COSY (blue line) and HMBC (red arrow) correlations of 

tetrandraxanthones A‒I (GT1‒GT9). 
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3.3.10. Cytotoxic activities of the isolated compounds 
Previous reports have revealed that prenylated and geranylated xanthones 

isolated from plants, especially in the genus Garcinia, possess potent cytotoxic 

properties against several cancer cell lines [152-155]. Therefore, the isolated 

compounds, except for GT12, GT13, GT18, and GT21‒GT25, which have been 

evaluated in this manner previously [13, 21, 137], were evaluated for their cytotoxic 

activity against HeLa S3 and KB cells. The active compounds (GT5, GT10, GT11, 

GT26, and GT27) with IC50 values lower than 10 µM toward these two cancer cell 

lines were further evaluated against the other three cell lines, comprising Hep G2, 

HT-29, and MCF-7 cells. The results are shown in Table 3.3. Compound GT26 

significantly exhibited cytotoxic activities against five cancer cells with IC50 values in 

the range of 1.64‒3.39 µM. Compound GT10 and its isomer GT11 were cytotoxic 

toward HeLa S3, MCF-7, and KB cells with IC50 values of 4.33‒4.90 µM. Compound 

GT5 exhibited selective cytotoxicity toward two cancer cells, MCF-7 and KB, with IC50 

values of 8.80 and 7.06 µM, whereas GT27 was cytotoxic toward HeLa S3 and KB, 

with IC50 values of 6.74 and 7.41 µM. Based on a preliminary structure-activity 

relationship (SAR) analysis, the hydration of pyran and prenyl units in the linear 

pyranoxanthones GT28 and GT29 decreased their cytotoxic properties compared to 

GT26. Among the 1,3,6,7-tetraoxygenated xanthone derivatives with a geranyl side 

chain at C-8 (GT2, GT5, GT7‒GT10, and GT15‒GT17), only compound GT10 was 

cytotoxic against three cancer cell lines (Table 3.3) due to the presence of 

unmodified geranyl units at C-8 and unmodified prenyl units at C-4. 
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Table 3.3. Cytotoxicity data of compounds GT1‒GT31a 

compound 
IC50 ± SD (µM) 

KB HeLa S3 MCF-7 Hep G2 HT-29 

GT1 16.52 ± 0.37 18.35 ± 0.82 NT NT NT 

GT2 51.91 ± 1.83 60.95 ± 1.87 NT NT NT 

GT3 >100 >100 NT NT NT 

GT4 55.36 ± 6.63 >100 NT NT NT 

GT5 7.06 ± 0.44 15.43 ± 2.75 8.80 ± 0.65 21.91 ± 0.39 47.39 ± 1.40 

GT6 14.28 ± 0.93 19.06 ± 1.74 NT NT NT 

GT7 43.71 ± 0.26 64.03 ± 2.57 NT NT NT 

GT8 >100 >100 NT NT NT 

GT9 47.71 ± 2.74 79.40 ± 1.21 NT NT NT 

GT10 7.26 ± 0.49 9.03 ± 0.13 6.99 ± 0.84 19.38 ± 0.57 46.07 ± 0.76 

GT11 4.90 ± 0.33 5.79 ± 0.48 4.33 ± 0.61 13.87 ± 0.14 36.84 ± 0.99 

GT12 NT NT NT NT NT 

GT13 NT NT NT NT NT 

GT14 43.16 ± 5.82 >100 NT NT NT 

GT15 16.01 ± 0.92 34.40 ± 1.12 NT NT NT 

GT16 25.52 ± 1.44 73.61 ± 5.79 NT NT NT 

GT17 13.51 ± 0.85 46.33 ± 3.00 NT NT NT 

GT18 NT NT NT NT NT 

GT19 62.59 ± 9.74 87.27 ± 9.98 NT NT NT 

GT20 45.03 ± 2.91 >100 NT NT NT 

GT21 NT NT NT NT NT 

GT22 NT NT NT NT NT 

GT23 NT NT NT NT NT 

GT24 NT NT NT NT NT 

GT25 NT NT NT NT NT 
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compound 
IC50 ± SD (µM) 

KB HeLa S3 MCF-7 Hep G2 HT-29 

GT27 7.41 ± 0.36 6.74 ± 0.28 13.64 ± 1.29 18.58 ± 0.13 47.17 ± 2.39 

GT28 14.84 ± 0.27 16.19 ± 0.53 NT NT NT 

GT29 12.41 ± 1.39 19.41 ± 1.17 NT NT NT 

GT30 95.05 ± 3.48 >100 NT NT NT 

GT31 >100 >100 NT NT NT 

Doxorubicinb 0.01 ± 0.002 0.12 ± 0.134 0.49 ± 0.008 1.43 ± 0.182 0.34 ± 0.039 
aCytotoxicity was expressed as the mean values of three experiments ± SD; bDoxorubicin was 

used as the positive control. 
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Chapter IV 
Phytochemical and biological investigation of the stem bark of 

Garcinia picrorhiza 
 

4.1. Botanical and chemical aspects of G. picrorhiza 
 

  
Figure 4.1. The whole plant, branches, and leaves of Garcinia picrorhiza. 

 

Family   : Clusiaceae 

Genus   : Garcinia 

Species  : Garcinia picrorhiza 

Common name : Sesoot 

Local name : Kayu Ambong, Laloi Ritek (Sulawesi Island), Daun Limon, Kayu 

Lemon, Sesoot (Maluku Island) 

 

Garcinia picrorhiza Miq. is a woody plant that widely grow in Sulawesi, 

Maluku, and Papua Islands (Figure 4.1), with its origin in Hitu mountain and Laitimor 

Island, Maluku region. It is an evergreen tree distributed in lower and upper rainforest 

from 300 up to 2,100 m elevation and thrives on clayey and black soils. The species 

can reach heights of 18 meter with a girth up to 85 cm. The flowering and fruiting 

season start from February to August and September to January, respectively, and its 
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wood is commonly utilized for building construction materials. Local people called 

this species as “Sesoot” and they usually use a decoction of its roots as energy 

drinking and supplement [15, 156, 157]. Previous phytochemical investigations on the 

roots and the stem bark of this plant revealed the existence of several types of 

secondary metabolites, including 3-hydroxy-isonicotinic acid (4.1), two 

polyprenylated benzophenones (4.2 and 4.3), and three triterpenoids (4.4‒4.6) 

(Figure 4.2) [156, 158-160]. 

 
Figure 4.2. Isolated compounds (4.1‒4.6) from the roots and the stem bark of G. 

picrorhiza. 

 

In the continuing search for novel bioactive substances in Garcinia plants [13, 

35, 135, 137], the stem bark of G. picrorhiza was investigated leading to the isolation 

of known metabolite GP9 and new picrorhizones A–H (GP1–GP8), along with three 

known benzoylphloroglucinols (GP10–GP12). Herein, the isolation and structural 

elucidation of the isolated compounds, as well as an in vitro cytotoxic evaluation of 

five human cancer cell lines using the MTT viability method and anti-inflammatory 

activity using COX-1 and COX-2 inhibitory assays are described. 
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4.2. Experimental 
4.2.1. General Experimental Procedures 

The chromatographic materials and instruments information were the same 

to those previously reported [137, 138] and as described in Chapter III section 3.2.1. 

 

4.2.2. Plant Material 
Garcinia picrorhiza stem bark material was collected from Bogor Botanical 

Garden, Bogor, Indonesia (6°35'51" S 106°47'55" E) in July 2016. The plant material 

was identified by Dr. Rismita Sari and a voucher specimen (No. VI.A.26) was deposited 

at Bogor Botanical Garden, Indonesia. 

 

4.2.3. Extraction and Isolation 
The air-dried stem bark of G. picrorhiza (3.0 kg) was extracted with MeOH (15 

L each x 3 days) at room temperature. The solvent was evaporated under reduced 

pressure to obtain a residue (92.0 g). The crude MeOH extract was suspended in 

distilled water and partitioned with CH2Cl2 and EtOAc to afford two organic extracts. 

The dried CH2Cl2 extract (54.1 g) was subjected to silica gel column chromatography 

and eluted with hexanes/EtOAc (95:5–0:100) to afford fractions A–R. Fraction D (560.0 

mg) was chromatographed on a Sephadex LH-20 column with CH2Cl2/MeOH (1:1) to 

obtain subfractions D1–D4. Subfraction D2 (51.6 mg) was subjected to a 

Chromatotron that was eluted with hexanes/CH2Cl2 (90:10) to yield GP3 (9.2 mg) and 

GP12 (1.8 mg). Compound GP9 (5.6 g) was isolated as a major component from 

fractions G (4.2 g) and H (5.1 g) after recrystallization using acetone/hexanes (1:2). 

Fractions I (708.3 mg) and J (556.0 mg) were subjected separately to a Sephadex LH-

20 column with a CH2Cl2/MeOH (1:1) solvent system to give subfractions I1–I4 and 

J1–J3, respectively. Subfraction I1 (49.2 mg) was purified by a Chromatotron that was 

eluted with 100% CH2Cl2 to give GP2 (11.5 mg), while subfraction I2 (55.8 mg) was 
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chromatographed on an RP–C18 silica gel column eluted with 70% CH3CN/H2O to 

afford GP6 (5.7 mg). Subfraction J1 (10.3 mg) was purified on semipreparative HPLC 

using 93% MeOH/H2O to yield GP10 (4.3 mg) and GP11 (3.2 mg).  

