Chapter Il

THEQRY
Crystal Symmetry

A crystal consists of atoms arranged in a pattern that
repeats periodically in three dimensions. The pattern may
consist of a single atom, a group of atoms or a molecule.

The basic pattern of atoms (the unit cell) in the crystal

are identical and they have identical orientations in space 8o
that an ideal crystal, which is imagined to extend to infinity
in all directions, looks exactly the same when it is viewed
from corresponding points in different unit cells.

In dividing space by three sets of planes, unit cells
of various shapes can be produced. For example, if the planes
in the three sets are all equally spaced and mutually
perpendicular , the unit cell is cubic. Only seven different
kinds of cells are produced, these correspond to the seven
crystal systems. Bravais demonstrated that there are only
fourteen point lattices (called Bravais lattices ) by the
arrangements of atoms in various positions in the unit cell.

In Table 1, the symbol P ( R used especially for the
rhombohedral system ) refers to primitive cells which have only
one lattice point per cell. Any cell contains additional points

in the interior or on faces is nonprimitive. F and | refer to



face-centered and body-centered cells, respectively, while A 1B
and ¢ for base-centered cells, centered on one pair of opposite
faces A, Bor c. (The Aface is the face defined by the b and ¢
axes, etc. )

Symmetry operation is referred to as some movement after
which no change could be detected in an object. The symmetry
operations have the property that at least one point of the
object is not moved by the operation. In the groups consisting
of combinations of such symmetry elements there is also at
least one point ( center of gravity ) that remains fixed, and
these groups are , therefore, called point groups.

The symmetry elements of a crystal are limited to
1, 2, 3, 4 and 6-fold rotations. Although all symmetry elements
are permissible for isolated molecules, it is not possible for
a crystal to have symmetries such as Cj. The reason is that it
is impossible to fill all of space with figures of 5-fold symmetry,
Therefore, there are only 32 combinations of symmetry elements
possible in a crystal and these are the thirty-two point groups.

The regular arrangement of the unit cells in a crystal
permits other symmetry operations besides the point group
operations. In any crystal there will be a number of translations
through certain distances in definite directions. The symmetry
operations of a crystal obtained by combining point group
operations with translations can be expressed in terms of two
distinct kinds a screw rotation ( a rotation about an axis
accompanied by a translation along the axis ), and a glide plane
reflection ( a reflection in a plane accompanied by a translation



along a line lying in the plane ). By combining translation to
the symmetry elements of the thirty-two point groups, 230 different

arrays of symmetry elements ( space groups ) CaN he produced.

Table 1. The crystal systems, Bravais lattices and the

point groups.
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Table 1. The crystal system”, Bravais lattices and the
(cont.) point groups.
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Table 2. Space groups in orthorhombic system.
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Table 2. Space groups in orthorhombic system.
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Table 2. Space groups in orthorhombic system,
(coat.)
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Space Group Notation
1. Hermann- Mauguin Notation. The first symbol is
designated by a capital letter which refers to the Bravais
lattice (p, A B, ¢, Fand I).
p, a primitive lattice
A B, ¢, lattices which are centered on the A B, ¢
faces respectively
F, a lattice which is centered on all faces

1, a body-centered lattice

The next symbol denotes tile principal axis. Rotation
axes and rotation-inversion axes are denoted by 1, 2, 3, 4, 6
and |, 2, 3, 4, 6 respectively. Thus P2 indicates a primitive
lattice with a twofold axis. The screw axis is designated by

denotes an n-fold axis of rotation associated with a

translation of p/n displacement parallel to the axis. Thus
P27 indicates a primitive lattice with a twofold screw axis
(2-fold rotation axis with 1/2 translation). Reflection plane
Is 1 glide planes are a, 1), ¢, dand . a, b and c are

axial glide [lianes with a glide ol' one half parallel to

crystallographic axes a, b and c, that are % a, zlb and 210,

respectively, d is a diamond glide plane with a glide of

| (a+b), | (b+c), or 1 (c+a). IS a diagonal glide plane
4 4 4

with a glide of 21 (b+c), % (at+b) or T% (c+a). Thus Pc indicates

a primitive lattice with a c-glide plane. If there is a mirror



13

rotation axis, the symbol is n/m. For example, p 2/m indicates a
primitive lattice with twofold axis and a mirror plane perpendicular
to it. p 2™/c means a primitive lattice with a twofold screw axis
and a c-glide plane perpendicular to it.

The following symbols are symmetries of secondary axes
and mirror planes or glide planes perpendicular to these axes.
The symbols are written in an order which indicates the orientation
of the symmetry elements in the direction of the three
crystallographic axes a, b, ¢ in an order. For example, Pbcm means
that, in a primitive orthorhombic lattice, there is a b-glide plane
perpendicular to the a-axis, a c-glide plane perpendicular to
the b-axis, and a mirror plane perpendicular to the c-axis.

2. Schoenflies Notation. It is the symbol for the
corresponding point group obtained by ignoring the translational
component of any space operation, plus an arbitrary numerical
superscript, for example, C2k ( the Hermann-Mauguin symbol
is p 2™c ). The symbol denotes the existence of two-fold rotation
axis and a reflection plane, so the crystal system is monoclinic.
The superscript 5 is the order which is derived by Schoenflies.
This notation is rather arbitrary and uninformative, so it is
nowadays little use
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Crystallization ( 24 )

The crystallization can be considered to comprise three steps
1. Achievement of supersaturation
2. Formation of crystal nuclei

3. Growth of the crystals
1. Saturation and Supersaturation

A solution in equilibrium with the solid phase is said
to be saturated with respect to that solid. It is possible to
prepare a solution containing much more dissolved solid than
that represented by saturation condition, such a solution is said
to be supersaturated. The supersaturation of a system may be
achieved by removing some of the solvent from the solution
(evaporation)l or cooling the saturated solution. The addition
of ions Common to the salt in saturated solution will precipitate
th1t salt due to common ion effect. The saturated solution can
be made supersaturated by adding a solvent in which the salt

cannot dissolve.
2. Nucléation

The condition of supersaturation alone is not sufficient
cause for a system to crystallize. Before crystal growth, there
must exist in the solution a number of minute solid bodies which
are known as centers of crystallization, seeds, or nuclei.

