การเผาใหม้โค้กบนตัวเร่งปฏิกิริยาดีใฮโครจิเนชัน

นางสาวอัจฉรา แสงภู่

วิทยานิพนธ์เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

ภาควิชาวิศวกรรมเคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2538

ISBN 974-631-724-5

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

Combustion of Coke on Dehydrogenation Catalysts

Miss Atchara Saengpoo

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Department of Chemical Engineering

Graduate School

Chulalongkorn University

1995

ISBN 974-631-724-5

Copyright of the Graduate School, Chulalongkorn University

Thesis Title	Combustion of coke on dehydrogenation catalysts
Ву	Atchara Saengpoo
Department	Chemical Engineering
Thesis AdvisorPi	rofessor Piyasan Praserthdam, Dr. Ing.
Co-advisor	Dr. Tharathon Mongkhonsi, Ph.D.
Accepted	by the Graduate School, Chulalongkorn University in Partial
Fulfillment of the	Requirements for the Master's Degree
	Sand Throng suran Dean of Graduate School
(Associat	e Professor Santi Thoongsuwan, Ph.D.)
Thesis Committee	
	44
С,	Myph Chairman
(Associate Profes	ssor Chirakarn Muangnapoh, Dr. Ing.)
0	
kiy_	Pralel Thesis Advisor
	n Praserthdam, Dr. Ing.)
1 10	
Thruth	m Monosohvan Thesis Co-Advisor
	Mongkhonsi, Ph.D.)
S. Ph	atamas ri Member
(Dr. Suphot Phat	anasri, Dr. Eng.)

** C616749 : MAJOR CHEMICAL ENGINEERING
COKE COMBUSTION / DEHYDROGENATION CATALYST / COKE DEPOSITS /
DEACTIVATION / REGENERATION
ATCHARA SAENGPOO: COMBUSTION OF COKE ON DEHYDROGENATION
CATALYSTS, THESIS ADVISOR PROF.PIYASANPRASERTHDAM,Dr.Ing.,THESIS
CO-ADVISOR: Dr.THARATHON MONGKHONSI,Ph.D. 155 pp.ISBN 974-631-724-5

The kinetic parameters and characteristic of coke burning on Pt/Al₂O₃ dehydrogenation catalyst were investigated by Temperature-Programmed Oxidation(TPO) and constant temperature oxidation techniques. Coked catalysts were prepared by dehydrogenation reaction of propane to propylene. TPO and constant temperature oxidation reveal that coke can deposit on dehydrogenation catalyst in three forms:1)on metal sites but does not completely cover the sites which can be eleminated at a temperature around 110°C, 2)on metal sites and completely cover the sites which can be burnt at a temperature around 450°C and 3)on support that can be removed at the temperature around 550°C. Additionally, experimental evidences suggest that changing temperature of dehydrogenation reaction in the range of 550-650 °C and variation of hydrogen/hydrocarbon mole ratio between 0 and 3, though can significantly affect area of TPO curve, only affects the amount of coke. Characteristic of coke burning emerge from this research is that the combustion should be in series, i.e.coke1, coke2 followed by coke 3. The calculation gave values of activation energy/gas constant (Ea/R); for coke 2 about 11100 K.and for coke3 about 4560 K.respectively. The values of the coke precursor (coke1) can not be measured because this coke rapidly burn off at low temperature and its amount is very small. Good agreement was obtained between experimental results and simulation. The results shown that both peak heights and peak locations obtained from simulation agree very well with experimental data. The reaction order with respect to the concentration of coke was 0.5. The kinetic parameters result from this research work can be used in developing mathematical models for catalyst regenerator design and control.

ภาควิชาวิศวกรรม เคมี	ลายมือชื่อนิสิต อ๊อฮ โล
สาขาวิชาวิศวกรรม เคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา ²⁵³⁷	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม พพ ๛๛๗

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

อัจฉรา แสงภู่: การเผาใหม้โค้กบนตัวเร่งปฏิกิริยาดีไฮโครจิเนชัน (COMBUSTION OF COKE ON DEHYDROGENATION CATALYSTS) อ. ที่ปรึกษา: ศาสตราจารย์ คร. ปิยะสาร ประเสริฐธรรม, อ.ที่ปรึกษาร่วม: อ. คร.ธราธร มงคลศรี, 155 หน้า. ISBN 974-631-724-5

