การหาโค้กชนิคผันกลับไม่ได้ที่เกาะบนแพลทินัมในตำแหน่งที่ว่องไวต่อปฏิกิริยาของ ตัวเร่งปฏิกิริยาดีไฮโครจิเนชันของโพรเพน

นายศิริพล คุณาธิปพงษ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรคุษฎีบัณฑิต สาขาวิชาวิศวกรรมเคมื บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2538

ISBN 974-632-085-8 ลิขสิทธิ์ของบัณฑิควิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย Determination of irreversible coke deposition of platinum active site of propane dehydrogenation catalyst.

Mr. Siripoln Kunatippapong

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Engineering

Department of Chemical Engineering

Graduate School

Chulalongkom University

1995

ISBN 974-632-085-8

Copyright of the Graduate School, Chulalongkorn University

Dissertation	Determination of irreversible coke deposition of platinum
	active site of propane dehydrogenation catalyst
Ву	Siripoln Kunatippapong
Department	Chemical Engineering
Dissertation Advisor	Professor Piyasan Praserthdam, Dr. Ing.
Dissertation Co Advisor	Tharathon Mongkhonsi, Ph. D.
Accepted by the	Graduate School, Chulalongkorn University in Partial
Fulfillment of the Require	ment for the Doctor's Degree.
S	and Throngsuran Dean of Graduate School
(Associate Prof	essor Santi Thoongsuwan, Ph.D.)
Dissertation Committee	
Chirak	Eam Myn oph Chairman
	essor Chirakarn Muangnapoh, Dr. Ing.)
Piyona	Dissertation Advisor
(Professor Piya	san Praserthdam, Dr. Ing.)
then the	hamphon Dissertation Co Advisor
(Dr. Tharathon	Mongkhonsi, Ph. D.)
Pand.	Chargard Member
(Professor Pran	note Chaiyavech, Ph. D.)
S. A	Wember Member
(Dr. Suphot Pat	anasri, Dr. Eng.)

พิมพ์ตันฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

ศิริพล คุณาธิปพงษ์: การหาโค้กชนิดผันกลับไม่ได้ที่เกาะบนแพลทินัม ในตำแหน่งที่ว่องไวต่อ ปฏิกิริยาของตัวเร่งปฏิกิริยาดีไฮโครจิเนชัน ของโพรเพน (DETERMINATION OF IRREVERSIBLE COKE DEPOSITION OF PLATINUM ACTIVE SITE OF PROPANE DEHYDROGENATION CATALYST) อ. ที่ปรึกษา : ศาสตราจารย์ คร. ปิยะสาร ประเสริฐธรรม , อ.ที่ปรึกษาร่วม : อ. คร.ธราธร มงคลศรี , 120 หน้า . ISBN 974-632-085-8

ในงานวิจัยนี้ มีจุดประสงค์เพื่อศึกษาภาวะเสริมและธรรมชาติของโค้กในปฏิกิริยาคีไฮโครจิเนชันของโพรเพน สำหรับตัวเร่งปฏิกิริยาที่เตรียมขึ้น ซึ่งได้แก่ตัวเร่งปฏิกิริยา Pv/ALO3 , Pt-Sn/ALO3, Pt-Sn-Li/ALO3 และ Pt-Sn-Na/ALO3.

การเพิ่มปริมาณของแพลทีนัม ได้เพิ่มสมรรถนะ ของตัวเร่งปฏิกิริยาและเพิ่มปริมาณโด้กทั้งหมดบนตัวเร่ง ปฏิกิริยา การมีคีบุกเพิ่มสมรรถนะของตัวเร่งปฏิกิริยาและปริมาณของโด้กทั้งหมดบนตัวเร่งปฏิกิริยา แต่ตำแหน่งว่องไวของ โลหะแพลทินัมยังว่าง ซึ่งสามารถอธิบายได้จากปรากฏการณ์การเลื่อนไหล การมีอัลคาไลเพิ่มได้เพิ่มสมรรถนะของตัวเร่ง ปฏิกิริยา ลดปริมาณของโด้กบนตัวเร่งปฏิกิริยาและบนตำแหน่งว่องไวของโลหะ ซึ่งมีผลจากไฮโดรเจนสปินโอเวอร์

ที่อัตราส่วนระหว่างไฮโครเจนต่อไฮโครคาร์บอนที่สูงขึ้น สมรรถนะของตัวเร่งปฏิกิริยาจะลคลง และโค้กบน คำแหน่งของโลหะก็ลคลง เมื่อเวลาผ่านไปจนถึงภาวะคงที่ โค้กบนโลหะมีปริมาณคงที่

หน้าที่ที่เป็นไปได้ของตัวส่งเสริมได้ถูกเสนอขึ้นมาคือมีหน้าที่เป็นตัวส่งเสริมเทกเทอรอลและคัวส่งเสริมโครง สร้าง อัลลอย แบบจำลองของการเกิดโค้กที่ผันกลับได้และโค้กที่ผันกลับไม่ได้ ประกอบด้วยอนุกรมการแตกตัวปฏิกิริยาติ ไฮโครจิเนชัน การเคลื่อนที่ของตัวก่อให้เกิดโค้ก โค้กที่ผันกลับได้และโค้กที่ผันกลับไม่ได้ สุดท้ายมีการเสนอแบบจำลอง ของการคืนสภาพตัวเร่งปฏิกิริยาซึ่งแสดงว่า โค้กที่ผันกลับได้บนโลหะถูกกำจัดด้วยออกซิเจนเจือจางที่ 250 °C และโค้กที่ผันกลับไม่ได้ถูกกำจัดด้วยออกซิเจนเจือจางที่ 500 °C

