ACID-BASE INTERACTION BETWEEN C₈ AROMATICS AND X AND Y ZEOLITES

Ms. Rattiya Suntornpun

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2002

ISBN 974-03-1567-4

Thesis Title: Acid-Base Interaction between C_8 Aromatics and X and Y

Zeolites

By : Rattiya Suntornpun

Program : Petrochemical Technology

Thesis Advisors: Asst. Prof. Pramoch Rangsunvigit

Dr. Pomthong Malakul Dr. Santi Kulprathipanja

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

(Asst. Prof. Pramoch Rangsunvigit)

Pramouh R.

(Dr. Pomthong Malakul)

(Dr. Santi Kulprathipanja)

Santi Kuprathin

(Assoc. Prof. Chintana Saiwan)

(Dr. Kittipat Siemanond)

Kitipat Siemanand

ABSTRACT

4371020063: PETROCHEMICAL TECHNOLOGY PROGRAM

Rattiya Suntornoun: Acid-Base Interaction between C₈ Aromatics

and X and Y Zeolites

Thesis Advisors: Dr. Santi Kulprathipanja, Asst. Prof. Pramoch

Rangsunvigit, and Dr. Pomthong Malakul

59 pp. ISBN 974-03-1567-4

Keywords: Xylene Separation/ Adsorption/ Zeolite/ Faujasite/ Acidity

In this work, C_8 aromatics adsorption in liquid phase on X and Y zeolites was investigated. To study effects of acid-base interaction between the aromatics and the zeolites, a series of both zeolites with different exchanged cations, C_S , R_D , K_S , N_A and L_I , was used as adsorbents. p-Xylene, having the weakest basicity of the aromatics, was expected to have increased selectivity with decreasing zeolite acidity. However, the results showed that the acid-base interaction could not be used to explain the adsorption behavior for all cations studied. The effects of cation size and zeolite type must also be taken into account. Here, KY had high p-xylene selectivity, which could be obtained from either the dynamic adsorption or equilibrium adsorption experiments. Moreover, p-xylene selectivity was hardly changed by the components' concentrations in the feed.

บทคัดย่อ

รัตติยา สุนทรพันธ์: อันตรกิริยากรด-ด่างระหว่างสารอะโรมาติกคาร์บอน 8 อะตอม และ ซีโอไลท์เอ็กซ์และวาย (Acid-Base Interaction between C_8 aromatics and X and Y Zeolites) อ. ที่ปรึกษา: ดร. สันติ กุลประทีปัญญา ผศ.ดร. ปราโมช รังสรรค์วิจิตร ดร. ปมทอง มาลากุล ณ อยุธยา, 59 หน้า, ISBN 974-03-1567-4

งานวิจัยนี้ศึกษาถึงการดูดซับของสารอะโรมาติกคาร์บอน 8 อะตอมในสถานะของเหลว บนซีโอไลท์เอ็กซ์และวายโดยเน้นในเรื่องอันตรกิริยากรด-เบส ตัวดูดซับที่ใช้คือซีโอไลท์เอ็กซ์ และวายซึ่งผ่านกระบวนการแลกเปลี่ยนกับโลหะประจุบวกหมู่หนึ่งได้แก่ ซีเซียม, รูบีเดียม, โพแทสเซียม, โซเดียม และ ลิเธียม ตามทฤษฎีกาดว่าค่าซีเล็กติวิตี้ของพาราไซลีนซึ่งเป็นสาร ประกอบที่มีความเป็นค่างอ่อนที่สุดจะเพิ่มขึ้นเมื่อค่าความเป็นกรดของซีโอไลท์ที่เป็นตัวดูดซับลด ลง อย่างไรก็ตามผลการทดลองพบว่าอันตรกิริยากรด-เบสเพียงอย่างเดียวไม่สามารถอธิบายพฤติ กรรมการดูดซับของสารประกอบอะโรมาติกคาร์บอน 8 อะตอมบนซีโอไลท์ทั้งหมดที่ศึกษาได้ จำ เป็นจะต้องคำนึงถึงผลกระทบจากขนาดของโลหะประจุบวกและชนิดของซีโอไลท์ด้วย งานวิจัย พบว่าโพแทสเซียมวายให้ค่าซีเล็กติวิตี้ของพาราไซลีนสูงที่สุด นอกจากนี้จากการทดลองการดูด ซับทั้งแบบพลศาสตร์และแบบสมดุลย์ซึ่งให้ผลใกล้เคียงกันพบว่าค่าซีเล็กติวิตี้ของพาราไซลีนไม่ ขึ้นอยู่กับค่าความเข้มข้นของสารประกอบในสารละลายตั้งค้น

ACKNOWLEDGEMENTS

This work not only fulfilled the requirements for graduation but also gave me a very invaluable and pleasant experience. This work can be successfully done with the help of a number of people.

Firstly, I would like to express my deepest gratitude to Dr. Santi Kulprathipanja, my US advisor, for his powerful support and excellent advice. He always listens and strongly believes in the potential of his students that made me get through all barriers that obstructed this work. I am, also, indebted to his wife, Mrs. Apinya Kulprathipanja, for her kindness. She made the time of 2 months that I spent in US delightful.

I very much appreciate the assistance of my Thai advisor, Asst.Prof. Pramoch Rangsunvigit. He usually provided superb guidance, encouragement and listened to me patiently. Moreover, he made this thesis interesting by proof reading it.