งานวิจัยนี้มีการหาค่าตัวแปรทางจลนพลศาสตร์ (kinetic parameters) และศึกษาลักษณะของการเผาใหม้ ์ โค้กบนตัวเร่งปฏิกิริยาดีไฮโครจิเนชัน (Pt/Al₂O₄) โค้กที่ศึกษาจะถูกเตรียมขึ้นบนตัวเร่งปฏิกิริยาดีไฮโครจิเนชันของโพร ์เพนไปเป็นโพรพิลีน และวิธีการออกซิไดซ์โดยมีการควบคุมการเปลี่ยนแปลงอุณหภูมิ (TPO) จะถูกนำมาใช้ในการเผา ใหม้โค้ก การเผาไหม้โค้กโดยควบคุมอัตราการเปลี่ยนแปลงอุณหภูมิและการเผาไหม้ที่อุณหภูมิคงที่ แสดงให้เห็นว่าโค้ก สามารถสะสมบนตัวเร่งปฏิกิริยาได้ถึง 3 รูปแบบด้วยกันคือ 1) สะสมบนโถหะแต่ไม่ได้คลุมโลหะทั้งหมด มือณหภูมิ ของการเผาไหม้ประมาณ 110 องศาเซลเซียส 2) สะสมบนโลหะและคลุมโลหะทั้งหมด มีอุณหภูมิของการเผาไหม้ ประมาณ 450 องศาเซลเซียส และ 3) สะสมบนตัวรองรับ มีอุณหภูมิการเผาใหม้ประมาณ 550 องศาเซลเซียส นอก จากนี้ จากผลการทดลองยังแสดงให้เห็นว่า การเปลี่ยนแปลงอุณหภูมิของการเกิดปฏิกิริยาดีไฮโครจิเนชันระหว่าง 550 -. 650 องศาเซลเซียส และอัตราส่วนโดยโมลของไฮโดรเจนต่อไฮโดรคาร์บอนตั้งแต่ 0-3 ไม่เห็นผลที่เค่นชัดต่อชนิดของ โค้กบนตัวเร่งปฏิกิริยา มีผลเพียงแต่ปริมาณของโค้กที่สะสมบนตัวเร่งปฏิกิริยาเท่านั้น จากงานวิจัยนี้สามารถสรุปได้ว่า ้รูปแบบของการเผาไหม้ของโค้กบนตัวเร่งปฏิกิริยาน่าจะเป็นแบบลำคับ คือ โค้กชนิคที่ 1 จะถูกเผาก่อนตามมาค้วยโค้ก ชนิคที่ 2 และ 3 ซึ่งค่า Ea/R ของโค้กที่ 2 มีค่าประมาณ 11100 เคลวิน และโค้กที่ 3 มีค่าประมาณ 4560 เคลวิน ตามลำคับ ์ สำหรับค่า Ea/R ของโค้กชนิดแรกไม่สามารถคำนวณได้เนื่องจากปริมาณโค้กที่ตรวจพบมีค่าน้อยมากและถูกเผาได้ง่ายที่ อุณหภูมิต่ำมาก สำหรับการเปรียบเทียบผลจากการคำนวณโดยใช้ แบบจำลอง มีความสอดคล้องกับผลของการทดลองทั้ง ์ตำแหน่งและความสูงของยอดกราฟ ซึ่งค่าอันดับของปฏิกิริยาการเผาใหม้โค้ก คือ 0.5 ตัวแปรต่าง ๆ ที่ได้จากการวิจัยนี้ ์ สามารถนำไปใช้ในการสร้างแบบจำลองทางคณิตศาสตร์สำหรับการออกแบบหรือควบคุมอุปกรณ์ฟื้นสภาพตัวเร่งปฏิกิริยา

ภาควิชา	. วิศวกรรม เคมี	ลายมือชื่อนิสิต 💮 🔊
สาขาวิชา	วิศวกรรม เคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	2537	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม 🗥 🗸 🗽

ACKNOWLEDGEMENTS

The preparation of this study has been a long but exciting thesis and one which would not have been possible without to help and, encouragement of many persons. The author would like to express her most sincere gratitude to Professor Dr. Piyasan Praserthdam, her advisor, for his kind supervision and valuable guidance of this research. Special thanks is extended to Dr. Tharathon Mongkhonsi, her thesis co-advisor who has been check all grammar word, understanding and extremely helpful to this study.