Fraction Q (3.3 g) was subjected to silica gel CC eluted with hexanes/EtOAc 

(75:25–20:80) to give three subfractions (Q1–Q3). Subfraction Q2 (640.2 mg) was 

separated on silica gel CC using 30% acetone/hexanes to give subfractions Q2.1 and 

Q2.2. Subfraction Q2.2 (67.5 mg) was separated on a Chromatotron eluted with 

CH2Cl2/MeOH (15:1) to afford GP1 (14.6 mg). Subfraction Q3 (61.2 mg) was separated 

on a Chromatotron with CH2Cl2/MeOH (20:1) to afford GP4 (8.7 mg) and GP5 (4.2 mg). 

Fraction R (3.7 g) was subjected to silica gel CC that was eluted with hexanes/EtOAc 

(70:30–20:80) to give five subfractions (R1–R5). Compound GP8 (6.0 mg) was purified 

from subfraction R2 (71.4 mg) using an RP–C18 silica gel column that was eluted with 

70% CH3CN/H2O, while GP7 (6.7 mg) was obtained from subfraction R5 (52.6 mg) 

using Sephadex LH-20 with CH2Cl2/MeOH (1:1). 

 

4.2.4. X-ray crystallography of GP9  
Light yellow single crystals of GP9 were recrystallized from a mixture of 

acetone/hexanes (1:2, v/v) in the orthorhombic space group P212121 (no. 19) with the 

following unit cell parameters: a = 9.0232(4), b = 18.4443(9), c = 23.7543(11) Å, V = 

3953.3(3) Å3 for Mo-Kα radiation; a = 9.0225(3), b = 18.3922(6), c = 23.8517(7) Å, V = 

3958.0(2) Å3 for Cu-Kα radiation; Z = 4; Dcalc = 1.012 g cm–3. Two diffraction data sets 

were collected from two crystals at 296(2) K on Bruker APEXII and PROSPECTOR CCD 

area-detector diffractometers (Mo-Kα radiation, λ = 0.71073 Å; Cu-Kα radiation, λ = 

1.54178 Å) using the APEX2 Software Suite [161]. The data were processed according 

to a standard procedure, including integration with SAINT+, multi-scan absorption 

correction, and scaling by SADABS and then merging by XPREP, implemented in 

APEX2 Software Suite [161], yielding 7314 and 7201 unique reflections with Rint = 
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0.0878 and 0.0571, respectively. Two structures were solved by the intrinsic phasing 

method with SHELXTL XT [162]  and refined anisotropically by full matrix least-

squares on F2 with SHELXTL XLMP [163]. The disordered solvents without direct 

interaction with GP9 in large intermolecular interstices were removed using PLATON 

SQUEEZE procedure [164]. The structure refinement converged to final R1 = 0.0612 

for 3657 data and R1 = 0.0571 for 6034 data with F2 > 2𝜎(F2) for the respective Mo-Kα 

and Cu-Kα radiations. The Flack parameter [165] of −0.02(12) was estimated using 

copper radiation. Data have been deposited with the Cambridge Crystallographic 

Data Centre (CCDC nos. 1945943 and 1978321). Copies of these data can be 

obtained, free of charge, on application to the CCDC via 

www.ccdc.cam.ac.uk/conts/retrieving.html (or 12 Union Road, Cambridge CB2 1EZ, 

UK, fax: +44 1223 336033, e-mail: deposit@ccdc.cam.ac.uk). 

 

4.2.5. ECD calculation of GP6 and GP9 

To determine the absolute configurations of GP1‒GP9, ECD calculations using 

the DFT method were carried out, and the calculated ECD spectra were compared 

with those derived experimentally. Conformers of GP6 and GP9 were optimized by 

semiempirical PM3 calculation and were fully reoptimized with the DFT method at 

the B3LYP/6-31G(d) level. Subsequently, the ECD calculations were carried out using 

the TD-DFT method at the B3LYP/6-31+G(d,p) level with a PCM solvent model 

(MeOH) and n states = 50. All the calculations were performed with GAUSSIAN 09 

[166] on a DELL PowerEdge T430 server. The ECD spectra were generated using 

SpecDis 1.71 [167] with σ= 0.5. 

 

4.2.6. Cytotoxicity Assay  

The in vitro cytotoxic evaluation of compounds GP1‒GP12 against the KB, 

HeLa S3, HT-29, MCF-7, and Hep G2 cancer cell lines was performed using an MTT 

mailto:deposit@ccdc.cam.ac.uk
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colorimetric method by incubating cells for 72 h, as described previously [137]. The 

results are expressed as the mean values of three independent experiments. 

Doxorubicin was used as the positive control. 

 

4.2.7. Cyclooxygenase-1 and -2 Inhibition Assays 
COX-1 and COX-2 inhibitory assays were performed in 96-well plate format 

using purified PGHS-1 from ram seminal vesicles for COX-1 and human recombinant 

PGHS-2 for COX-2 (Cayman Chemical Co., Ann Arbor, MI, USA), as reported previously 

[168]. Briefly, the incubation mixture contained 180 µL of 0.1 M TRIS/HCl-buffer (pH 

8.0), 50 µM Na2EDTA (only for COX-2), 18mM ʟ-epinepherine bitartrate, 5 µM porcine 

hematin, and COX-1 or COX-2 enzymes (0.2 U/well). The tested compounds (GP1–

GP11) dissolved in DMSO with a final concentration of 20 µM were added and the 

mixture was pre-incubated for 5 mins at room temperature. After incubation, 10 µL 

of 5 µM arachidonic acid was added to the mixture and incubated for 20 mins at 

37oC. The reaction was subsequently stopped by adding 10 µL of 10% (v/v) formic 

acid. The concentration of PGE2 generated in the reaction was quantitatively 

measured by a competitive PGE2 ELISA kit (Enzo Life Sciences Inc., Farmingdale, NY, 

USA), according to the manufacturer’s protocol and previous procedure [168]. The 

assays were performed in duplicates and repeated over two independent 

experiments. Indomethacin (1.25 µM) was dissolved in EtOH and used as the positive 

control for COX-1. Celecoxib (8.8 µM), which was used as the positive control for 

COX-2, was dissolved in DMSO [169]. 

 

4.3. Results and discussion 
The CH2Cl2-soluble fraction from a crude MeOH extract of stem bark from G. 

picrorhiza was separated to yield 12 compounds, including eight new 

benzoylphloroglucinols (GP1‒GP8) bearing a cyclobutyl-containing side chain and 
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four known analogues (GP9‒GP12). The structures of the known compounds were 

identified as garcinopicrobenzophenone (GP9) [158], 30-epi-cambogin (GP10) [170], 

isoxanthochymol (GP11) [171], and (+)-30-epi-13,14-didehydroxyisogarcinol (GP12) 

[172] through an analysis of their NMR spectroscopic data and comparison with 

literature data. 

 

Figure 4.3. Benzoylphloroglucinols (GP1–GP12) from the stem bark of G. picrorhiza. 
 

4.3.1. Structural elucidation of compound GP1 
Physical and spectroscopic properties of picrorhizone A (GP1): Yellow gum; 

[𝛼]𝐷
20 +27 (c 0.10, MeOH); ECD (c 0.001, MeOH) λmax (Δɛ) 218 (–8.3), 259 (+13.3), 303 (–

5.2), 326 (–2.4), 348 (–1.7) nm; 1H (400 MHz, methanol-d4) and 13C NMR (100 MHz, 

methanol-d4) spectroscopic data, see Table 4.1; and HRESIMS m/z 641.3455 

[M + Na]+ (calcd for C38H50O7Na, 641.3454). 
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The molecular formula of picrorhizone A (GP1) was assigned as C38H50O7 

according to the sodium adduct ion at m/z 641.3455 [M + Na]+ in the HRESIMS, which 

indicated 14 indices of hydrogen deficiency. The 1H NMR data showed signals for 

eight methyls at δH 0.84‒1.72, an oxygenated methylene at δH 3.96 (2H, s), two 

terminal olefinic protons at δH 4.52 (1H, s) and 4.74 (1H, s), and two olefinic protons 

at δH 4.91 (1H, overlap) and 5.35 (1H, br t, J= 8.8 Hz). The proton signals for a 1,3,4-

trisubstituted benzene ring [δH 6.76 (1H, d, J= 8.4 Hz), 7.13 (1H, dd, J= 8.4, 1.6 Hz), 

and 7.14 (1H, d, J= 1.6 Hz)] were also observed (Table 4.1). The characteristic peaks 

of a methylene at δC 41.8 (C-7), a methine at δC 48.0 (C-6), three sp3 quaternary 

carbons at δC 49.0 (C-5), 60.6 (C-8), and 68.9 (C-4), a conjugated carbonyl carbon at δC 

196.7 (C-10), an unconjugated carbonyl carbon at δC 210.6 (C-9), and an enolized 1,3-

diketo group at δC 195.3 (C-1), 118.4 (C-2), and 193.7 (C-3) were assigned from the 

combined 13C NMR and HSQC data, suggesting that this metabolite was a 

benzoylphloroglucinol derivative featuring a bicyclo[3.3.1]nonane skeleton [86, 173-

175]. 