I would also like to forward my appreciation to Dr. Pomthong Malakul, my coadvisor, for his excellent suggestion. He also proofed reading the thesis.

Special thanks are extended to the UOP LLC for providing me a budget and convenient while I have worked here.

My appreciation is forwarded to the Petroleum and Petrochemical College staff for helping and suggestion throughout this work.

I gratefully acknowledge the contributions of individuals, especially Ms. Jutima Chareonphol, Mr. Visava Lertrojanapanya, Mr. Ming Chai.

Unforgettable, I would like to take this opportunity to thank my family and friends for fulfilling my life. I can not find any word to explain how they mean to me.

TABLE OF CONTENTS

		PAGE
Title	Page	i
Abst	ract (in English)	iii
Abst	ract (in Thai)	iv
Ackr	nowledgements	V
Tabl	e of Contents	vi
List	of Tables	viii
List	List of Figures	
СНАРТЕ	R	
I	INTRODUCTION	1
II	BACKGROUND AND LITERATURE SURVEY	3
	2.1 Background	3
	2.1.1 Adsorption	3
	2.1.2 Selectivity	3
	2.1.3 Liquid Phase Adsorption Mechanisms	4
	2.1.4 Zeolites	6
	2.1.5 General Statistical Model	9
	2.2 Literature Survey	10
III	EXPERIMENTAL	14
	3.1 Materials	14
	3.1.1 Chemicals	14
	3.2 Experiment	14
	3.2.1 Dynamic Adsorption: Multi-component Pulse Test	14
	3.2.2 Dynamic Adsorption: Breakthrough Test on KY	
	Zeolite	16

CHAPTER			PAGE
	3.2.3	Equilibrium Adsorption Isotherm: Autoclave	
		Work on KY Zeolite	17
IV	RESULTS	S AND DISCUSSION	19
	4.1 Dynar	nic Adsorption: Multi-component Pulse Test	19
	4.2 Dynar	nic Adsorption and Equilibrium Adsorption on KY	36
	4.3 Heat of	of Adsorption of the C ₈ aromatics on KY	46
V	CONCLU	SIONS AND RECOMMENDATIONS	48
REFFEREN	CES		50
APPENDIX			52
CURRICUL	UM VITAI	${f E}$	59

LIST OF TABLES

TABLE		
2.1	The intermediate electronegativity of <i>X</i> and <i>Y</i> zeolites	
	exchanged with mono-valence cations, S _{int}	12
3.1	Chemicals used in the experiments	14
4.1	<i>p</i> -xylene selectivity with respect to the other	
	components of X zeolites	30
4.2	<i>p</i> -xylene selectivity with respect to the other	
	components of Y zeolites	30
4.3	Heat of adsorption of the C ₈ aromatics on KY	46
A.1	Sample preparation for the dynamic adsorption pulse	
	test	57
A.2	Zeolites used in the dynamic adsorption pulse test	57
A.3	Sample preparation for the dynamic and equilibruim	
	adsorption	58
A.4	Sample preparation for the equilibrium adsorption	
	isotherm	58

LIST OF FIGURES

F	FIGURE		PAGE
	2.1	Secondary building units and commonly occurring	
		polyhedral units in zeolite framework structure	7
	2.2	Schematic representation showing framework structure of	
		zeolite faujasite	8
	3.1	The experimental set-up for the dynamic adsorption	
		experiments	15
	3.2	The experimental set-up for the equilibrium adsorption	
		experiment	18
	4.1	Dynamic adsorption: Multi-component pulse test on LiX	20
	4.2	Dynamic adsorption: Multi-component pulse test on NaX	21
	4.3	Dynamic adsorption: Multi-component pulse test on KX	22
	4.4	Dynamic adsorption: Multi-component pulse test on RbX	23
	4.5	Dynamic adsorption: Multi-component pulse test on CsX	24
	4.6	Dynamic adsorption: Multi-component pulse test on LiY	25
	4.7	Dynamic adsorption: Multi-component pulse test on NaY	26
	4.8	Dynamic adsorption: Multi-component pulse test on KY	27
	4.9	Dynamic adsorption: Multi-component pulse test on RbY	28
	4.10	Dynamic adsorption: Multi-component pulse test on CsY	29
	4.11	PX Selectivity VS Cationic radius and X-Zeolite acidity	31
	4.12	PX Selectivity VS Cationic radius and Y-Zeolite acidity	32
	4.13	PX Selectivity VS Zeolite acidity	34
	4.14	Effects of zeolite type	35
	4.15	Dynamic adsorption: Breakthrough test, Blend 1	37
	4.16	Dynamic adsorption: Breakthrough test, Blend 2	38
	4.17	Dynamic adsorption: Breakthrough test, Blend 3	39
	4.18	Dynamic adsorption: Breakthrough test, Blend 4	40
	4.19	Dynamic adsorption: Breakthrough test, Blend 5	41

FIGURE	PAGE
4.20 The comparison between the dynamic adsorption (1) and	
equilibrium adsorption (2)	42
4.21 Effect of MX concentration to PX/MX selectivity	43
4.22 Effect of OX concentration to PX/OX selectivity	44
4.23 Effect of EB concentration to PX/EB selectivity	45
A.1 A schematic of dynamic adsorption: Multi-component	
pulse test	52
A.2 A schematic of dynamic adsorption: Breakthrough curve	53
A.3 A schematic of dynamic adsorption: Breakthrough curve	
with row up	54