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ABSTRACT

4082001063 : POLYMER SCIENCE PROGRAM
Ms. Ladawan Ruangchuay Wannatong: Development of
Polypyrrole-Based Sensors for Vapors of Flammable Chemicals
Thesis Aavisors: Assoc. Prof. Anuvat Sirivat and
Prof. Johannes . Schwank, 222 pp. ISBN 974-17-1368-1
Keywords ~ : Conductive Polymers/ Polypyrrole/ Sensor/ Flammable Chemicals/
Acetone/ Toluene/ Water/ Acetic Acia/ Lacquer/ Polymer Blends/
PEQ/ PMMA/ HDPE/ PS/ ABS/ Sensitivity/ Selectivity/ Stability

Serial issues concerning development of polypyrrole-based sensors for
vapors of flammable chemicals were studied in this dissertation work. Polypyrrole
(PPy) was chemically prepared via an in situ doped polymerization utilizing seven
dopant anions (dopant to monomer molar ratio, DIM = 1/12) to stabilize the positive
charges on N of pyrrole rings. These dopant anions were found to play important
roles on physical, chemical, and electrical properties of PPy as revealed by several
techniques, e.g. X-ray photoelectron spectrometer and the custom-made four-point
probe conductivity meter. PPys doped with a-naphthalene sulfonate (PPy/A) and (3
naphthalene sulfonate (PPy/B) have good pellet appearance, solubility, thermal
stability, specific conductivity, and stability in conductivity. PPy/A was chemically
synthesized at various D/M ratios. The D/IM ratio giving PPy/A with high specific
conductivity and stability in conductivity is 1/12.

Upon exposure to acetone vapor at 16.7 vol.% in N2, negative changes in
specific conductivity, Act; of PPys were observed. These changes depend critically
on the type of the dopants used. For the sulfonate dopants, At exponentially
depended on the doping level (NVN) and the initial specific conductivity. It
depended lingarly on the proportion of the bipolaron species and the ordering and
inversely on the proportion of the imine-like nitrogen defect (=N-). PPy/A exhibited
the largest specific conductivity decrement; 0.4 sfcm. Various techniques, eg. an
environmental scanning electronmicroscope, were used to investigate the interaction



between PPy and acetone molecules. Swelling, H-bonding, and reduction reaction by
acetone are suggested to cause the decrease in specific conductivity of PPy.

In order to improve the selectivity of PPy toward acetone and toluene,
which are flammable components in lacquer over the non-flammable components
acetic acid and water, PPy/A with D/M ratio of 1/5, PPy/A5 has been blended with
several insulating polymers: PEO; PMMA: HDPE; PS; and ABS, by three different
methods namely dry mixing, solution mixing, and coating. The electrical
conductivity responses towards liquid of water, acetone, acetic acid, or toluene of
PPy/AS/PMMA, PPy/AS/PS and PPy/AS/ABS blends from solution mixing towards
acetone and toluene were enhanced but those towards water were diminished,
relative to that of pure PPy/AS. However, the sensitivity towards acetic acid was not
significantly different from that of pure PPy/AS.

The selectivity improvement had been extended focusing on the solution
mixing of PPy/A and PMMA. PPy/A with D/M ratio of 1/12 was blended with
PMMA by means of solution mixing, with various weight ratios of PMMA.
Compared with pure PPy/A, the selectivity ratio of acetone/acetic acid response of
PPy/AIPMMA blend with a PMMA/PPy weight ratio of 3.0 was ca. 3.8 times higher.
The film was found to be insensitive to moisture unless the relative humidity was
lower than 20 %RH in which the selectivity ratio was enhanced. The time required to
reach the equilibrium signal at relative humidity of 20 - 30 %RH was 6-15 min; it
became as high as 20 - 26 minat 50- 70 %RH.

The surface compositions of non-aging PPy/A were investigated by XPS.
Employing liquid nitrogen cooling of the sample holder, the spectra in the regions of
¢ Is,01s,N Is,and  2p were found to be reproducible with a gracual change in
2p spectrum when the accumulated X-ray exposure time was less than 1050 min.
Beyond this accumulated X-ray exposure time, dramatic changes were observed in
all spectral regions suggesting the deprotonation of the polaron by the dopant and the
désulfonation of the protonated dopant. This degradation became more Severe when
the liquid nitrogen cooling system of the spectrometer was not used. The results
indicate that the degradation was mainly induced by heat from the X-ray beam.
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PPy/a-NS' in the envelopes of - 2p, expressed in terms
of atomic ratios referenced to N, as functions of accumulated
X-ray exposure times in the XPS experiment when there
was no liquid nitrogen cooling outfit used.