Furthermore, She is also grateful to Association Professor Dr.Chirakarn Muangnapoh, as chairperson, and Dr.Supot Patanasri a member of thesis committee.

Her sincere thanks are given to Professor Liu Yaofang for her valuable advice, Mr. Somsak Amornchanthanakorn, her friends and the other people at the Catalysis Research Laboratory, Department of Chemical Engineering, who had instantly provided encouragement and cooperation throughout this study. And she would like to thank Mr. Vivat Wongnirun for this helpful guidance and some part of grammar check of this report.

Finally, she also would like to dedicate this thesis to her parents, who generously support, understanding and encourage her through the year spent on this research

Contents

Abstract (in English)	i
Abstract (in Thai)	ii
Acknowledgements	iii
List of Tables.	vi
List of Figures.	vi
Chapter	
I Introduction	1
II Literature Reviews	100
III Theory	16
3.1 Catalyst Deactivation	16
3.2 Coke Formation	20
3.3 Regeneration of Deactivated Catalysts	24
3.3.1 Kinetic of Regeneration	26
3.3.2 Regeneration of Coked Catalyst Pellets	30
IV Experiment	32
4.1 Preparation of Catalysts	33
4.2 Reaction of Propane Dehydrogenation	36
4.3 Temperature - Programmed Oxidation	44

V	Experimental Results and Discussion.	50
	5.1 The Deposit location, Combustion Temperature	
	and Behaviour of Reversible Coke	50
	5.2 Effect of Hydrogen to Hydrocarbon mole ratio	54
	5.3 Effect of variation in reaction temperature	56
	5.4 Kinetic parameter	59
VI	Conclusions and Recommendations.	72
References	5	75
Appendix		
A	: Specification of alumina support	79
В	: Calculation of designed metal loading	
	for catalyst preparation	81
C	: Calculation of flow rate gas when	
	varied H/HC mole ratio	83
D	: Data of experiment	85
E :	Calculation of simulation by	
	Explicit Euler's method	143
F :	Published paper	144
Vita		

LIST OF TABLES

TABLE
Table 3.1 Activation energy of the regeneration reaction
Table 4.1 Operation condition of gas chromatograph
(GC GOW-MAC series 750)40
Table 4.2 Operation condition of gas chromatograph
(GC-8AIT Shimadzu) 46
Table A-1 Specification of Alumina Support (NKH-3)78
Table C-1 Flow rate of H ₂ , Ar and C ₃ H ₈ at different
H ₂ /HC mole ratio84
Table D-1 Data of figure 5.185
Table D-2 Data of figure 5.2
Table D-3 Data of figure 5.3
Table D- 4 Data of figure 5.4
Table D-5 Data of figure D-1 89
Table D-6 Data of figure D-3
Table D-7 Data of figure D-595
Table D-8 Data of figure D-7
Table D-9 Data of figure D-9
Table D-10 Data of figure D-11
Table D-11 Data of figure D-13
Table D-12 Data of figure D-15

Table D-13 Da	ta of figure	D-17113
Table D-14 Da	ta of figure	D-19116
Table D-15 Da	ta of figure	D-21119
Table D-16 Da	ta of figure	D-23122
Table D-17 Da	ta of figure	D-25125
Table D-18 Da	ta of figure	D-27128
Table D-19 Da	ta of figure	D-29131
Table D-20 Da	ta of figure	D-31134
Table D-21 Da	ta of figure 5	5.6
Table D-22 Da	ta of figure 5	5.7139
Table D-23 Da	ta of figure	5.8

LIST OF FIGURES

FIGURE	F	PAGE
Figure 2.1	Temperature-Programmed Oxidation of coked Pt/Al ₂ O ₃ catalyst	7
Figure 3.1	Role of hydrogen in controlling the deactivated of a catalyst	23
Figure 4.1	Flow diagram of the propane dehydrogenation system	38
Figure 4.2	Flow diagram of Temperature-Programmed Oxidation system	45
Figure 5.1	Effect of Argon purging before/after reaction finished	52
Figure 5.2	Influence of H ₂ /HC mole ratio on Temperature-Programmed	
	Oxidation	55
Figure 5.3	Influence of dehydrogenation reaction temperature on	
	Temperature-Programmed Oxidation	57
Figure 5.4	CO ₂ production rate versus time of a coked catalyst	
	burnt at 400 °C (constant temperature) for dehydrogenation	
	reaction temperature (550 °C)	61
Figure 5.5	Plot between C ^{0.5} versus time of the result shown	
	in figure 5.4	63
Figure 5.6	Plot between ln kP _{o2} ^m versus 1/T of coke 2	65
Figure 5.7	Plot between ln kP _{o2} ^m versus 1/T of coke 3	66
Figure 5.8	Comparison of experimental and simulated results for	
	Temperature-Programmed Oxidation at 550 °C	68
Figure 5.9	Comparison of experimental and simulated results	
	for Temperature-Programmed Oxidation at 600 °C	69