Comprehensive analysis of 1D and 2D NMR data established the 2D structure 

of GP1 (Figure 4.4), which closely resembled garcinopicrobenzophenone (GP9) [158], 

a major compound of this plant. The only difference between compounds GP1 and 

GP9 was that the resonance for one of the methyl groups on the prenyl unit in GP9 

was replaced by an oxygenated methylene group at δH 3.96 (2H, s, H-20)/δC 68.9 in 

GP1, indicating the oxidation of that methyl group to a hydroxymethyl moiety. The 

COSY correlation of H2-17/H-18 and multiple HMBC correlations from H2-17 to C-3, C-

4, C-9, and C-19, H2-20 to C-18, C-19, and C-21, and H3-21 to C-18, C-19, and C-20 

confirmed a 4-hydroxy-3-methyl-2-butenyl side chain at C-4 in GP1 (Figure 4.4). The 

NOESY experiment (Figure 4.5) showed 1H‒1H interactions of H-18/H2-20 and H-

17a/H3-21, indicating an E-configuration of the Δ18(19) double bond. 
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Table 4.1. 1H (400 MHz) and 13C (100 MHz) NMR spectroscopic data of compounds 

GP1‒ GP3 (δ in ppm) 

position 
GP1a GP2a GP3b 

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) 

1 195.3 
 

195.3 
 

193.5 
 

2 118.4 
 

118.5 
 

116.2 
 

3 193.7 
 

194.6 
 

197.6 
 

4 68.9 
 

68.9 
 

69.1 
 

5 49.0 
 

49.5 
 

49.0 
 

6 48.0 1.49, m 47.7 1.50, m 46.7 1.41, m 

7eq 41.8 2.22, d (13.6) 41.8 2.21, d (14.0) 40.8 2.33, d (14.0) 

7ax 
 

2.03, dd (13.6, 6.8) 
 

2.03, dd (14.0, 6.0) 
 

2.08c 

8 60.6 
 

59.6d  
 

58.2 
 

9 210.6 
 

209.5 
 

208.7 
 

10 196.7 
 

198.3 
 

196.9 
 

11 130.5 
 

140.2 
 

136.9 
 

12 117.6 7.14, d (1.6) 116.1 7.00, d (1.6) 129.3 7.57, d (7.2) 

13 145.8 
 

158.6 
 

128.0 7.38, t (7.2) 

14 152.2 
 

120.7 6.98, dd (7.6, 1.6) 132.9 7.52, t (7.2) 

15 115.5 6.76, d (8.4) 130.0 7.19, t (7.6) 128.0 7.38, t (7.2) 

16 124.4 7.13, dd (8.4, 1.6) 121.1 6.96, dd (7.6, 1.6) 129.3 7.57, d (7.2) 

17a 26.8 2.76, dd (13.2, 8.8) 27.0 2.69, dd (12.8, 8.8) 26.7 2.71, dd (12.4, 

9.6) 

17b 
 

2.59, br d (13.2) 
 

2.57, br d (12.8) 
 

2.50, br d (12.4) 

18 122.6 5.35, br t (8.8) 120.7 4.99, br d (8.8) 120.3 5.09, br t (9.6) 

19 138.4 
 

136.0 
 

135.0 
 

20 68.9 3.96, s 26.4 1.71, s 26.3 1.82, s 

21 14.2 1.72, s 18.3 1.67, s 18.3 1.67, s 

22 23.2 1.19, s 23.0 1.19, s 22.7 1.16, s 

23 27.4 1.00, s 27.3 1.00, s 27.1 0.97, s 
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position 
GP1a GP2b GP3b 

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) 

24a 30.3 2.16c 30.3 2.13c 29.0 2.14c 

24b 
 

2.11c 
 

2.07c 
 

2.05c 

25 125.8 4.91c 125.4 4.88c 124.2 4.87, m 

26 133.6 
 

133.8 
 

133.0 
 

27 26.0 1.67, s 26.0 1.67, s 26.0 1.67, s 

28 18.2 1.52, s 18.2 1.51, s 18.0 1.50, s 

29a 33.4 1.94, d (13.2) 33.4 1.96, d (13.6) 32.3 2.03c 

29b 
 

1.64c 
 

1.62c 
 

1.79c 

30 39.8 1.82c 40.0 1.77c 38.4 1.82c 

31 43.7 
 

43.8 
 

43.0 
 

32 51.1 2.25c 51.1 2.27, dd (11.6, 4.8) 50.2 2.24c 

33a 30.4 1.75c 30.4 1.75c 29.7 1.76c 

33b 
 

1.67c 
 

1.65c 
 

1.72c 

34 30.6 1.21, s 30.7 1.22, s 30.3 1.23, s 

35 16.5 0.84, s 16.5 0.85, s 16.2 0.85, s 

36 146.6 
 

146.6 
 

146.0 
 

37a 109.6 4.74, s 109.7 4.74, s 109.2 4.75, s 

37b 
 

4.52, s 
 

4.53, s 
 

4.53, s 

38 23.4 1.63, s 23.4 1.63, s 23.2 1.64, s 
aRecorded in CD3OD. bRecorded in CDCl3. cOverlapping signals. dData were extracted from the 

HMBC spectrum. 

 

4.3.2. Structural elucidation of compound GP2 and GP3 
Physical and spectroscopic properties of picrorhizone B (GP2): Pale brown 

gum; [𝛼]𝐷20 +12 (c 0.10, MeOH); ECD (c 0.001, MeOH) λmax (Δɛ) 218 (–4.2), 261 (+8.2), 

305 (–4.4), 326 (–3.1), 348 (–2.3) nm; 1H (400 MHz, methanol-d4) and 13C NMR 

(100 MHz, methanol-d4) spectroscopic data, see Table 4.1; and HRESIMS m/z 

585.3532 [M ‒ H]¯ (calcd for C38H49O5, 585.3580). 
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Physical and spectroscopic properties of picrorhizone C (GP3): White gum; 

[𝛼]𝐷
20 +15 (c 0.10, CHCl3); ECD (c 0.001, MeOH) λmax (Δɛ) 212 (+20.0), 241 (–3.1), 272 

(+8.5), 301 (–15.0) nm; 1H (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) 

spectroscopic data, see Table 4.1; and HRESIMS m/z 593.3587 [M + Na]+ (calcd for 

C38H50O4Na, 593.3607). 

The molecular formulas of picrorhizones B (GP2) and C (GP3) were 

determined to be C38H50O5 and C38H50O4 based on an [M ‒ H]‒ ion at m/z 585.3532 

and an [M + Na]+ ion at m/z 593.3587 in the HRESIMS data, respectively. A 

comparison of the 1H and 13C NMR data of GP2 and GP3 with those of GP9 showed 

that the structural differences were restricted to the benzoyl unit. The 1D NMR and 

HSQC data displayed resonances corresponding to a 1,3-disubsituted benzoyl ring in 

GP2 at δH/δC 6.96 (1H, dd, J= 7.6, 1.6 Hz)/121.1, 6.98 (1H, dd, J= 7.6, 1.6 Hz)/120.7, 

7.00 (1H, d, J= 1.6 Hz)/116.1, and 7.19 (1H, t, J= 7.6 Hz)/130.0 (Table 4.1) [176]. The 

COSY correlations of H-14/H-15 and H-15/H-16 and HMBC cross-peaks from H-12 to C-

10 (δC 198.3), C-13 (δC 158.6), C-14, and C-16, H-14 to C-12, C-13, and C-16, H-15 to C-

11 (δC 140.2), C-13, and C-16, and H-16 to C-10, C-12, and C-14 confirmed the 

presence of the ring in GP2 (Figure 4.4). In the 1H NMR spectrum of GP3 (Table 4.1), 

the resonances of five aromatic methine protons appeared in the region of δH 7.33‒

7.56, representing an unsubstituted benzoyl unit [177]. The 1H‒1H correlations of the 

contiguous spin system from H-12 to H-16 in the COSY spectrum and the cross-peaks 

of H-12/H-16 with C-10, C-12, C-14, and C-16, H-13/H-15 with C-11, C-13, and C-15, 

and H-14 with C-12 and C-16 in the HMBC spectrum completed the assignment of 

the unit (Figure 4.4). 

 

4.3.3. Structural elucidation of compound GP4 
Physical and spectroscopic properties of picrorhizone D (GP4): Yellow gum; 

[𝛼]𝐷
20 +34 (c 0.10, MeOH); ECD (c 0.001, MeOH) λmax (Δɛ) 234 (–0.9), 265 (+6.0), 303 (–



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 88 

5.2), 326 (–1.5), 348 (–1.2) nm; 1H (400 MHz, methanol-d4) and 13C NMR (100 MHz, 

methanol-d4) spectroscopic data, see Table 4.2; and HRESIMS m/z 643.3610 

[M + Na]+ (calcd for C38H52O7Na, 643.3611). 

Based on the observed [M + Na]+ peak at m/z 643.3610 in the HRESIMS data, 

the molecular formula of picrorhizone D (GP4) was established as C38H52O7. The 1H 

NMR data of GP4 closely resembled those of GP9, except for the lack of terminal 

olefinic proton signals in GP4. Two methyl resonances observed at δH/δC 1.03 (s, H3-

37)/29.7 and 1.16 (s, H3-38)/27.9 in the NMR data of GP4 (Table 4.2) indicated the 

hydration of the propylene moiety, which was supported by its HRESIMS data 

analysis indicating one less index of hydrogen deficiency and one more oxygen atom 

than GP9. This interpretation was confirmed by the HMBC correlation of H3-37/H3-38 

with C-32 (δC 54.9) and C-36 (δC 72.6), suggesting that the two methyl groups were 

located at the oxygenated C-36 (Figure 4.4). 

