ข้อมูลพื้นฐานของตำแหน่งช็อทแทนเดมรีพีท เพื่อประยุกต์ใช้ ในการพิสูจน์บุคคลและความเป็นพ่อลูก

นางสาว อัญชลี ก่องศรีสุข

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาศาสตร์การแพทย์
บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2541
ISBN 974-639-643-9
ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

POPULATION DATA ON SHORT TANDEM REPEAT LOCI FOR PERSON IDENTIFICATION AND PATERNITY TEST

Miss Unchalee Kongsrisook

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Medical Science
Programme of Medical Science
Graduate School
Chulalongkorn University
Academic Year 1998
ISBN 974-639-643-9

Thesis Title POPULATION DATA ON SHORT TANDEM REPEAT LOCI FOR PERSON IDENTIFICATION AND

PATERNITY TEST

Ву

Miss Unchalee Kongsrisook

Programme

Medical Science

Thesis Advisor

Associate Professor Tada Sueblinvong, M.D.

Thesis Co-advisor

Assistant Professor Apiwat Mutirangura, M.D., Ph.D.

Accepted by Graduate School, Chulalongkorn University in Partial of Fulfillment of the Requirements for the Master's Degree

Dean of Graduate School (Professor Supawat Chutivongse, M.D.)

THESIS COMMITTEE

Verkee hours Chairman

(Assistant Professor Nantana Sirisup, M.D.)

Pada Sublivery Thesis Advisor

(Associate Professor Tada Sueblinvong, M.D.)

Animat Mutangioa. Thesis Co-advisor

(Assistant Professor Apiwat Mutirangura, M.D., Ph.D.)

Willia anomasini Member

(Assistant Professor Wilai Anomasiri, M. Sc., Ph.D.)

พิมพ์ตันภูบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

อัญชลี ก่องศรีสุข : ข้อมูลพื้นฐานของตำแหน่งช็อทแทนเดมรีพีท เพื่อประยุกต์ใช้ในการพิสูจน์บุคคล และความเป็นพ่อลูก (POPULATION DATA ON SHORT TANDEM REPEAT LOCI FOR PERSON IDENTIFICATION AND PATERNITY TEST) อ. ที่ปรึกษา : รศ.พญ. ธาดา สืบหลินวงศ์, อ. ที่ ปรึกษาร่วม : ผศ.ดร.นพ. อภิวัฒน์ มุทิรางกูร ; 98 หน้า ISBN 974-639-643-9

ช็อทแทนเดมรีพีท (short tandem repeat, STR) คือส่วนของดีเอนเอ (DNA) ที่มีการเรียงกันช้ำ ๆ โดยใน 1 หน่วยช้ำ มีขนาด 1 -6 เบส ช็อทแทนเดมรีพีท มีความหลากหลายรูปแบบสูงสามารถถ่ายทอดจากพ่อ แม่ ไปสู่ลูกได้ และสามารถศึกษาโดยเทคนิค polymerase chain reaction (PCR) การใช้ช็อทแทนเดมรีพีทเพื่อ จำแนกดีเอนเอ กำลังจะเป็นเทคนิคที่มีความสำคัญในทางนิติเวช แต่ก่อนที่จะนำช็อทแทนเคมรีพีทตำแหน่งใด ๆ ไปใช้ ควรที่จะทำการศึกษาข้อมูลในกลุ่มประชากรนั้น เพื่อการเลือกใช้ ช็อทแทนเดมรีพีทตำแหน่งที่เหมาะสม

การศึกษากระทำโดย แยกสกัดดีเอนเอจากเซลล์เม็ดเลือดขาว ของกลุ่มตัวอย่างซึ่งเป็นบุคคลที่ไม่ใช่ เครือญาติกัน จำนวน 200 ตัวอย่าง โดยวิธี salting-out และวัดปริมาณของดีเอนเอที่สกัดได้โดยทดสอบการดูด แสงที่ 260 นาโนเมตร จากนั้นทำการเพิ่มปริมาณดีเอนเอบริเวณตำแหน่ง STR ที่ต้องการศึกษา โดยเทคนิค PCR ดังตำแหน่งต่อไปนี้ CSF1PO, TPOX, TH01, F13A01, FESFPS, F13B, LPL และ vWA นำ PCR product ที่ได้มาแยกขนาดโดย denaturing polyacrylamide gel electrophoresis และย้อมด้วย silver stain