Nucléation may occur spontaneously or it may be induced artificially.
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2.1 Spontaneous Nucléation

The mechanism of nucléation is as follows: minute
structures are formed, first of all from the collision of two
molecules, then from that of a third with the pair, and so on.
Short chains may be formed initially, or flat monolayers, and
eventually the lattice structure is built up. The construction
process, which occurs very rapidly, can only continue in local
regions of very high supersaturation, and many of these ‘sub-nuclei’
fail to achieve maturity; they simply redissolve because they are
extremely unstable. If, however, the nucleus grows beyond a
certain critical size, it becomes stable under the average conditions
of supersaturation. The critical size, therefore, represents the
minimum free energy of the particle.

2.2 Induced Nucléation

Agitation or bubbling of a gas through a
solution can often induce nucléation. Most agitated solutions
nucleate spontaneously at lower degrees of supersaturation than
quiescent ones. Probably the best method for inducing
crystallization is to inoculate or seed the supersaturated solution
with small particles of the material to be crystallized. The
seeds unnecessarily have to consist of the material being
crystallized, unless absolute purity of the final product is
required. A few tiny crystals of some isomorphous substance may
be used to induce crystallization.

000011
t P371752
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3. Crystal Growth

As soon as stable nuclei have been formed in a
supersaturated system, they begin to grow into crystals of visible
size. There are many theories explaining the mechanism and rate
of crystal growth, and these are; 1 surface energy ', ' diffusion '

and ' adsorption-layer ' theories.

Me surface energy theories are based on the postulation
that a growing crystal assumes the shape with minimum surface energy.
The diffusion theories presume that matter is deposited on a
crystal face at a rate proportional to the difference in concentration
between crystal face and the bulk of the solution.

Adsorption Layer Theories

The concept of a mechanism of crystal growth based
on the existence of an adsorbed layer of solute atoms or molecules
on a crystal face was first suggested by Volmer (25).

Atoms or molecules in the vicinity of a crystal
face will tend to attach themselves onto the surface in positions
where the attractive forces are greatest, i.e. they will migrate
towards positions where a maximum number of like elements are
located ( Figure la ). This step-wise build up will continue until
the whole plane surface is completed ( Figure Ib ). Before a
further layer can be built up again, another ' center of
crystallization 1 must come into existence on the plane surface,
and it is suggested that a monolayer island nucleus, usually called
a two-dimensional nucleus, is created ( Figurelc. ).
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Solid Solutions

Aseries of solid solutions is a set of solid mixtures
having two ( or more ) components crystallized in the same lattice
arrangement but in which the composition and lattice parameter
progressively change together.

Three main types of solid solution are recognized( 26 )
1. Substitutional Solid Solution,

lons or atoms in the structure are replaced by foreign
atoms or ions of similar radius without causing serious distortion
of the structure. When the charge and radii of substituting ions
are similar to the substituted ions, then complete solid solution
may exist between the two end-member compounds, for example,
substitution of magnesium (11) fon ( Mg2+) by ferrous lon (Fe2+)
gives a series of products from magnesium silicate ( Mg~SiO?) through
( My,Fe to “erroUB silicate ( FerSIOM ). If ions differ
markedly in size, then selid solution will occur to a limited extent.

Substitutional solid solution involving different valencies
of the substituted and substituting elements is also possible, and
is known as altervalent substitutional solid solution. In order to
maintain electrical neutrality in the crystal, one ( or more ) of
the following processes must occur:

a) substitution of a second element of a different, and
compensating valency, at the same time.

b) addition of an ion into an interstitial position in
the structure.

¢) the development of a vacancy.
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2. Interstitial Solid solution»

Foreign atoms or ions do not replace atoms or i0ss in
the structure at the lattice point but fit isto interstices (cavities)
of the lattice which are sufficiently large to accommodate extraneous
atoms. This type is very common ia metals, which take up hydrogen,
carbon, boron and nitrogen, all of which are small atoms, in
interstices of the lattice to form solid solution. If a substance
has an open structure, interstitial solid solution may take place
even with atoms or ions of a considerable size.

3. Omission Solid Solution.

This type of solid solution is associated with defect
lattices, ia which some of the atoms are missing from sites in a
structure, leaving vacant lattice positions. For example, the
mineral pyrrhotite, Fel —, in which analyses show more sulfur
than corresponds to the formula FeS. It was, for a long time,
described as solid solution of sulfur in FeS. Actually the excess
of sulfur shown by analyses is due to the absence of some iron atoms
from their places in the lattice; there is a deficiency of iron,
not an excess of sulfur. Iron will be ferrous and ferric
to provide electrical neutrality.

The Formation of Solid Solution™ ( Mixed Crystals )

Solid solutions in a sense of mixed crystals are formed
when two substances crystallize from a solution or a molten mixture
of the two salts, to form a common crystal structure in which the
proportions of the components may vary continuously. The phenomenon
of mixed crystal formation can occur to substances which are
isomorphous. Substances with analogous formulas and ia which the
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relative sizes of cations and anions are similar often have closely
related crystal structures; they are said to be isomorphous, and
the phenomenon is known as isomorphism. However, isomorphism is

neither necessary to nor sufficient for mixed crystal formation.