Figure 5.10 Comparison of experimental and simulated results	
for Temperature-Programmed Oxidation at 650 °C	70
Figure D-1 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (360 °C) for dehydrogenation	
reaction temperature (550 °C)	90
Figure D-2 Plot between C ^{0.5} versus time of the results	
shown in figure D-1	91
Figure D-3 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (450 °C) for dehydrogenation	
reaction temperature (550 °C)	93
Figure D-4 Plot between C ^{0.5} versus time of the results shown	
in figure D-3	94
Figure D-5 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (480 °C) for dehydrogenation	
reaction temperature (550 °C)	96
Figure D-6 Plot between C ^{0.5} versus time of the results shown	
in figure D-5	97
Figure D-7 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (520 °C) for dehydrogenation	
reaction temperature (550 °C)	99
Figure D-8 Plot between C ^{0.5} versus time of the results shown	
in figure D-7	100

Figure D-9 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (530 °C) for dehydrogenation	
reaction temperature (550 °C)	102
Figure D-10 Plot between C ^{0.5} versus time of the results shown	
in figure D-9	103
Figure D-11 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (400 °C) for dehydrogenation	
reaction temperature (600 °C)	105
Figure D-12 Plot between C ^{0.5} versus time of the results shown	
in figure- D11	106
Figure D-13 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (450 °C) for dehydrogenation	
reaction temperature (600 °C)	108
Figure D-14 Plot between C ^{0.5} versus time of the results shown	
in figure D-13	109
Figure D-15 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (500 °C) for dehydrogenation	
reaction temperature (600 °C)	111
Figure D-16 Plot between C ^{0.5} versus time of the results shown	
in figure D-15	112
Figure D-17 CO ₂ production rate versus time of a coked catalyst	
burnt at constant temperature (550 °C) for dehydrogenation	
reaction temperature (600 °C)	114

Figure D-18	Plot between C ^{0.5} versus time of the results shown	
	in figure D-17	115
Figure D-19	CO ₂ production rate versus time of a coked catalyst	
	burnt at constant temperature (575 °C) for dehydrogenation	
	reaction temperature (600 °C)	117
Figure D-20	Plot between C ^{0.5} versus time of the results shown	
	in figure D-19.	118
Figure D-21	CO ₂ production rate versus time of a coked catalyst	
	burnt at constant temperature (450 °C) for dehydrogenation	
	reaction temperature (650 °C)	120
Figure D-22	Plot between C ^{0.5} versus time of the results shown	
	in figure D-21	121
Figure D-23	CO ₂ production rate versus time of a coked catalyst	
	burnt at constant temperature (480 °C) for dehydrogenation	
	reaction temperature (650 °C)	123
Figure D-24	Plot between C ^{0.5} versus time of the results shown	
	in figure D-23	124
Figure D-25	CO ₂ production rate versus time of a coked catalyst	
	burnt at constant temperature (530 °C) for dehydrogenation	
	reaction temperature (650 °C)	.126
Figure D-26	Plot between C ^{0.5} versus time of the results shown	
	in figure D25	127

Figure D-27	CO ₂ production rate versus time of a coked catalyst	
	burnt at constant temperature (560 °C) for dehydrogenation	
	reaction temperature (650 °C)	29
Figure D-28	Plot between C ^{0.5} versus time of the results shown	
	in figure D27	130
Figure D-29	CO ₂ production rate versus time of a coked catalyst	
	burnt at constant temperature (580 °C) for dehydrogenation	
	reaction temperature (650 °C)	32
Figure D-30	Plot between C ^{0.5} versus time of the results shown	
	in figure D-29	133
Figure D-31	CO ₂ production rate versus time of a coked catalyst	
	burnt at constant temperature (600 °C) for dehydrogenation	
	reaction temperature (650 °C)	35
Figure D-32	Plot between C ^{0.5} versus time of the results shown	
	in figure D-31	136