Appendices
Oxidative coupling polymerization of Py to PPy
(Zotti, 1997).
Effect of oxidant (APS):Py ratio on percent yield
(normalized with the weight of loaded Py monomer).

A3 Effect of APS:Py ratio onconductivity and - aging time.
Cl FT-IR spectrum of PPy/A at DIM of 1/12 with peak

positions,

DL Thermogram of PPy/B at DIM of 1/12 withits derivative.

El

Bond lengths and bond angles in pyrrole ring
(Geiss et al., 1983).
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FIGURE
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The X-ray diffraction pattern of PPy/A (DIM =1/12) and its
deconvoluted results attributed to its order aggregations.
The X-ray diffraction patterns with deconvoluted results
underneath of: a) PPy/De; b) PPy/U: c) PPy/B; d) PPy/C;

e) PPy/D; f) PPY/E; g) PPyIP; and h) PPy/AB.

The scanning electron micrographs of: a) PPy/U; b) PPy/A;
) PPy/B; d) PPy/C: ¢) PPyID: f) PPYIE; g) PPy/P;

and PPy/AB with D/M ratio of 1/12, taken

at 20 kv and 3,500 times magnification.

The scanning electron micrographs of: a) PPy/AS/PEO film;
b) PPy/ASIPS film; ¢) PPy/ASIABS film; d) PPy/AS/PMMA
film from solution mixing; &) PMMA-coated PPy/AS
(Upper side); and d) PMMA-coated PPy/A5 (lower side);
taken at 25 kv and 1,5000 times magnification.

EDS spectrum of PPy/P at DIM of 1/12

Electronic structure of the bandgap of p-type doped PPy

in its neutral, polaron and hipolaron states:

CB = conducting band; VB = valence band.

a) The visible spectrum of PPy/B in NMP solution; and

b) its converted data with deconvoluted results.

Calibration curves from PPy/B samples in NMP solution.
Geometry of the custom-made four-point probe.
Comparison of electrical responses of: (0) PPy/AS in
Chapter IVand ) PPy/A in Chapter \V upon exposures

to chemical liquids.

The visible spectra of a) the fresh PPy/B film, and

b) the same film upon exposure to Saturated acetone vapor.
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FIGURE

UL XPS spectrawith deconvoluted results of the pellets of;

Vi

a) fresh PPy/A; b) PPy/A after exposure to saturated
water vapor; c) PPy/A after exposure to saturated toluene
vapor; d) PPy/A after exposure to saturated acetone vapor;
and ¢) PPy/A after exposure to saturated acetic acid vapor.
XRD patterns with deconvoluted results of: a) the fresh
PPy/A pellet; b) the same pellet after exposure to saturated
water vapor; ¢) the fresh PPy/A pellet; d) the same pellet
after exposure to saturated acetone vapor; e) the fresh
PPy/A pellet; and f) the same pellet after exposure to
saturated acetic acid vapor.
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Poly(acrylonitrile-co-butadiene-co-styrene)
Ammonium persulfate

Oxidant (ammonium persulfate) to pyrrole monomer
molar ratio

Binding energy

Dopant to pyrrole monomer molar ratio

Degree

Elemental analyzer

Scanning electron microscope in the energy dispersive
moce

Electron volt

Fourier transform infrared spectrometer

Full width at half-maximum

High density polyethylene

Correction factor

Magnetic susceptibility halance

Poly(ethylene oxide)

Poly(methacrylic acid)

Poly(methylmethacrylate)

Polypyrrole

Polypyrrole doped with a-naphthalene sulfonate
PPy/A with DIM ratio of 1/5

Polypyrrole doped with p-aminobenzoate
Polypyrrole doped with P-naphthalene sulfonate
Polypyrrole doped with camphor sulfonate
Polypyrrole doped with dodecylbenzene sulfonate
Dedoped polypyrrole

Polypyrrole doped with ethane sulfonate
Polypyrrole doped with perchlorate

Undoped polypyrrole



PPy/a-NS"

PPy/p-NS-

PS

RH

SD
SEM
TGA
UV-Vis
XPS
XRD

Polypyrrole doped with a-naphthalene sulfonate
Polypyrrole doped with p-naphthalene sulfonate
Polystyrene

Relative humidity

Standard deviation

Scanning electron microscope
Thermogravimetric analyzer

Ultraviolet-visible spectrometer

X-ray photoelectron spectrometer

X-ray diffractometer
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Specific conductivity (S/cm)

Specific resistivity (Q cm)

Corrected molar magnetic susceptibility (cgs mole')
Wavelength (nm)

Contact angle (degree)
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