It is true that many pairs of substances with similar
crystal structures form either a limited or complete range of
solid solutions or mixed crystals. There are, however, so many
complicating factors that no deductions can be made about the
structures of two substances from their ability or failure to
form mixed crystals. Compounds with quite different structures
such as silver bromide, AgBr (sodium chloride structure) and
silver iodide, Agi (wurtzite structure), and even different types
of formula such as calcium fluoride, CaF™ and yttrium fluoride, YF*
form mixed crystals. On the other hand, substances with the same
type of crystal structure do not necessarily form mixed crystals
such as calcium carbonate ( calcite structure ) and sodium nitrate.
However, some requirements for the formation of mixed crystals are

1. Size Factor.

The complete miscibility of similar structurally metals
Is possible only if the sizes of the atoms do not differ by more
than 15 percent. Potassium chloride forms mixed crystals with
potassium bromide because the sizes of chloride and bromide ions
are quite close.

2. Type of Bond.

The bond in the two compounds must be of similar type,
for example, potassium chloride ( ionic bend ) formSmixed crystals
with potassium bromide ( ionic bond ) but not with lead sulfide

( covalent bond ) which has the same crystal structure as potassium
chloride.
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3. Chemical Similarity.

Calcium carbonate ( calcite structure ) and sodium nitrate
cannot form mixed crystals though the cell constants are nearly the
same because sodium nitrate is soluble in water while calcium
carbonate is insoluble.

Crystal Spectra

An interest in the infra-red and Raman spectra of crystals
has been stimulated by recent contributions to the theoretical
aspects of their interpretations. The spectra of molecules fixed
in a lattice differ from those of free molecules. The selection
rules which operate., are affected by the crystal symmetry as well as
the molecular symmetry. In crystalline state, the frequency is
shifted or splits up into a number of components, otherwise new
bands may appear. These spectral changes accompanying solidification
may be attributed to two distinguishable influences of the lattice(2.7,).

1. The molecular symmetry nay be perturbed by the crystal's
potential field, the symmetry is lowered and results in lifting
the degeneracy of a degenerate normal mode of an isolated species
and leading to a multiplet structure. This splitting is nailed
site group splitting.

2. The molecular vibrations may be perturbed by coupling with
identical molecular systems through intermolecular forces. A
nondegenerate and degenerate vibrations in an isolated species may
exhibit a multiplet structure in a multiply occupied unit cell of
a crystal due to the correlation field effects. This splitting is
called factor group ( correlation field ) splitting.



In verifying the theery and experimentally determining the
relative importance of the two perturbations, it would be convenient

to study these perturbations individually.
. Potential Energy of Crystal

Hornig (28) has bhown that the potential energy of the
crystal is expressed 1 inathe harmonic approximation, as

= 0 | A .
SRR S R T
where the summations extend over all of the molecules in the unit cell.

The various terms are

VI represents the potential energy function of the
free molecule.

vl represents the perturbation to V* due to the field
of the crystal at the site of the j*- molecule.

VA represents interactions between vibrations in
different molecules.

VL represents the lattice potential.

represents interactions between lattice and internal

vibrations1

The perturbation VJ causes the potential energy of the molecule
in the crystal to differ from that in the vapour phase, the
resulting effects are called site group ( static field ) effects.
These effects are a direct measure of the influence which the crystal
lattice exerts upon a molecule. Site group effects can produce shifts
in frequency and may lead to a splitting of a degenerate vibration and
this splitting is called site group splitting.



V . is very small ( about 0.1 cml* in 3000 cm7*) so it is
neglected. The lattice frequencies are usually small in
comparison with the internal frequencies of the molecule. The
intermolecular coupling or v _is much weaker than the
intramolecular forces, and so the effects of the crystal field
can be treated as a perturbation of the molecular field.

It is possible to eliminate the coupling of the internal
modes of different molecules ( correlation field effects ) hy
studying molecule Ain a dilute solid solution of an isomorphous
molecule B or with an isotopic species. This corresponds to partial
or complete elimination of the potential term V, in the potential
function which was proposed by Hornig. If the crystal parameters of
A and B are close together and they have the same site symmetry,
it is possible to study the influence of site symmetry alone on the
spectrum of A. Thus the site group splitting can be distinguished
fron factor group ( correlation field ) splitting.

The two approaches which are advanced to solve the problem
of determining selection rules of crystal spectra are the
site-group approximation, which concerns only the first terra of the
potential energy expression, and the factor-group approximation,
which takes the first and the second terms into account. Although
each of these approaches is based on a unique set of assumptions,
both are founded that the symmetry governing the vibrations in
crystals must be the symmetry of the crystal.
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The Site-group Approximation and Site Symmetry.

Halford (29) in 1946 developed this approximation in order to
provide a simple model for interpreting the features of vibrational
spectra of crystals. The approximation may be carried out if the

site symmetries of molecules or ions in the crystal are known.

The point group in the fourteen Bravais lattices represent
the full symmetry of the lattice if the lattice points are
occupied by structureless points. But in d'ystals which the unit cells
are occupied by molecules, the symmetry of the unit cell will be
lower if the molecules do not have the full symmetry of the lattice
poiutg. The local symmetry of the molecule in the unit cell is
site symmetry. Since one or more symmetry elements pass through
each molecule, the site symmetry is described by the symmetry group

(called site group ).

For example, a cubic system ( Figure 2 ), a structureless point
at the center would he unmoved by any of tile operations of the O
point group, so this point exhibits tile octahedral symmetry of tile
system. A cubic object placed at the center would also preserve
the octahedral symmetry but an object witli less than cubic symmetry

would cause the symmetry of the unit cell to be lower.

Y 2 . i
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Figure 2 a) Btruetuneless point at the center of a cubic lattice,

b) Cubic structure at the center of a cubic lattice.
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The site symmetry ol' oae of the corners of the cube is
defined by the identity, the single Cg axis and the three planes
of symmetry which pass through the corner and ie thus ¢ (Figure 3 ).

The octahedral symmetry of the system is also preserved if the

corners of the cube are occupied by objects with symmetry.
6
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Figure 3 . View along the body diagonal of a cube illustrating
the site symmetry at a corner.