 

4.3.4. Structural elucidation of compound GP5 
Physical and spectroscopic properties of picrorhizone E (GP5): Yellow gum; 

[𝛼]𝐷
20 +5 (c 0.10, MeOH); ECD (c 0.001, MeOH) λmax (Δɛ) 224 (+7.0), 238 (+1.5), 263 

(+8.5), 305 (–14.0), 327 (–1.2), 348 (–1.2) nm; 1H (400 MHz, methanol-d4) and 13C NMR 

(100 MHz, methanol-d4) spectroscopic data, see Table 4.2; and HRESIMS m/z 

627.3300 [M + Na]+ (calcd for C37H48O7Na, 627.3298). 

Picrorhizone E (GP5) was determined to have the molecular formula C37H48O7 

based on an [M + Na]+ ion at m/z 627.3300 in the HRESIMS data. A comparison of the 
1H and 13C NMR data of GP4 and GP5 indicated that the two compounds differed 

only at the C-32 substituent of the cyclobutyl unit. The resonances for a methyl 

group and an oxygenated carbon (δC 72.6) in GP4 were replaced by a carbonyl 

carbon resonating at δC 211.3 in GP5 (Table 4.2), which was also supported by its 

HRESIMS data analysis indicating 16 amu units less than GP4. The above data, which 
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was corroborated by HMBC correlations (Figure 4.4) of methine H-32 [δH 2.84 (1H, dd, 

J= 9.4, 7.2 Hz)] to C-36 (δC 211.3) and H3-37 (δH 2.02) with C-32 (δC 55.8) and C-36, 

suggested that C-36 was oxidized to a carbonyl carbon. 

 

Table 4.2. 1H (400 MHz) and 13C (100 MHz) NMR spectroscopic data of compounds 
GP4 and GP5 (δ in ppm) 

position 
GP4a GP5a 

δC δH (J in Hz) δC δH (J in Hz) 

1 194.8 
 

194.5 
 

2 118.4 
 

119.1 
 

3 193.5 
 

193.7 
 

4 68.8 
 

68.7 
 

5 49.3 
 

49.1 
 

6 47.9 1.49, m 48.1 1.46, m 

7eq 41.7 2.21, d (14.4) 41.7 2.18c 

7ax 
 

2.02, dd (14.4, 6.4) 
 

1.98, dd (14.0, 6.4) 

8 60.4d 
 

60.9d 
 

9 210.0 
 

211.3 
 

10 196.4 
 

197.0 
 

11 130.0 
 

131.4 
 

12 117.3 7.20, d (1.6) 117.4 7.19, d (1.6) 

13 146.2 
 

146.1 
 

14 152.5 
 

151.9 
 

15 115.2 6.72, d (8.4) 115.2 6.71, d (8.4) 

16 125.0 7.03, dd (8.4, 1.6) 124.6 7.04, dd (8.4, 1.6) 

17a 27.1 2.70, dd (12.8, 9.2) 27.2 2.67, dd (12.8, 8.0) 

17b 
 

2.54, br d (12.8) 
 

2.54, br d (12.8) 

18 121.1 5.01, br t (9.2) 121.6 5.00, br t (8.0) 
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position 
GP4a GP5a 

δC δH (J in Hz) δC δH (J in Hz) 

19 135.8 
 

135.1 
 

20 26.4 1.72, s 26.4 1.70, s 

21 18.3 1.69, s 18.3 1.68, s 

22 23.1 1.19, s 23.3 1.19, s 

23 27.3 0.99, s 27.4 0.97, s 

24a 30.2 2.13c 30.3 2.18c 

24b 
 

2.09c 
 

2.13c 

25 125.6 4.89c 125.9 4.91, t (8.0) 

26 133.7 
 

133.4 
 

27 26.0 1.67, s 26.0 1.65, s 

28 18.2 1.52, s 18.2 1.51, s 

29a 33.2 1.96, d (12.8) 33.5 1.92, d (12.0) 

29b 
 

1.64c 
 

1.60c 

30 40.7 1.64c 40.3 1.88c 

31 44.1 
 

45.8 
 

32 54.9 1.70c 55.8 2.84, dd (9.4, 7.2) 

33a 29.0 1.70c 27.5 1.95c 

33b 
 

1.65c 
 

1.71c 

34 31.8 1.16, s 30.2 1.34, s 

35 17.8 1.13, s 17.2 0.94, s 

36 72.6 
 

211.3 
 

37a 29.7 1.03, s 30.2 2.02, s 

37b 
    

38 27.9 1.16, s   
aRecorded in CD3OD. bRecorded in CDCl3. cOverlapping signals. dData were extracted from HMBC 

spectrum. 
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4.3.5. Structural elucidation of compound GP6 
Physical and spectroscopic properties of picrorhizone F (GP6): Pale yellow 

gum; [𝛼]𝐷20 +11 (c 0.10, MeOH); ECD (c 0.001, MeOH) λmax (Δɛ) 219 (+33.1), 265 (–28.7), 

306 (+6.0), 332 (+2.8), 344 (+2.6) nm; 1H (400 MHz, methanol-d4) and 13C NMR 

(100 MHz, methanol-d4) spectroscopic data, see Table 4.3; and HRESIMS m/z 

619.3637 [M + H]+ (calcd for C38H51O7, 619.3635) and 641.3468 [M + Na]+ (calcd for 

C38H50O7Na, 641.3454). 

The molecular formula of picrorhizone F (GP6) was determined to be 

C38H50O7 according to the HRESIMS data at m/z 619.3637 [M + H]+ and 641.3468 

[M + Na]+. The NMR data analysis showed that GP6 and GP9 were structurally 

related. The major difference was that the resonances associated with the prenyl 

unit in GP9 were absent in GP6 and replaced by signals for two methyls at δH/δC 1.04 

(s, H3-20)/25.4 and 1.08 (s, H3-21)/25.5, a methylene at δH/δC 2.25 (dd, J= 13.6, 6.8 Hz, 

H-17b) and 2.65 (dd, J= 13.6, 10.0 Hz, H-17a)/27.4, an oxygenated methine at δH/δC 

4.61 (dd, J= 10.0, 6.8 Hz, H-18)/94.1, and an oxygenated tertiary carbon at δC 71.9 (C-

19) (Table 4.3). The shielding of one of carbonyl carbons at δC 177.9 (C-3) in GP6 

compared to that of GP9 (δC 193.8) indicated that one oxygen of the enolic system 

was enolized. The COSY correlation of H2-17/H-18 and HMBC cross-peaks of H2-17 

with C-3, C-4, C-5, C-9, C-18, and C-19, H-18 with C-3, C-20 and C-21, H3-20 with C-18 

and C-21, and H3-21 with C-19 and C-20 showed cyclization of the C-4 prenyl unit to 

C-3 via an ether bridge to form the 2-(2ʺ-hydroxyprop-2ʺ-yl)tetrahydrofuran ring 

(Figure 4.4) [178]. 

 

4.3.6. Structural elucidation of compound GP7 
Physical and spectroscopic properties of picrorhizone G (GP7): Pale yellow 

gum; [𝛼]𝐷20 +8 (c 0.10, MeOH); ECD (c 0.001, MeOH) λmax (Δɛ) 220 (+27.6), 266 (–24.8), 

303 (+6.3), 326 (+2.8), 343 (+1.4) nm; 1H (400 MHz, methanol-d4) and 13C NMR 
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(100 MHz, methanol-d4) spectroscopic data, see Table 4.3; and HRESIMS m/z 

655.3245 [M + Na]+ (calcd for C38H48O8Na, 655.3247). 

The HRESIMS data analysis of picrorhizone G (GP7) at m/z 655.3245 [M + Na]+ 

indicated a molecular formula of C38H48O8 with a hydrogen deficiency index of 15. Its 
1H and 13C NMR data were similar to those of GP6. The differences involved the 

tetrahydrofuran ring in which signals for a methine at δH/δC 2.56 (m, H-19)/46.1 and a 

carbonyl carbon at δC 176.3 (C-21) in GP7 were observed instead of the resonances 

for the gem-dimethyl group and oxygenated tertiary carbon in GP6 (Table 4.3). The 

carbonyl carbon was part of a hydroxycarbonyl group according to its carbon 

chemical shift and HRESIMS analysis. The above argument, which was supported by 

the COSY correlations of H2-17/H-18 and H-18/H-19, and the HMBC correlations of H2-

17 with C-3, C-4, C-9, C-18, and C-19, H-18 with C-20 and C-21, H-19 with C-18, C-20, 

and C-21, and H3-20 with C-18, C-19, and C-21, suggested a modified C-18 substituent 

as shown in Figure 4.4. 

 

4.3.7. Structural elucidation of compound GP8 
Physical and spectroscopic properties of picrorhizone H (GP8): Pale yellow 

gum; [𝛼]𝐷20 ‒7 (c 0.10, MeOH); ECD (c 0.001, MeOH) λmax (Δɛ) 226 (+25.2), 259 (–32.8), 

303 (–2.5), 320 (+3.7), 350 (+2.9) nm; 1H (400 MHz, methanol-d4) and 13C NMR 

(100 MHz, methanol-d4) spectroscopic data, see Table 4.3; and HRESIMS m/z 

601.3526 [M + H]+ (calcd for C38H49O6, 601.3529) and 623.3343 [M + Na]+ (calcd for 

C38H48O6Na, 623.3349). 