จากการศึกษาพบว่า STR ตำแหน่ง F13A01 และ vWA พบจำนวนอัลลีล (allele) ถึง 10 อัลลีล, CSF1PO พบ 8 อัลลีล, FESFPS พบ 7 อัลลีล, TH01 และ LPL พบ 6 อัลลีล, TPOX และ F13B พบ 5 อัลลีล พิสัยของค่า heterozygosity มีค่าระหว่าง 42 เปอร์เซ็นต์ ถึง 86 เปอร์เซ็นต์ STR ทุกตำแหน่งเป็นไปตามกฎของ Hardy-Weinberg STR ในตำแหน่ง F13B, LPL และ TPOX ไม่มีความหลากหลายรูปแบบสูงมากดังใน ประชากรอื่น ส่วน STR อีก 6 ตำแหน่ง เมื่อนำมาใช้ร่วมกันจะทำให้ Power of exclusion (PE) มีค่า 0.9834 และค่า Discrimination power (DP) มีค่าสูงถึง 0.999995 ซึ่งสามารถนำมาใช้เป็นชุดของ STR สำหรับการ พิสูจน์บุคคลและความเป็นพ่อลูกได้อย่างมีประสิทธิภาพ

ภาควิชา	ลายมือชื่อนิสิต อีพราส ก่องสราสร	
สาขาวิชา วิกษาศาศักริการหพาส	ลายมือชื่ออาจารย์ที่ปรึกษา โก สัมพ์	
ปีการศึกษา 🎎 🖓	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม	

พิมพ์ตับฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวบีเพียงแผ่นเดียว

C845076

: MAJOR MEDICAL SCIENCE

KEY WORDS: SHORT TANDEM REPEAT / PERSON IDENTIFICATION / PATERNITY TEST

UNCHALEE KONGSRISOOK: POPULATION DATA ON SHORT TANDEM REPEAT

LOCI FOR PERSON IDENTIFICATION AND PATERNITY TEST. THESIS ADVISOR:

ASSO. PROF. TADA SUEBLINVONG, M.D. THESIS COADVISOR: ASSIST. PROF.

APIWAT MUTIRANGURA, M.D., Ph.D. 98 pp. ISBN 974-639-643-9

Short tandem repeat (STR) loci are highly polymorphic markers composed of short,

repetitive sequence elements of 1 to 6 base pairs in length and display Mendelian inheritance

characteristics. STR loci are amenable to analysis by polymerase chain reaction. STR has become a

powerful technique in forensic DNA typing. Prior to introduction of a new DNA profiling method, a

statistical analysis of the population needs to be undertaken. The aim of this study was to establishe

population data of STR loci in the Thai population.

Whole blood samples of 200 unrelated individuals were collected. DNA was extracted

by the salting-out method and quantitated by measuring the optical density at 260 nm. The

tetrameric STR loci for amplification were CSF1PO, TPOX, TH01, F13A01, FESFPS, F13B, LPL and

vWA. The PCR products were separated by denaturing polyacrylamide gel electrophoresis and

detected by silver staining.

A total of 10 alleles for F13A01 and vWA, 8 alleles for CSF1PO, 7 alleles for FESFPS, 6

alleles for TH01 and LPL, and 5 alleles for TPOX and F13B can be observed. The range of observed

heterozygosity is between 42% and 86%. No significant deviation from the Hardy-Weinberg

equilibrium (p > .05) between observed and expected genotype frequencies has been found in any

one system. Three of the eight loci examined (F13B, LPL and TPOX) do not appear as highly

polymorphic as observed in other populations. For the other six loci, the combined average power of

exclusion (PE_{trio}) is 0.9834 and the combined discrimination power (DP) is 0.999995. Hence, the

combination of these useful systems results in a more powerful DNA typing and can be used as a

battery for person identification and paternity test.

ภาควิชา...... ลายมือชื่อนิสิต...... สาขาวิชา ภิกษาสาร์กรมาพทม์ ลายมือชื่ออาจารย์ที่ปรึกษา.....