The site group is always one of the thirty-two point groups
and must be a subgroup of the space group. Since any point in a
unit cell is related to one or more other points in the unit cell
by at least one element of symmetry, sites of a particular site

group symmetry will occur in sets.

It is not necessary to know the site symmetry of each
atom since tile atoms are grouped into molecules or ions, it is
necessary only to know the symmetry of the sites occupied by the
centers of gravity of these ])ecies. This information is usually,
but not always, obtained from the X-ray structure study. In those

cases when the site symmetry is not known, it cun be deduced by

two useful conditions.
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1. The site group must be a subgroup of the molecular point
group and space group.

2. The positions of centers of gravity of the molecules must
occupy a complete set of sites.

These two conditions often, but not always, suffice to fix
the site symmetry of the molecules or ions in a crystal for which
the space group and number of molecules per unit cell are known.

The assumption of the site group approximation is that
in the crystal the intermolecular coupling of vibrational motions
is negligible since it is extremely weak. The internal ( molecular )
modes arise from perturbations of the free-ion modes due to the
change in symmetry of the site. Thus, the number and activities
of internal modes are found by using the site symmetry of the
particular molecule of polyatomic ion in the crystal. Since the
site symmetry is usually lower than the symmetry of the free
molecule, the effect of the site group approximation for internal
nodes is to split degeneracies of the normal modes of the
free molecule.

An analysis of the spectra of calcite and aragonite
will be undertaken as an example of this approximation. The
vibrational spectra of calcite and aragonite crystals are different,
although both have the same composition ( calcium carbonate ).
This result can be explained if the difference in site symmetry
of the carbonate ion between these crystals is considered. According
to X-ray analysis, the space group of calcite is and number of
molecules per unit cell (z) is two. Molecular point group is Djk*
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Halford" table (2*1) gives

D3(2)’ c3i(2)” °°c3 (4) ci (6)" <~c2 (6)

as possible site symmetries for the space group D& ( the number

in front of the point group notation indicates the number of
distinct sets of sites and that in the brackets denotes the

number of equivalent sites for each set ). When applying the
condition that the positions of centers of gravity of the molecules
must occupy a complete set of sites, only 3 (2) and C3i(2) are
accepted. The condition that the site group must be a subgroup of
the molecular point group and space group eliminates ¢  since

it is not a subgroup of the molecular point group @3h* Thus the
site symmetry of the carbonate ion in calcite is

On the other hand, the space group of aragonite is
and the number of molecules per unit cell (z) is four. Molecular
point group is D3k» Halford's table gives

2¢. (4), 00c8 (4)

as possible site symmetries. Since G, is not a subgroup of
molecular point group °sh” the site symmetry of the carbonate ion
in aragonite must be Cg. Thus the symmetry of the carbonate ion
in an isolated state is lowered to 3 in calcite and to Cgin
aragonite. Then the selection rules are changed as shown in Table 3



28

Table 3 . Correlation table for 1, 0" and

Point A3 4
group

DBh (R) AN'd) E (1R e' (1,R)
i3 Al (R) AD A A E (LR) E (IL,R)
c A (1, ) A (I,R) A(1,R)+A(l ,R)  A(l,R)+A(l,R)

There is no change in the selection rule in going from
the free carbonate ion ( point group 2 h) to calcite ( site group DV
Iil Is Raman active, vCis infrared active, both Ooand "y are
Raman and infrared active. In aragonite ( site group ), \*and
are botli Raman and infrared active, both and appear as
doublets in the infrared and Raman. As Table 3 indicates, the

observed spectra are in good agreement with the predietions( 30 ).
The Eactor-group Approximation.

Bhagavantam and Venkatarayudu (31) first developed this
treatment in 1939. The assumption of the factor group approximation
is complete vibrational coupling. This is sometimes called
the unit cell approach. The term 1unit cell approach ' arises from
further assumption of this method that the frequencies of the
crystal may he determined cy considering only the atoms contained
in a single unit cell. The unit cell is the smallest collection of
atoms, all the oscillations of tile unit coll represent tile smallest
set of vibrations. The oscillations of the crystal, then, are the
oscillations of a unit cell carried through the crystal by the
operations of translation. The observed frequencies in the

vibrational spectra of crystals are presumed to result from the
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motions of all atoms in the unit cell ( and hence the whole crystal ),
not from the isolated motions of individual molecules.

The group which describes the symmetry of a single unit
cell is a finite factor group of the crystal* space group. In
terms of the mathematics of group theory, the factor group is
formed from the cosets of the invariant subgroup comprised of the
translational elements of the space group. The effect is that all
the translational elements of the space group form the identity
element of the factor group. However, in actual practice one never
needs to derive the factor group from the space group, and
knowledge of the mathematics involved is not required. The reason
Is that the factor group is always isomorphous with one of the
thirty-two point groups. Furthermaore, the isomorphous point group
may be identified by deleting the superscript from the Schoenflies
notation of the space group. For example, if the space group is
then the factor group is and the character table would
be used as the character table for the factor group. Although the
character tables for the factor groups and point groups are
identical, the rotation axis and the reflection plane in the
point group correspond respectively to the screw axis and the
glide plane in the factor group.

The factor group approximation may be accomplished by using
correlation chart. The only requirements are knowledge of the
space group, site group and molecular point group. For any polyatomic
molecules or ions, the number of normal modes and their symmetries
are determined first by using the point group for the free species.
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The symmetry species under the point group are then correlated to
the symmetry species of the site group of the polyatomic molecules
or ions, which are then correlated to the symmetry species of the
factor group.

For example, potassium chromate, KACrO®, has space group
symmetry D7ij(Pnma) with four formula units per unit cell. The
factor group is DOl. The X-ray data reveal that the potassium ions
and chromate ions occupy Cg sites so the site group is Cg. The
molecular point group is The correlation of the free chromate
lon symmetry species under T to the species under site group
symmetry Cg and factor group symmetry IS shown in the correlation
diagram ( Table 4 ).