The molecular formula of picrorhizone H (GP8) was deduced to be C38H48O6 

according to its [M + H]+ ion at m/z 601.3526 and [M + Na]+ ion at m/z 623.3343 in 

the HRESIMS, which was indicative of one more index of hydrogen deficiency than in 

the known metabolite GP9. The 1H and 13C NMR spectra were identical to the 

portions of GP9 possessing a phloroglucinol skeleton with two prenyl and one 3-
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isopropenyl-2,2-dimethylcyclobutylmethyl units. Unlike compound GP9, two 

aromatic singlets at δH 6.95 (H-13) and 7.44 (H-16) were identified in the 1H NMR data 

of GP8. The HMBC spectrum exhibited cross-peaks of H-13 with C-11 (δC 118.1) and 

three oxygenated carbons C-12 (δC 147.1), C-14 (δC 154.9), and C-15 (δC 151.3), as well 

as H-16 with C-12, C-14, C-15, and carbonyl carbon C-10 (δH 174.4), making it 

assignable to the 1,2,4,5-tetrasubstituted benzoyl ring in GP8. The 13C NMR data of 

GP8 displayed the characteristic signals of an enolized 1,3-diketo group at δC 194.9, 

119.2, and 178.8. The HMBC correlations from H2-17 to C-3 (δC 178.8), C-4 (δC 64.6), 

and C-9 (δC 207.8) and H2-29 to C-1 (δC 194.9), C-7 (δC 41.5), C-8 (δC 66.2), and C-9 

permitted construction of the other linkage between C-3 and C-12 (Figure 4.4) [179, 

180]. 

 

Figure 4.4. Key COSY (blue line) and HMBC (red arrow) correlations of picrorhizones 

A‒H (GP1‒GP8). 
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Table 4.3. 1H (400 MHz) and 13C (100 MHz) NMR spectroscopic data of compounds 

GP6‒ GP8 (δ in ppm) 

position 
GP6a GP7a GP8a 

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) 

1 197.8 
 

197.5 
 

194.9 
 

2 119.3 
 

119.3 
 

119.2 
 

3 177.9 
 

177.4 
 

178.8 
 

4 69.0 
 

68.9 
 

64.6 
 

5 47.9 
 

47.8 
 

49.5 
 

6 46.9 1.66, m 46.9 1.66, m 47.8 1.51, m 

7eq 41.1 2.09, d (14.0) 41.1 2.08, d (13.6) 41.5 2.25, d (14.0) 

7ax 
 

2.02, dd (14.0, 

6.4) 

 
2.03, dd (13.6, 6.8) 

 
2.03, dd (14.0, 5.6) 

8 61.9 
 

62.0 
 

66.2 
 

9 207.8 
 

207.7 
 

207.8 
 

10 193.2 
 

192.8 
 

174.4 
 

11 130.6 
 

130.5 
 

118.1 
 

12 116.7 7.29, d (1.6) 116.5 7.25, d, (1.6) 147.1 
 

13 146.7 
 

146.6 
 

104.0 6.95, s 

14 152.9 
 

152.9 
 

154.9 
 

15 115.6 6.75, dd (8.0) 115.8 6.78, d (8.0) 151.3 
 

16 124.9 7.16, dd (8.0, 1.6) 124.6 7.14, dd (8.0, 1.6) 109.6 7.44, s 

17a 27.4 2.65, dd (13.6, 

10.0) 

31.0 2.48c 27.6 2.91, dd (13.6, 9.2) 

17b 
 

2.25, dd (13.6, 

6.8) 

   
2.86, d (13.6) 

18 94.1 4.61, dd (10.0, 

6.8) 

88.9 4.89c 119.7 4.62c 

19 71.9 
 

46.1 2.56, m 136.1 
 

20 25.4 1.04, s 13.6 1.03, d (6.8) 26.0 1.42, s 
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position 
GP6a GP7a GP8a 

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) 

21 25.5 1.08, s 176.3 
 

18.5 1.73, s 

22 24.2 1.25, s 24.2 1.24, s 22.5 1.27, s 

23 27.5 1.11, s 27.5 1.10, s 26.9 1.12, s 

24a 30.8 2.51, dd (14.0, 

9.2) 

30.8 2.53c 30.4 2.03, d (14.0) 

24b 
 

2.42, d (14.0) 
 

2.41, d (14.8) 
 

1.78c 

25 126.0 4.88c 125.9 4.88c 124.7 4.90c 

26 134.0 
 

134.1 
 

134.3 
 

27 26.0 1.67, s 26.0 1.67, s 26.0 1.64, s 

28 18.4 1.58, s 18.4 1.59, s 18.0 1.41, s 

29a 33.6 1.82, d (13.6) 33.5 1.81, d (14.0) 31.8 1.84c 

29b 
 

1.57c 
 

1.58c 
 

1.71c 

30 39.7 1.72c 39.6 1.75, dd (10.0, 8.8) 39.3 1.84c 

31 43.6 
 

43.5 
 

43.5 
 

32 51.2 2.19c 51.2 2.19, dd (10.0, 8.0) 51.4 2.25c 

33a 30.3 1.59c 30.2 1.58c 30.5 1.78c 

33b 
 

1.51c 
 

1.53c 
 

1.76c 

34 30.5 1.19, s 30.4 1.19, s 30.6 1.18, s 

35 16.4 0.79, s 16.4 0.78, s 16.4 0.84, s 

36 146.6 
 

146.6 
 

146.6 
 

37a 109.7 4.70, s 109.7 4.69, s 109.7 4.77, s 

37b 
 

4.46, s 
 

4.45, s 
 

4.61, s 

38 23.3 1.60, s 23.3 1.60, s 23.4 1.64, s 
aRecorded in CD3OD. bRecorded in CDCl3. cOverlapping signals. 

 

4.3.8. Determining relative and absolute configurations of GP1‒GP9 

The relative configuration of GP1 was deduced on the basis of the 1H‒1H 

coupling constants, carbon chemical shifts, and NOESY experiments. The coupling 
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constant between H-6 and H-7ax (3J6,7ax= 6.8 Hz) and chemical shifts at δC 48.0 (C-6) 

and 27.4 (C-23) in the 13C NMR spectrum of GP1 favored an axial orientation for the 

prenyl unit at C-6 (Table 4.1), since the equatorial position of a C-6 substituent 

showed 3J6,7ax ≈13.0 Hz and chemical shifts at δC 40‒42 (C-6) and 16‒18 (C-23) [174, 

178, 181]. The NOESY correlations of H-17b/H3-23, H3-23/H-6, H-7ax/H3-23, and H3-

22/H-24a in GP1 suggested equatorial orientations for CH2-17 and CH3-22 and axial 

orientations for CH3-23 and CH2-24. Although the correlation of H2-29 with its 

neighboring protons was not observed, CH2-29 had to be equatorially oriented since 

the bridged bicyclic ring system of GP1 required that the side chains at C-4 and C-8 

be equatorially oriented (Figure 4.5). In addition, the 1H‒1H NOESY interactions of H-

30/H-32, H-30/H3-34, and H-32/H3-34 indicated that methines H-30 and H-32 in the 

cyclobutyl ring were cofacial (Figure 4.5). The chemical shifts of the gem-dimethyl 

groups at δC 30.6 (C-34) and 16.5 (C-35) supported the same orientation of H-30 and 

H-32, since the opposite orientation of two methine protons in the cyclobutyl unit 

was indicated by the presence of the gem-dimethyl group resonances at δC 23.6‒

25.1, as reported in caloinophyllin A and brasiliensophyllic acids A and B [182, 183]. 

The relative configurations of GP2–GP9 in the bicyclo[3.3.1]nonane core 

resembled GP1 based on the 3J6,7ax value, the C-6 and C-23 chemical shifts, and the 

NOESY data. The β-orientation of H-18 in GP6 was confirmed by the NOE correlations 

of H-17b/H-18 and H-18/H3-22 (Figure 4.5) and by comparing its NMR data with those 

of nujiangefolin C and thorelione B regarding the dihydrofuran moiety [178, 184]. The 

orientation of H-18 in GP7 was also assigned to be the same as GP6 based on its 

NOE interactions, except for the relative configuration at C-19 of GP7, which 

remained undetermined.      
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GP1 GP6 

Figure 4.5. Key NOE correlations (blue dashed line) of compounds GP1 and GP6. 

 

The absolute configurations of GP1 and GP9 were determined by two 

methods. The absolute configurations were established by X-ray diffraction using Cu-

Kα radiation combined with ECD data. The calculated ECD spectrum of GP9a was in 

good agreement with the experimental ECD spectrum of GP9, indicating a 

(4S,6S,8S,30S,32R) absolute configuration of GP9 (Figure 4.6). The effect of opposite 

configurations of the cyclobutyl ring on the ECD spectra was also assessed. The 

calculated spectra of GP9a and its diastereomer (4S,6S,8S,30R,32S)-GP9b were highly 

similar, suggesting that the ECD spectra were marginally influenced by different 

configurations at C-30 and C-32 (Figure C63, Supporting Information), although the 

optimized structure model GP9a was more energetically favorable than GP9b. The 

X-ray diffraction data analysis of GP9 using Cu-Kα radiation unequivocally confirmed 

the absolute configuration (Figure 4.6). The (4S,6S,8S,30S,32R) absolute configuration 

of 1 was defined based on the fact that the experimental ECD spectra of GP1 and 

GP9 were similar. The absolute configurations of GP2–GP5 were determined as 

(4S,6S,8S,30S,32R), (4S,6S,8S,30S,32R), (4S,6S,8S,30S,32S), (4S,6S,8S,30S,32S), 

respectively, based on the similarity of their experimental ECD spectra with those of 

GP1 and GP9 (Figure C63, Supporting Information). 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 4.6. (a) ORTEP diagram for compound GP9; (b) Comparison of calculated 

((4S,6S,8S,30S,32R)-GP9a, (4R,6R,8R,30R,32S)-GP9a enantiomer, 

(4R,6S,8R,19S,30S,32R)-GP6a) and experimental (GP1, GP6, GP9) ECD spectra; (c,d) 

experimental ECD spectra for GP2–GP8. 