ปีการศึกษา.....*ปรพ*

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

This thesis has been successful due to the valuable help, advice, suggestions and interest of my advisor, Associate Professor Dr. Tada Sueblinvong, Department of Biochemistry, and my coadvisor, Assistant Professor Dr. Apiwat Mutirangura, Department of Anatomy to whom I would like to express my deep gratitude.

I am also deeply grateful to Assistant Professor Wilai Anomasiri,

Department of Biochemistry for the valuable help, discussions and suggestions. I am grateful to Associate Professor Sukanya Werawatgoompa,

Department of Biochemistry, for her interest and encouragement.

I would like to give my special thanks to Mr. Wichai Pornthanakasem, Miss Sairoong Sukdikul, Miss Rattana Chatsantikul, scientist and technician for their help and cheerful. In addition, I would like to express my special thanks to the competent officials of the Department of Biochemistry and the Department of Physiology for providing me the conveniences.

Furthermore, this study was supported by the Molecular Biology Department of Research Affairs, Faculty of Medicine, Chulalongkorn University and Graduate School, Chulalongkorn University.

Finally, I would like to express my deep gratitude to my parents and friends for the unconditionally and continuing support throughout my work.

List of Contents

	Pa	ge
Abstract (Thai)iv	
Abstract (English)v	
Acknowle	dgementvi	
List of Co	ntentsvii	
List of Tab	olesix	
List of Fig	uresx	
List of Ab	oreviationsxi	
Chapter		
1	Introduction	
2	Literature review	
3	Materials and Methods16	
	Specimens	
	Materials16	
	Equipment	
	Reagents	
	Methods	
4	Results and Discussion41	
	DNA extraction41	
	PCR amplification41	
	Electrophoresis	
	Silver staining	
	Allele determination	
	Statistical analysis	
5	Conclusion and Suggestion	

		Page
	References	68
	Appendix	76
	Appendix A	77
	Appendix B	81
	Biography	86

List of Tables

Tab	Table	
1.	Locus-Specific Information25	
2.	Additional Locus-Specific Information	
3.	Locus-Specific Primer Sequences	
4.	CSF1PO genotypes and allele frequencies57	
5.	TPOX genotypes and allele frequencies	
6.	TH01 genotypes and allele frequencies	
7.	F13A01 genotypes and allele frequencies	
8.	FESFPS genotypes and allele frequencies	
9.	F13B genotypes and allele frequencies	
10.	LPL genotypes and allele frequencies	
11.	vWA genotypes and allele frequencies	
12.	Statistics for forensic identification and parentage analysis 65	
13.	Difference of allele distributions between populations	

List of Figures

Fig	pure Page
1.	From genes to proteins
2.	Two types of RFLP
3.	Schematic diagram illustrating different types of polymorphic markers7
4.	Organisation and internal structure of short tandem repeats10
5.	Sequi-Gen GT casting parts
6.	Sequi-Gen GT nucleic acid electrophoresis cell
7.	Agarose gel electrophoresis50
8.	Analysis of a multiplex PCR reaction at CSF1PO-TPOX-TH01 loci51
9.	STR profile of the vWA locus
10.	F13A01 genotypes obtained from polyacrylamide gel electrophoresis53
11.	FESFPS genotypes obtained from polyacrylamide gel electrophoresis54
12.	Analysis of F13B and LPL amplicons obtained from separate single PCR
	and loaded simultaneously on polyacrylamide sequencing gel55
13.	The heterozygosity of each STR loci of the Thai population compared with
	other populations

List of Abbreviations

DNA Deoxyribonucleic acid

PCR Polymerase chain reaction

RFLP Restriction fragment length polymorphism

VNTR Variation number of tandem repeat

STR Short tandem repeat

PI Paternity Index

PE Power of exclusion

Pm Probability of matching

DP Discrimination power

PIC Polymorphism Information Content

pH The negative logarithm of the concentration of

hydrogen ions

rpm Revolution per minute

kb Kilobases

bp Basepair

g Gram

mg Milligram

μg Microgram

ng Nanogram

pg Picogram

ml Millilitre

μl Microlitre

M Molar

mM Millimolar

μM Micromolar

UV Ultraviolet

OD Optical density

nm Nanometre

mm Millimetre

cm Centimetre

°C Degree Celsius

w/v Weight per volume

dNTP Deoxyribonucleotide triphosphate

W Watt

V Volt

Fig. Figure