Table 4 . Correlation diagram of potassium chromate.
Molecular Site group Factor group
point group

T 2h
A + B, + B+
Ao ) lu™ B3
g 3
(R) (R.1)

B (V) Ay * Bogt Biyt gy
(R) \R*I)
B,

A + A +
B3g+ B2
(R,I) ’ !
ry O 2 Y %A Ay " Boer Bt 3
(R,I) (R,I)
A -Blg+ BS * A t BZ
(R,I)

Note. In Dzh,modes with subscript g are Raman active, modes with

are infrared active except Au .
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It is noted that the number of frequencies of ene species
under a particular syaaetry may be divided between two or more
species under another symmetry, and degeneracies may be eliminated
in the correlation process* The splitting of frequencies follows
the splitting of the species. It is realized that the number of
modes is unaffected by the correlation; only the nunber of frequencies
and their degeneracies are affected.

The relationship between representations of the molecular
point group, site group and factor group is found by considering
the character tables of them. The character tables of the
molecular point group T, and site group Cq are compared, the
symmetry element which occurs in both groups is 6”. Under this
symmetry element, A in T" corresponds to A in Cg because they
have the same character. E in T? corresponds to A + A in ¢,
TO in T™ corresponds to 2A + A in c”,

Table 5 Character table for Cg.

¢ (h=2) E
A 1 1 Xy,Rz X, y? 12, xy
A* 1 -1 oy VI X2

Table 6 Character table for T~

1Te(h=24) B gc3 3C2 654 6< C o4
A .1 1 11 R
Ay 1 1 1
E 2 o, 00 (x2-y 2y
212 - x2 -y2 )
- 3 0 1 1 1. v

I 3 0 1 -l L (x.y.z) xy, xz,y7)
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Then the character table of the site group is
compared with the factor group 211 . As described above,
: 6/\ . . .
each representation under in Cg and in 2k is

orrelated and tile result is as shown in Table 4.

Table 7. Character table for 2h

oh(h=8) E €2(z) Qly) ¢c2(x) i <f(xy) ~xz) ~(yz)

2 2 52

A 1 1 1 1 1 1 1 1 X"V,
81 1 1 “1 -1 1 1 -1 -1 RpXy
9
B 1 1 11 g 1 -1 R X2
2¢ y
B 1 -1 ! N, -1 -1 1 Rz
39
A 1 1 1 TN\ ®1 -1 -1
u
B\, 1 1 -1 o ORI R | 1 1z
B, 1 -1 1 SO 1 1 -1 1y

-1 -1 1 -1 1 1 -1 X
B3u 1

The actual spectroscopic data from experiment agree
with the predictions from the factor group approximation. The
Hainan and infrared frequencies for potassium chromate and
their assignments are given in Table 8.

Table 8. Vibrational frequencies of potassium chromate(30)

350 (Big, Big)
346
345

B3g) 342 Pi
9)

............................ 1
Raman Infrared
frequencies frequencies Assignment
AW(cm ) vi(em~")
1918 (Big) 936
903 (Ag) 910
1881 (Big) 883 j
878 (Big)
876 (Big)
867(Ag) 859
851 (Ag, Big) 850 Pi
396 (Ag, Big) 398
392 (Big) P4
387 (Bjg)
386 (Ag, Big) 382
(
(
(A
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Three types of symmetry: the molecular symmetry ( symmetry
of the free molecule as given by its peint group ), the site
symmetry ( local symmetry of the crystalline environment around
the center of gravity of the molecule in the unit cell ), and the
factor group symmetry ( symmetry of a single unit cell ) are
related to each other. The essential symmetry relationship is that
the site grouj) must be a subgroup of both the molecular point group
and the factor group. This symmetry restriction leads to some
general relationships between site group and factor group selection

rules, thus

a) A molecular mode cannot be active in the crystal if it
is forbidden by the site symmetry.

b) If a mode is active according to the site group symmetry
it will give at least one active component under the factor group
selection rules.

c) A vibration which degenerates under the site group

remains so under factor group.
Classification of the Optical Modes.

The optical modes of vibration of molecular ionic crystals

cun be classified into three types (32)
1. The lonic Modes.

The anion and the cation are considered as rigid point
ions which are bound to each other by ionic forces. The normal
vibrational Diodes consist of the motions of the anion and the cation,

fall in low frequency because of the weak ionic forces.
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2. The Covalent Modes»

The atoms are bound together into molecular units by
intramolecular forces that are covalent. The normal vibrational
modes consist of the internal motions of atoms in the covalently
bound molecular units, result in the deformation of the molecular
units and fall in high frequency.

3. The Rotational Modes.

The anion is considered as a rigid rotator. These
normal modes are due to the rotation of the anion around its center
of mass and fall in low frequency. These modes are neither ionic
modes since there is no relative motion of the center of mass of
the anion and the cation, nor covalent modes since there in no
deformation of the anion.

In some cases, the modes of vibration may be classified into
two types.

a) The lattice modes or external modes which correspond to
lonic and rotational modes. These modes have low frequency.

b) The internal modes which correspond to the covalent modes.
These modes have high frequency.

Covolent mode lonic mode Rotationol modes
: :
o

0 NOj 0 Potassium © Nitrogen « Oxygen

Figure 4. The three types of normal modes of vibration in KNOj



35

Theory of Investigation Techniques
Infrared Spectroscopy.

Infrared spectroscopy involves changes in rotational,
vibrational energy levels of a molecule, ion or radical after
the absorption of energy or the emission of infrared radiation of
spectra in the excited states.