 

The calculated ECD curve of GP6a was in a good agreement with the 

experimental ECD spectrum of GP6 (Figure 4.6), indicating a (4R,6S,8R,19S,30S,32R) 

absolute configuration. The (4R,6S,8R,19S,30S,32R) and (4R,6S,8R,30S,32R) absolute 

configurations of GP7 and GP8, respectively, were defined by comparison of their 

experimental ECD data with those of GP6. It is worth noting that compounds GP6‒

GP8 displayed antipodal experimental ECD spectra relative to those of GP1‒GP5 and 

GP9, although the corresponding compounds shared the same side chain 

orientations of the bicyclo[3.3.1]nonane moiety. This finding could imply that the 

keto-enol tautomerism in the core structure might affect the molecular conformation 
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and hence the ECD curves (Figure 4.6), as explained by a previous study reporting the 

opposite ECD spectra of two methylated (+)-guttiferone K derivatives with a different 

enolized position [174]. The above-mentioned data suggested that GP1‒GP5 and 

GP9 mainly exist in C-1 enol and C-3 keto forms, while compounds GP6‒GP8 are 

present in C-1 keto form and enolized C-3 via ether ring closure. 

 

4.3.9. Cytotoxic and anti-inflammatory activities of the isolated compounds 
Several polyprenylated benzoylphloroglucinols from the genus Garcinia have 

been previously reported to have anticancer and anti-inflammatory activities [18, 67, 

86, 173, 185, 186]. For example, (‒)-garcimultin D, a benzoylphloroglucinol featuring 

a tricyclo[4.3.1.03,7]decane core, induces apoptosis in human erythroleukemia cells 

and G1-phase cell-cycle arrest and inhibits leukemia oncogene expression [67]. 

Another benzoylphloroglucinol-type compound, garcinol, shows anti-inflammatory 

effects by inhibiting iNOS and COX-2 expressions and NF-κB and JAK/STAT-1 

activation in LPS-activated macrophages [18]. The above evidence prompted us to 

evaluate the isolated compounds (GP1‒GP12) for their cytotoxic properties against 

KB, HeLa S3, HT-29, MCF-7, and Hep G2 cancer cell lines using an MTT viability assa 

and for anti-inflammatory activity on COX-1 and COX-2 enzymes. Compound GP12 

was not tested for cyclooxygenase assays due to its small sample size. 

Based on the cytotoxicity results (Table 4.4), most of the compounds (GP3, 

GP5, GP6, GP8‒GP11) were cytotoxic against KB cancer cells, with IC50 values ranging 

from 5.2 to 9.9 µM. Surprisingly, only compound GP6 showed cytotoxicity against 

MCF-7 and Hep G2 cancer cells with IC50 values of 9.3 and 9.4 µM, respectively, when 

compared with the other compounds (GP1–GP5, GP7–GP9) bearing a similar 

cyclobutyl moiety. Among compounds GP1‒GP5 and GP9 tested against HeLa S3 

cancer cells, compounds GP1 and GP9 possessed cytotoxicity with IC50 values of 8.0 
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and 7.2 µM, respectively, indicating that the presence of both 3,4-dihydroxybenzoyl 

moiety and terminal double bond at the cyclobutyl unit may be required to 

enhance cytotoxicity. Compounds GP10 and GP11 were cytotoxic against MCF-7 

cancer cells with IC50 values of 5.9 and 7.2 µM, respectively, while no cytotoxicity 

was found for GP12. These results suggest that the absence of the 3,4-

dihydroxybenzoyl moiety may reduce the cytotoxic properties against those cancer 

cells. 

 

Table 4.4. Cytotoxic activitya of compounds GP1, GP3, GP5, GP6, and GP8‒GP11 
after 72 h of treatment 

Compound 
IC50 ± SD (µM) 

KB HeLa S3 MCF-7 Hep G2 HT-29 

GP1 >10 8.0 ± 0.9 NT NT NT 

GP2 9.9 ± 0.1 >10 >10 >10 >10 

GP5 7.4 ± 0.7 >10 >10 >10 >10 

GP6 5.9 ± 0.4 6.0 ± 0.4 9.3 ± 1.7 9.4 ± 0.8 >10 

GP8 5.2 ± 0.7 6.2 ± 0.1 >10 >10 >10 

GP9 7.0 ± 0.2 7.2 ± 0.4 >10 >10 >10 

GP10 6.4 ± 0.7 >10 5.9 ± 0.1 >10 >10 

GP11 5.3 ± 0.1 >10 7.2 ± 0.1 >10 >10 

Doxorubicinb 0.02 ± 0.01 0.15 ± 0.02 1.29 ± 0.02 1.00 ± 0.17 0.59 ± 0.03 
aResults are expressed as the mean values of three experiments ± SD; the other isolated 

compounds were inactive (IC50 > 10 µM); NT: not tested. bDoxorubicin was used as the positive 

control. 

 

The COX-1 and COX-2 assays (Table 4.5) revealed that only compounds 

GP6‒GP8 displayed selective inhibitory activity (>10% inhibition) towards COX-1 at a 

concentration of 20 µM. The highest activity was found for GP8 (35.2 ± 9.6% 
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inhibition). None of compounds led greater than 10% COX-2 inhibition at 20 µM. 

Preliminary structure-activity relationship studies suggest that the presence of the 

keto group at C-1 and enolized C-3 in compounds GP6‒GP8 seems to be important 

for increasing the COX-1 inhibitory activity. 

 

Table 4.5. COX-1 and COX-2 inhibitory activitya of compounds GP1‒GP11. 

Compound 
% inhibition ± SD 

COX-1 COX-2 

GP1 <10 <10 

GP2 <10 <10 

GP3 <10 <10 

GP4 <10 <10 

GP5 <10 <10 

GP6 10.7 ± 8.8 <10 

GP7 11.9 ± 1.8 <10 

GP8 35.2 ± 9.6 <10 

GP9 <10 <10 

GP10 <10 <10 

GP11 <10 <10 
aThe experiment was performed in duplicates and repeated twice. The final concentration of 

compounds used in the assay was 20 µM. Indomethacin (1.25 µM) and celecoxib (8.8 µM) were 

used as positive control with % inhibition of 78.4 ± 4.1 and 83.5 ± 4.8, respectively. NT: not 

tested. 

 

4.4. Chemotaxonomic study 
Polyprenylated benzoylphloroglucinols (PPBPs) are commonly found in 

specific genera belonging to the Cluciaceae family, including Garcinia, Clusia, and 

Rheedia. The PPBPs that have been hitherto isolated mostly possess a 
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bicyclo[3.3.1]nonane backbone connected to the benzoyl unit and some structural 

modifications occur at the prenyl or geranyl side chains, which attach to the bicyclic 

ring system [24]. The new compounds, picrorhizones A–H (GP1–GP8), are unique 

PPBPs that share a cyclobutyl moiety derived from a geranyl unit which are rarely 

found in plants. Garcinopicrobenzophenone and eugeniaphenone were the only 

PPBPs bearing this moiety reported previously from G. picrorhiza and G. 

eugeniaefolia [158, 187], while the PPBPs with ring expansion on the modified 

geranyl unit (cyclopentyl and cyclohexyl moieties), such as thorelione A and 

coccinone F, were isolated from Calophyllum thorelii and Moronobea coccinea [179, 

184]. The cytotoxicity results suggest that the PPBP compound class could be used 

as a lead compounds in cancer research. Previous reports also support the ability of 

PPBPs to inhibit the growth of various cancer cells through different mechanism of 

actions, such as cell cycle arrest and ROS generation induction leading to autophagy 

and apoptosis [24, 67, 185]. 
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Chapter V 
Conclusion 

 

A total of 70 secondary metabolites, including 23 previously unreported 

structures and 47 known analogues, were successfully isolated and characterized 

from three Indonesian Garcinia species, G. cylindrocarpa, G. tetrandra, and G. 

picrorhiza. These Garcinia phytochemicals are identified as xanthone and biphenyl 

derivatives bearing simple oxygenated functional groups and prenyl and geranyl side 

chains and polyprenylated benzoylphloroglucinols. Interestingly, the new 

metabolites tetrandraxanthones G‒H contain uncommon cyclized geranyl units at C-

8 of the xanthone skeleton and the new picrorhizone derivatives possess an unusual 

cyclobutyl-containing side chain attached to the core structure. Cytotoxic activity 

study showed that 9-hydroxycalabaxanthone, a pyranoxanthone isolated from G. 

tetrandra, was significantly active against all five human cancer cell lines (HeLa S3, 

Hep G2, HT-29, MCF-7, and KB) with IC50 values lower than 3.5 µM, while 2-

deprenylrheediaxanthone B from G. cylindrocarpa and picrorhizone F from G. 

picrorhiza displayed cytotoxic effects against four cancer cells, except HT-29, with 

IC50 values lower than 10 µM. In addition, picrorhizone H possessed the highest 

inhibitory effect towards COX-1 (35.2 ± 9.6% inhibition at 20 µM). 