From classical theory, a vibrating system can absorb energy
fron a series of impulses ( radiation ) only if the impulses strike
the system with a frequency that is near the natural frequency of
the vibrator. From quantum theory, a molecule will absorb radiant
energy if the vibrational frequency of the molecule is the same as
the frequency of the radiation, and if the vibration produces a
change in dipole moment. The vibrations are not random events but
can occur only at specific frequencies governed by the atomic masses
and strength of the chemical bonds, this can be expressed as

) = IU
27cV L
is the frequency of the vibration,
c is the velocity of light .
K is the force constant e
111 is the reduced mass of the atoms.

Selection Rule for Infrared Spectra.

The selection rule for the infrared spectra is determined
by the integral

0 W -j|'|v|*/| « 0
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is the dipole moment in the ground state.
Ljj is the vibrational eigenfunction.
v v are the vibrational quantun numbers before and after the transition.
Cl is normal coordinate.

By resolving the dipole moment into three components in the
X, y and z directions, the results are:

[" vV =V (<DA M {Q) dQ
i & =flfvf (@) 4, 4 4(Q) dQ
If one of these integrals is not zero, the normal vibration
is infrared active. If all the integrals are zero, the vibration is
infrared inactive.

It is possible to decide whether the integrals are zero or
not zero from a consideration of symmetry. For fundamental transitions
(between ground state v= 0 and a first excited state v = 1), y*Q) is
invariant under any symmetry operation, and the symmetry of Q) is
the same as that of Q. Thus the integral is not zero when the
symmetry of |iAx, for example, is the same as that of Q. If the symmetry
properties ofy”™ and Qdiffer in even one symmetry element of the
group, the integral is zero. In other words, the integral is not
zero when Q belongs to the same species as

The normal modes of vibration in carbon dioxide are shown in
Figure 5. The individual nuclei carry out a simple harmonic motion
in the direction indicated by the arrow. The Mvibrations in Ce2
( v2aand I/ ) have exactly the same frequency so they are doubly
degenerate vibrations.

In the symmetric stretching mode ,there will be no change in
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the dipole moment as the two negative centers Clove equally in
Opposite .directions from the positive center. The M2 and v'jVibtatisns
are infrared active, since they result in a change in the dipole
moment during the vibration.

C O
« 53 symmetrical stretching
$ 1 |
antisymmetrical stretching
9 e ® r_; ‘\'!;:h
<~ mormmrmnmeenees ®—>— 4-¢ bending

Figure 5. Normal modes of vibration in carbon dioxide.
(+ and - denote the vibrations going upward and downward,
respectively, in the direction perpendicular to the paper)

Raman Spectroscopy.

Raman scattering depends on the collision of a quantum of
indicent light with a molecule. The molecule can be induced by the
collision to undergo a pure rotational, a vibrational or a
rotation-vibration change. The scattered light lias a different
frequency from that of the incident light, and the difference
corresponds to the energy change which has taken place within the
molecule
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¢ lassical Theory of the Raman Effect. (33)

When a molecule is put into a light wave or electric field,
it suffers some distortion, the positively charged nuclei being
attracted towards the negative pole of the field, the electrons to the
positive pole. This separation of charge centers causes an induced
electric dipole moment to be set up in the molecule and the Biolecule
is polarized. The magnitude of the induced dipole moment O") depends
on the magnitude of the applied field (E) and the polarizability
of the molecule (0oC) which is a measurement of how readily the
electrons are displaced in the field.

1 = <E

If a molecule is not electronically isotropic the magnitude
of tile induced dipole moment will be different along the electric
field component. The induced dipole moments are written

px = Ox Ex = chy Ey " <AXZ EZ
py —o£yX EX + yy Ey + 6yZ EZ
P, — oy EX~ 7y Ey DN Y, Ez
In the ocij. elements 5 tile i subscript denotes the direction
of the induced dipole moment by the oscillating electric field

component in the j direction, o".ij 0'1].i .

The polarizability in various directions are represented by
a polarizability ellipsoid which is a three-dimensional surface
wtiose distance from the electrical center of the molecule(the center
of gravity) is proportional to I/j~ , where is the
polarizability along the line joining point i on the ellipsoid
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with the electrical center.

For example, a diatomic molecule , H, is shown in Figure 6,
The polarizability is anisotropic, the élections forming the bond
are more easily displaced by an electric field applied along the
bond axis than one across this direction. The induced dipole moment
for a given field applied along the axis is approximately twice
as large as that induced by the same field applied across the axis,
fields in ether directions induce intermediate dipole moments.

Figure 6. The hydrogen molecule and its polarizability ellipsoid
seen from two directions at right angles.

When a molecule is put into an incident beam of frequency )
the electric field (E) is expressed in terms of an amplitude of wave(E )
and a time dependent term.
E = E cos (2 if t)
<E
oCEcos ( 21fl01)

For a vibrating molecule, the molecular polarizability 001
also varies with time.

since D
50 P
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For a diatonic molecule, the polarizability is approximately
a linear function of the bond length. In terns of the displacements
from the equilibrium bond length.
oc = W+ /[[Hec\Q ¢
Q

Qj is a displacement coordinate, its value is zero in the
equilibrium configuration.
0 is the polarizability in the equilibrium configuration
of the molecule.
/ \js the rate of change of the polarizability with change
o Qn&
in the hond length.

Since the molecule is vibrating with the frequency 1 |
the displacement Qj is also a function of time.

Ql cos (2 A"t

QL is the maximum value of the displacement from the
equilibrium bond length.

so0l P =E cos(2 vit) [*0+  Q°es (2 )
=EgCoes(2 Ifig)+E@o%jéos (2T ft)cos(2 7 tht)

Using the trigomometric identity
cosoccos ¥ - L cos(0i+~)+ cos [ -
then p= BECos(2 Mit) +1 E Q jeos(2 T(V+V)tj+cosh2

2
The first term © the right-hand side of equation contains

only one frequency  ( the incident radiation ). The second tern
contains two frequencies:( Wi +); the Stokes lines and (V—u )
anti-Stokes lines. One failure of the classical theory is the prediction
that the intensities of Stokes and anti-Stokes lines are the same.
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Quantum Theory of the Raman Effect (33)

The Raman effect arises when a beam of intense monochromatic
radiation passes through molecules that can undergo a change in
molecular polarizability as they vibrate.