The outcome of this work is expected to enrich information about chemical 

diversity of the genus Garcinia. It also provides an insight about lead compounds 

which have promising cytotoxic properties for further chemical modification and 

pharmacological study to develop anticancer drug candidates in future, not only 

showing remarkable activity against cancer cells, but also having minor adverse 

effects in human body. 
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Figure A1. 1H NMR spectrum of cylindroxanthone D (GC1) in acetone-d6 
 

 
Figure A2. 13C NMR spectrum of cylindroxanthone D (GC1) in acetone-d6 
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Figure A3. COSY spectrum of cylindroxanthone D (GC1) in acetone-d6 

 

 
Figure A4. HSQC spectrum of cylindroxanthone D (GC1) in acetone-d6 
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Figure A5. HMBC spectrum of cylindroxanthone D (GC1) in acetone-d6 

 
 

 
Figure A6. HRESIMS spectrum of cylindroxanthone D (GC1) in MeCN 
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Figure A7. 1H NMR spectrum of cylindroxanthone E (GC2) in acetone-d6 

 

 
Figure A8. 13C NMR spectrum of cylindroxanthone E (GC2) in acetone-d6 
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Figure A9. COSY spectrum of cylindroxanthone E (GC2) in acetone-d6 

 

 
Figure A10. HSQC spectrum of cylindroxanthone E (GC2) in acetone-d6 
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Figure A11. HMBC spectrum of cylindroxanthone E (GC2) in acetone-d6 

 
 

 
Figure A12. HRESIMS spectrum of cylindroxanthone E (GC2) in MeCN 
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Figure A13. 1H NMR spectrum of cylindroxanthone F (GC3) in acetone-d6 

 
 

 
Figure A14. 13C NMR spectrum of cylindroxanthone F (GC3) in acetone-d6 
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Figure A15. COSY spectrum of cylindroxanthone F (GC3) in acetone-d6 

 
 

 
 
 
 
 
 
 
 

 
 

 
Figure A16. HSQC spectrum of cylindroxanthone F (GC3) in acetone-d6 
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Figure A17. HMBC spectrum of cylindroxanthone F (GC3) in acetone-d6 

 
 
 

 
Figure A18. HRESIMS spectrum of cylindroxanthone F (GC3) in MeCN 
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Figure A19. 1H NMR spectrum of cylindroxanthone G (GC4) in CDCl3 

 
 

 
Figure A20. 13C NMR spectrum of cylindroxanthone G (GC4) in CDCl3 
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Figure A21. COSY spectrum of cylindroxanthone G (GC4) in CDCl3 

 
 

 
Figure A22. HSQC spectrum of cylindroxanthone G (GC4) in CDCl3 
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Figure A23. HMBC spectrum of cylindroxanthone G (GC4) in CDCl3 

 
 

Figure A24. HRESIMS spectrum of cylindroxanthone G (GC4) in CH2Cl2 
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Figure A25. 1H NMR spectrum of cylindrobiphenyl A (GC5) in CDCl3 

 
 

 
Figure A26. 13C NMR spectrum of cylindrobiphenyl A (GC5) in CDCl3 
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Figure A27. COSY spectrum of cylindrobiphenyl A (GC5) in CDCl3 

 
 

 
Figure A28. HSQC spectrum of cylindrobiphenyl A (GC5) in CDCl3 
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Figure A29. HMBC spectrum of cylindrobiphenyl A (GC5) in CDCl3 

 
 
 

 
Figure A30. HRESIMS spectrum of cylindrobiphenyl A (GC5) in MeCN 
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Figure A31. 1H NMR spectrum of cylindrobiphenyl B (GC6) in CDCl3 

 
 

 
Figure A32. 13C NMR spectrum of cylindrobiphenyl B (GC6) in CDCl3 
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Figure A33. COSY spectrum of cylindrobiphenyl B (GC6) in CDCl3 

 
 

 
Figure A34. HSQC spectrum of cylindrobiphenyl B (GC6) in CDCl3 
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Figure A35. HMBC spectrum of cylindrobiphenyl B (GC6) in CDCl3 

 
 
 

 
Figure A36. HRESIMS spectrum of cylindrobiphenyl B (GC6) in MeCN 
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Figure B1. 1H NMR spectrum of tetrandraxanthone A (GT1) in CDCl3 

 
 

 
Figure B2. 13C NMR spectrum of tetrandraxanthone A (GT1) in CDCl3 
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Figure B3. COSY spectrum of tetrandraxanthone A (GT1) in CDCl3 

 
 

 
Figure B4. HSQC spectrum of tetrandraxanthone A (GT1) in CDCl3 
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Figure B5. HMBC spectrum of tetrandraxanthone A (GT1) in CDCl3 

 
 

 
Figure B6. HRESIMS spectrum of tetrandraxanthone A (GT1) in MeCN 
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Figure B7. 1H NMR spectrum of tetrandraxanthone B (GT2) in CDCl3 

 
 

 
Figure B8. 13C NMR spectrum of tetrandraxanthone B (GT2) in CDCl3 
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Figure B9. COSY spectrum of tetrandraxanthone B (GT2) in CDCl3 

 
 

 
Figure B10. HSQC spectrum of tetrandraxanthone B (GT2) in CDCl3 
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Figure B11. HMBC spectrum of tetrandraxanthone B (GT2) in CDCl3 

 
 

 
Figure B12. HRESIMS spectrum of tetrandraxanthone B (GT2) in MeCN 
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Figure B13. 1H NMR spectrum of tetrandraxanthone C (GT3) in CDCl3 

 
 

 
Figure B14. 13C NMR spectrum of tetrandraxanthone C (GT3) in CDCl3 
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Figure B15. COSY spectrum of tetrandraxanthone C (GT3) in CDCl3 

 
 

 
Figure B16. HSQC spectrum of tetrandraxanthone C (GT3) in CDCl3 
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Figure B17. HMBC spectrum of tetrandraxanthone C (GT3) in CDCl3 

 
 

 
Figure B18. HRESIMS spectrum of tetrandraxanthone C (GT3) in MeCN 
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Figure B19. 1H NMR spectrum of tetrandraxanthone D (GT4) in acetone‒d6 

 
 

 
Figure B20. 13C NMR spectrum of tetrandraxanthone D (GT4) in acetone‒d6 
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Figure B21. COSY spectrum of tetrandraxanthone D (GT4) in acetone‒d6 

 
 

 
Figure B22. HSQC spectrum of tetrandraxanthone D (GT4) in acetone‒d6 
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Figure B23. HMBC spectrum of tetrandraxanthone D (GT4) in acetone‒d6 

 
 

 
Figure B24. HRESIMS spectrum of tetrandraxanthone D (GT4) in MeCN 
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Figure B25. 1H NMR spectrum of tetrandraxanthone E (GT5) in acetone‒d6 

 
 

 
Figure B26. 13C NMR spectrum of tetrandraxanthone E (GT5) in acetone‒d6 
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Figure B27. COSY spectrum of tetrandraxanthone E (GT5) in acetone‒d6 

 
 

 
Figure B28. HSQC spectrum of tetrandraxanthone E (GT5) in acetone‒d6 
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Figure B29. HMBC spectrum of tetrandraxanthone E (GT5) in acetone‒d6 

 
 

 
Figure B30. HRESIMS spectrum of tetrandraxanthone E (GT5) in MeCN 
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Figure B31. 1H NMR spectrum of tetrandraxanthone F (GT6) in CDCl3 

 
 

 
Figure B32. 13C NMR spectrum of tetrandraxanthone F (GT6) in CDCl3 
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Figure B33. COSY spectrum of tetrandraxanthone F (GT6) in CDCl3 

 
 

 
Figure B34. HSQC spectrum of tetrandraxanthone F (GT6) in CDCl3 
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Figure B35. HMBC spectrum of tetrandraxanthone F (GT6) in CDCl3 

 
 

 
Figure B36. HRESIMS spectrum of tetrandraxanthone F (GT6) in MeCN 
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Figure B37. 1H NMR spectrum of tetrandraxanthone G (GT7) in CDCl3 

 
 

 
Figure B38. 13C NMR spectrum of tetrandraxanthone G (GT7) in CDCl3 
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Figure B39. COSY spectrum of tetrandraxanthone G (GT7) in CDCl3 

 
 

 
Figure B40. HSQC spectrum of tetrandraxanthone G (GT7) in CDCl3 
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Figure B41. HMBC spectrum of tetrandraxanthone G (GT7) in CDCl3 

 
 

 
Figure B42. HRESIMS spectrum of tetrandraxanthone G (GT7) in MeCN 
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Figure B43. 1H NMR spectrum of tetrandraxanthone H (GT8) in CDCl3 

 
 

 
Figure B44. 13C NMR spectrum of tetrandraxanthone H (GT8) in CDCl3 
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Figure B45. COSY spectrum of tetrandraxanthone H (GT8) in CDCl3 

 
 