The radiation is made up of a stream of photons of energy 11U .
The scattering of radiation by molecules is pictured in terms of
collisions of these photons with the molecules. There are two types
of collisions, elastic and inelastic. In the elastic collisions,
the photons neither gain energy frou. nor lose energy to the molecule.
The scattered photons still have energy hVf). This is called
Rayleigh scattering. In the inelastic collisions, the photons
gain energy from or lose energy to the molecule. The energy is
conserved during the collisions,so

9+ £0 S hiy1 o+ FBF

The zero subscripts refer to tile properties before collision, while
primed quantities refer to the properties after the collision.

( Eo- E* )/ h = ( Y
In most studies of Raman scattering, the changes in the

internal energy ( EQ E') result from changes in the vibrational
energy of the molecules.

Asimplified energy level diagram for the Raman effect is
shown in figure 7. The vibrational frequency of a diatomic molecule
is designated vy, and the molecule has vibrational energy (v +§)1 1
where Vis the vibrational quantum number.
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When the radiation of energy h\g is irradiated on such
a molecule, the bulk of the radiation is transmitted. Some may
be absorbed, refracted or diffracted. Asmall fraction of the
radiation is elastically scattered in all directions(called
Rayleigh scattering). The fraction of the radiation that is
inelastically scattered gives Raman effect which involves a
quantized exchange of energy between the molecule and the incident
radiation. The incident radiation elevates the molecule to a
quasi-excited state whose height above the initial energy level
equals the energy of the exciting radiation, on the return to the
ground state, a vibrational quantum of energy may remain with
the molecule. There is a decrease in the frequency of the scattered
radiation, h(W,- V). This is Stokes Raman scattering. If the
scattering molecule is already in an excited vibrational level
of the ground state, a vibrational quantum of energy may be
emitted from the molecule, leaving it in a lower vibrational level,
and thus increasing the frequency of the scattered radiation,
hNo+vl) which is anti-Stokes Raman scattering.

uasi-cxcited PP AT S
] state bioivhsionipchglolbinghiid | e

h Vv hv | h(vV +VY.)
0 o

| il o |
h(v =V) hiMiV
(o) i

nergy \ ‘ |
VeI e Y ) T — - f
'h Vv o 2
v= 0O Y : i *_A‘_ 4 v E=1hV
Stokes  Rayleigh  Anti-Stokes

Figure 7. Energy level diagram illustrating the fundamental
processes of Raman scattering. The exciting line is
of encergy hVv . Raman bands appear at h(y -V )and

[ 0 1

] ]
h(VY +V. ).
1{ o’ 1)
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At ordinary temperature the population of molecules in the
ground vibrational state is always mach greater than in excited
vibrational state, and so the intensities of the anti-Stokes lines
will always be'very much weaker than those of the Stokes lines.

.1ll|hn —

* Stoke Rayleigh Anti-Stoke

Figure 8. The intensities of the Stokes, anti-Stokes and
Rayleigh lines.

Selection Rule fer Raman Spectra

The selection rule for the Raman spectra is determined by
the integral :

M vV = 7v"(Q) dQ
0c is the electronic polarizability of the molecule and consists
of six', components  c*xx , WIT 1<22 ,<*~1 "I} ani "z o
< is the vibrational eigenfunction.
y || are the vibrational quantum numbers before and after the transition.
) is normal coordinate.

By resolving into six components, the results are
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Xl fay @Cyyy'(Q 4
[(©yy - Qi @y 7 (@ @
Wor s - by Q @

If one of these integrals is not zero, the normal vibration
is Raman active. If all the integrals are zero, the vibration is
Raman inactive.

It is possible to decide whether the integrals are zero or
not zero from a consideration of symmetry. The integral is not
zero when the product of ~ A(Q)00 w(o) is totally symmetric
(invariant under all symmetry operations of the molecule).

In other words, a Raman transition between two vibrational levels
V and V IS allowed if the product yM(Q) y*(ci) has tile same
species as at least one of the six components <~ ac ...

Figure 9 shows the polarizability changes with the noraal
sibrational modes of the carbon dioxide molecule. Only the
symmetric stretching”vibration of carbon dioxide leads to a
change in the polarizability, the polarizability ellipsoid becomes
larger and tiien smaller at the frequency of the vibration.

For the antisymmetrical stretching vy Mnd bending vibrations
which lead to a loss in symmetry of the molecule, the polarizability
will not change during these vibrations. At the two extremes of a
vibration, the vibrational coordinate Q will have the same absolute
value but opposite signs. The shape of the molecule will be identical
at the two extremes.
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Antisymmetrical stretching ‘Jz

)

—~ /; ,..\
\\ // \\ 4 u \x .
' { 1 ( 3 :’
) / \ ' \ '
N \,// \\»\.“,‘/
Bending 8

Figure9.  Polarizability changes during the vibrations of carbon

dioxide
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Diffraction of X-Say

Diffraction is a scattering phenomenon, a diffraction beam
Is a beam composed of a large number of scattered rays mutually
reinforcing toe another.

Diffraction effects with visible light were observed long ago.

The geometric principles are demonstrated in Figure 10. A beam of
light passes through the clear glass in (a), there is a scratch

on the glass which scatters light, in (b), the observer sees a
scratch. The two parallel scratches in (c) both scatter light, but
interference can occur between the two scattered rays, and the
intensity will depend on the angle between the incident ray and

the line of observation. Each of the scratches on the glass in (d)
will scatter light, but the mutual interference of these scattered
rays makes the observed intensity zero except near certain angles.

...........................

Flgure 10. utt it passes tinonah rrrar 1. \onc wattcred to observer.
A set(ltch on the alius sentiers liyltt to observer. ) Railunion scattered hr
“Hatches experiences intrrjeieitre. id) A dijfiiictian affinity. Scattered

radiation observed Old} Il CCltain anales.
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The derivation of the angles at which the scattered
intensity is maximum is seen on Figure 11. The incident ray makes
angle with the diffraction grating. Before reaching the grating,
the incident ray CE travels farther than the incident ray AB ,
and after passing the grating, the scattered ray BG travels farther
than the scattered ray EH. The difference in path lengths of the
rays CDEH and ABFG is DE-BF, this difference must be equal to a
whole number of wavelengths if the high intensity characteristic
of constructive interference is observed at angle ,which is the
angle between the scattered ray and the diffraction grating.
Therefore, DE-BF = 2 1 where 7v is the wavelength of the
light and is an integer. By simple geometry, DE = a co$ ci
and BF = a cos oc 1 where a is the repeating distance, S0

a (cos -cos”N) = Tv

This is the linear diffraction grating formula.

L igie]

Figure 11. Scattering of light by a diffraction grating with
repeating distance a
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When a crystal is in the path ef X-rays, electrons will
vibrate with the frequency of the incident i-rays, absorbing energy
and emitting it as X-rays of the same frequency as the incident
rays. The electrons are said to scatter the X-rays. Therefore, the
atom as a whole scatters the X-rays. All atoms in the path of
X-rays scatter incident X-rays in all directions. In some directions
the scattered X-rays interfere with and destroy one ether, but in
some directions they combine to form diffraction beams.

The diffraction of X-rays by crystals was discovered by
Max von Laue in 1912. He suggested that the periodic structure of
a crystal sight diffract X-rays just as gratings produce diffraction
patterns with visible light.

Since crystals are periodic in three dimensions, three
equations are required for the diffraction conditions.

a (cosa -cosC) = hTv
b (cos - cos) | k A
¢ (cos y - cos ) 1A

0C 1p and r are the angles between the incident X-ray beam
and the unit cell axes a, b and c.

0c 1p and Y are the angles between the diffraction beam
and the unit cell axes a, b and c.

Constructive interference will occur only when h, k and 1
are integers. These equations are called the Laue equations.
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Shortly after the discovery of X-ray diffraction, Bragg noted
that the diffraction of X-rays by a crystal is analogous to the
reflection of light by a plane mirror. If a crystal, which has a
set of parallel planes with equally spacing d, is in the path of
X-rays, (Figure 12), the parallel incident X-rays make an angle 0
with these planes, the reflected beams also make an angle 6 with
these planes. The reflections from the planes will interfere with
each other, and there will be constructive interference only when
the difference in path length between rays from the planes is equal
to a whole number () of wavelength (A). As in Figure 12, the
ray striking the second plane travels a distance AB + BC farther
than the ray striking the first plane. These two rays will be
constructive interfered only when the distance AB + BC is equal
to A~

B = BC = dsin(
AB+BC = 2d sin e
A = 2d sin &

This relation is known as the Bragg law.

Figure 12. An X-ray beam makes angle 0 with a set of planes with
interplanar spacing d. For constructive interference Xr2dsinf
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The diffraction of -X-rays by crystals and the reflection of
visible light by nirrors appear similar, since in both phehomena
the angle of incident light is equal to the angle of reflected light.
However, diffraction and reflection differ in some aspects.

1. The X-ray diffraction beam from a crystal is built up of
rays scattered by all the atoms of the crystal which lie in the path
of the incident beam. The reflection of visible light takes place
in a thin surface layer only.

2. The diffraction of X-rays takes place only at those
particular angles of incidence which satisfy the Bragg law.
The reflection of visible light takes place at any angle of incidence.

3. The intensity of a diffraction beam is extremely small
compared to that of the incident beam. The reflection of visible
light by a mirror is almost 100 percent efficient.

X-Ray Powder Diffraction Method.

One of the methods of obtaining diffraction pattern is
powder method. This method makes use of a polycrystalline material
oriented at random to a monochromatic X-ray beam.

When a tiny crystal in the sample is oriented eo that a
particular set of lattice planes makes the appropriate Bragg angle
to the incident beam, the reflected beam will make an angle
with the undeviated beam as shown in Figure 13 (a).



51

The identical lattice planes of other tiny crystals can be oriented
at the same angle 0 to the beam and send out the reflected beam in
the same angle 7 9around the incident direction* These reflected beams
will fora a cone ( in b). Simultaneouslyl other lattice planes with
different spacing satisfy the Bragg condition and generate other cones

(inc) .
reflected X-ray

_5®
-Mindeviated )

X-ray lattice plane beam

» 0»

Y

Figure 13. a) Bragg condition for X-ray diffraction.
bk A cone of reflected ray for the identical lattice planes,
¢) Cones of reflected ray which have different angles.

The detection of X-ray diffraction can be achieved in one
of two ways, by using film method or electronic counting technique.
In both cases, the aim is to measure both the 2 © angle and the
relative intensity of each reflected beam from the sample.

In film method, a photographic film is placed in the path
of reflected radiation, a curved line will be produced for each set

of planes of the lattice, and the corresponding 8 can be obtained
from the position of the line on the film.
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In electronic method, Jiroportional counters are used to
detect and measure the reflected rays. It yields an electrical pulse
from each X-ray photon absorbed in the detector. These pulses are
then amplified and counted by a circuit. The powder pattern appears
as a series of peaks, the position of each peak corresponds to the
position of each line and the intensity of each peak is measured
from peak height.

(@) { (;)DW@K(C' )

/

Figure 14. a) The powder photograph pattern.

ji) The proportional-counter diffractometer pattern
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