 
Figure B46. HSQC spectrum of tetrandraxanthone H (GT8) in CDCl3 
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Figure B47. HMBC spectrum of tetrandraxanthone H (GT8) in CDCl3 

 
 

 
Figure B48. HRESIMS spectrum of tetrandraxanthone H (GT8) in MeCN 
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Figure B49. 1H NMR spectrum of tetrandraxanthone I (GT9) in acetone‒d6 

 
 

 
Figure B50. 13C NMR spectrum of tetrandraxanthone I (GT9) in acetone‒d6 
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Figure B51. COSY spectrum of tetrandraxanthone I (GT9) in acetone‒d6 

 
 

 
Figure B52. HSQC spectrum of tetrandraxanthone I (GT9) in acetone‒d6 
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Figure B53. HMBC spectrum of tetrandraxanthone I (GT9) in acetone‒d6 

 
 

 
Figure B54. HRESIMS spectrum of tetrandraxanthone I (GT9) in MeCN 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 173 

 
Figure C1. 1H NMR spectrum of picrorhizone A (GP1) in methanol-d4 

 
 

 
Figure C2. 13C NMR spectrum of picrorhizone A (GP1) in methanol-d4 
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Figure C3. COSY spectrum of picrorhizone A (GP1) in methanol-d4 

 
 

 
Figure C4. HSQC spectrum of picrorhizone A (GP1) in methanol-d4 
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Figure C5. HMBC spectrum of picrorhizone A (GP1) in methanol-d4 

 
 

 
Figure C6a. NOESY spectrum of picrorhizone A (GP1) in methanol-d4 
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Figure C6b. Expanded NOESY spectrum of picrorhizone A (GP1) in methanol-d4 

 
 
 

 
Figure C7. HRESIMS spectrum of picrorhizone A (GP1) in methanol 
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Figure C8. 1H NMR spectrum of picrorhizone B (GP2) in methanol-d4 

 
 

 
Figure C9. 13C NMR spectrum of picrorhizone B (GP2) in methanol-d4 
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Figure C10. COSY spectrum of picrorhizone B (GP2) in methanol-d4 

 
 

 
Figure C11. HSQC spectrum of picrorhizone B (GP2) in methanol-d4 
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Figure C12. HMBC spectrum of picrorhizone B (GP2) in methanol-d4 

 
 

 
Figure C13. NOESY spectrum of picrorhizone B (GP2) in methanol-d4 
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Figure C14. HRESIMS spectrum of picrorhizone B (GP2) in methanol-d4 
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Figure C15. 1H NMR spectrum of picrorhizone C (GP3) in CDCl3 

 
 

 
Figure C16. 13C NMR spectrum of picrorhizone C (GP3) in CDCl3 
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Figure C17. COSY spectrum of picrorhizone C (GP3) in CDCl3 

 
 

 
Figure C18. HSQC spectrum of picrorhizone C (GP3) in CDCl3 
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Figure C19. HMBC spectrum of picrorhizone C (GP3) in CDCl3 

 
 

 
Figure C20. NOESY spectrum of picrorhizone C (GP3) in CDCl3 
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Figure C21. HRESIMS spectrum of picrorhizone C (GP3) in MeCN 
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Figure C22. 1H NMR spectrum of picrorhizone D (GP4) in methanol-d4 

 
 

 
Figure C23. 13C NMR spectrum of picrorhizone D (GP4) in methanol-d4 
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Figure C24. COSY spectrum of picrorhizone D (GP4) in methanol-d4 

 
 

 
Figure C25. HSQC spectrum of picrorhizone D (GP4) in methanol-d4 
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Figure C26. HMBC spectrum of picrorhizone D (GP4) in methanol-d4 

 
 

 
Figure C27. NOESY spectrum of picrorhizone D (GP4) in methanol-d4 
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Figure C28. HRESIMS spectrum of picrorhizone D (GP4) in methanol 
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Figure C29. 1H NMR spectrum of picrorhizone E (GP5) in methanol-d4 

 
 

 
Figure C30. 13C NMR spectrum of picrorhizone E (GP5) in methanol-d4 
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Figure C31. COSY spectrum of picrorhizone E (GP5) in methanol-d4 

 

 

 
Figure C32. HSQC spectrum of picrorhizone E (GP5) in methanol-d4 
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Figure C33. HMBC spectrum of picrorhizone E (GP5) in methanol-d4 

 
 

 
Figure C34. NOESY spectrum of picrorhizone E (GP5) in methanol-d4 
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Figure C35. HRESIMS spectrum of picrorhizone E (GP5) in methanol 
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Figure C36. 1H NMR spectrum of picrorhizone F (GP6) in methanol-d4 

 
 

 
Figure C37. 13C NMR spectrum of picrorhizone F (GP6) in methanol-d4 
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Figure C38. COSY spectrum of picrorhizone F (GP6) in methanol-d4 

 
 

 
Figure C39. HSQC spectrum of picrorhizone F (GP6) in methanol-d4 
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Figure C40. HMBC spectrum of picrorhizone F (GP6) in methanol-d4 

 
 

 
Figure C41. NOESY spectrum of picrorhizone F (GP6) in methanol-d4 
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Figure C42. HRESIMS spectrum of picrorhizone F (GP6) in methanol 
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Figure C43. 1H NMR spectrum of picrorhizone G (GP7) in methanol-d4 

 
 

 
Figure C44. 13C NMR spectrum of picrorhizone G (GP7) in methanol-d4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 198 

 
Figure C45. COSY spectrum of picrorhizone G (GP7) in methanol-d4 

 
 

 
Figure C46. HSQC spectrum of picrorhizone G (GP7) in methanol-d4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 199 

 
Figure C47. HMBC spectrum of picrorhizone G (GP7) in methanol-d4 

 
 

 
Figure C48. NOESY spectrum of picrorhizone G (GP7) in methanol-d4 
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Figure C49. HRESIMS spectrum of picrorhizone G (GP7) in methanol 
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Figure C50. 1H NMR spectrum of picrorhizone H (GP8) in methanol-d4 

 
 

 
Figure C51. 13C NMR spectrum of picrorhizone H (GP8) in methanol-d4 
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Figure C52. COSY spectrum of picrorhizone H (GP8) in methanol-d4 

 
 

 
Figure C53. HSQC spectrum of picrorhizone H (GP8) in methanol-d4 
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Figure C54. HMBC spectrum of picrorhizone H (GP8) in methanol-d4 

 
 

 
Figure C55. NOESY spectrum of picrorhizone H (GP8) in methanol-d4 
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Figure C56. HRESIMS spectrum of picrorhizone H (GP8) in methanol 
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Figure C57. 1H NMR spectrum of garcinopicrobenzophenone (GP9) in methanol-d4 

 
 

 
Figure C58. 13C NMR spectrum of garcinopicrobenzophenone (GP9) in methanol-d4 
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Figure C59. COSY spectrum of garcinopicrobenzophenone (GP9) in methanol-d4 

 
 

 
Figure C60. HSQC spectrum of garcinopicrobenzophenone (GP9) in methanol-d4 
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Figure C61. HMBC spectrum of garcinopicrobenzophenone (GP9) in methanol-d4 

 
 

 
Figure C62. NOESY spectrum of garcinopicrobenzophenone (GP9) in methanol-d4 
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(a) 

  
 

 

 

(b) 

  
 9a; E = −1929.58432 Hartree 9b; E = −1929.57743 Hartree 
 

 
 

 6a; E = −2004.82212 Hartree 6b; E = −2004.81598 Hartree 
 
Figure C63. (a) Calculated (6a, 6b, 9a, 9a enantiomer, 9b) and experimental ECD 

spectra (1‒9) of GP1‒GP9 and (b) Optimized structures and molecular energies (E) 
from ECD calculation using TD-DFT method for diastereomeric models 9a and 9b, as 
well as 6a and 6b. 
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Table C1. 1H (400 MHz) and 13C (100 MHz) NMR spectroscopic data of GP9 in 
methanol-d4 

position 
GP9 
δC δH (J in Hz) 

1 194.8 
 

2 118.3 
 

3 193.8 
 

4 68.8 
 

5 49.3 
 

6 47.8 1.48, overlap 
7eq 41.7 2.20, d (14.0) 
7ax 

 
2.01, dd (14.0, 6.8) 

8 61.3 
 

9 209.9 
 

10 196.3 
 

11 129.9 
 

12 117.3 7.20, d (1.6) 
13 146.3 

 

14 152.5 
 

15 115.2 6.72, d (8.4) 
16 125.0 7.03, dd (8.4, 1.6) 
17a 27.1 2.70, dd (13.2, 9.2) 
17b 

 
2.55, br d (13.2) 

18 121.1 5.01, br t (9.2) 
19 135.8 

 

20 26.4 1.72, s 
21 18.3 1.69, s 
22 23.1 1.19, s 
23 27.3 0.99, s 
24a 30.2 2.10, overlap 
24b 

 
2.03, overlap 
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25 125.6 4.88, overlap 
26 133.7 

 

27 26.0 1.67, s 
28 18.2 1.52, s 
29a 33.4 1.95, d (14.8) 
29b 

 
1.61, overlap 

30 40.0 1.77, overlap 
31 43.8 

 

32 51.1 2.25, m 
33a 30.4 1.74, overlap 
33b 

 
1.67, overlap 

34 30.7 1.21, s 
35 16.5 0.85, s 
36 146.6 

 

37a 109.4 4.74, s 
37b 

 
4.53, s 

38 23.4 1.63, s 
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