ภาควิชา	ลายมือชื่อนี้สิต
วิศวกรรมเคมี สาขาวิชา	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม MN wood

04: MAJOR CHEMICAL ENGINEERING IRREVERSIBLE COKE / PLATINUM / ACTIVE SITE / PROPANE / DEHYDROGENATION CATALYST C316704: MAJOR KEY WORD:

- 1, 10, 10; NEON 12:4

SIRIPOLN KUNATIPPAPONG: DETERMINATION OF IRREVERSIBLE COKE

DEPOSITION OF PLATINUM ACTIVE SITE OF PROPANE DEHYDROGENATION

CATALYST. DISSERTATION ADVISOR: PROFESSOR PIYASAN PRASERTHDAM,

Dr. Ing., DISSERTATION CO-ADVISER: Dr. THARATHON MONGKHONSI, Ph.D.

120 pp. ISBN 974-632-085-8

The objective of this research was to study the synergistic effect and nature of coke

deposition in propane dehydrogenation reaction of prepared catalysts. The catalysts were Pt/Al₂O₂

Pt-Sn/ALO₃, Pt-Sn-Li/ALO₃ and Pt-Sn-Na/AL₂O₃.

The increase of Pt loading enhances catalyst performance and increases total coke deposits

on the catalyst. Presence of tin increases catalyst performance, and total coke deposits on the catalyst

but a larger vacant site of Pt on metal active site remains free; this is explained by a drain-off effect.

Presence of alkali increases catalyst performance, reduces coke deposits on the catalyst and metal active

site; this is caused by hydrogen spill over.

At higher hydrogen-to-hydrocarbon ratios, the catalyst performance is decreased and coke on

the metal site is decreased also. As time on sream reached the steady state, the cokes deposited on

metal sites are constant.

The possible functions of promoters are proposed; they are textural, structural and alloy

functions. The model of reversible coke and irreversible coke formation is composed of series of

fragmentation, dehydrogenation reaction and migration of coke precursor, reversible coke and

irreversible coke. Finally, the model for regeneration which suggests that reversible coke on a metal

active site is removed all by diluted oxygen at 250 °C and irreversible coke on a metal active site is

removed all by diluted oxygen at 500 °C is proposed.

ภาควิชา.....วิศวกรรมเลมี.....

วิศวกรรมเคมื สาขาวิชา...

2537 จีไการศึกษา....

ลายมือชื่อนิสิต

ลายมือชื่ออาจารย์ที่ปรึกษา.....

ลายมือชื่ออาจารย์ที่ปรึกษาร่วม MA

ACKNOWLEDGEMENTS

Professionally and personally, the author would like to extend his gratitude to his advisor, Professor Dr. Piyasan Praserthdam and co-advisor Dr. Tharathon Mongkhonsi for the invaluable advice and guidance throughout his dissertation work. He is also grateful to Associate Professor Dr. Chirakam Muangnapoh, Dr. Suphot Patanasri and Professor Dr. Pramot Chiyavech for their stimulating comments and participation in the dissertation committee.

The author wishes to express his gratitude Mr. Somsak Kulvarapom, Managing Director of KM. Interlab Co, Ltd., for giving time to the author for studying in the Doctor of Engineering Program, Miss Malai Rojjananarongdash for providing valuable document support to this work and Miss Bualom Jaikaew for helpful suggestions.

Furthermore, the author wishes to thanks all of the staff members at the Catalysis Research Laboratory, Department of Chemical Engineering, Chulalongkorn University, for their assistance.

Finally, greatful thanks to all members of his family for their moral support.

CONTENTS

			PAGE
ABSTRACT	(IN ENG	LISH)	i
ABSTRACT	(IN THA	I)	ii
ACKNOWL	.EDGEME	NTS	iii
LIST OF TA	ABLES		ix
LIST OF FI	GURES		x
CHAPTER			
I I	NTRODU	CTION	1
II	LITERATU	JRE SURVEY	5
III '	THEORY .		11
C	HARACT	ERISTICS OF SUPPORTED METALLIC	
C	CATALYS	TS	11
	1. Str	ucture and properties of dispersed metals	11
	2. The	e role of catalyst surface morphology in activity	
	and	d selectivity	14
	3. Stn	ucture sensitivity of reactions	16
	4. Eff	ect of crystallite alloying on reaction	
	sele	ectivity	19
	4.1	Individual surface atom concept	19
	4.2	Factors influencing ensemble effect in	
		bimetallic catalysts	21
(COKING C	ON NOBLE METAL CATALYSTS	24
	1. Eff	ect of operating conditions on coking	
	dea	ectivation	24
	1.1	Hydrogen and hydrocarbon pressures	25

		1.2 Na	ture of hydrocarbons	25
		1.3 Te	mperature	26
	2.	Influenc	e of the catalyst	27
		2.1 D	spersion	27
		2.2 C	nloride content	28
		2.3 C	omposition of a metallic phase	28
	3.	Mechani	sm of coke formation	29
	4.	The che	mical nature of coke	30
	5.	Location	of coke on metal crystallites	31
	6.	The drai	n-off effect	33
	7.	Control	of deactivation by hydrogen	34
	8.	Deactiva	ation resistance for bimetallic catalysts	36
IV	EXPE	RIMENT		38
	PREP.	ARATIO	N OF CATALYSTS	38
	1.	Material	s	38
	2.	Apparat	18	39
	3.	Preparat	ion of platinum catalysts	39
		3.1 Pr	reparation of support and stock solution	39
		3.2 Pr	reparation of platinum catalysts	40
		3.3 P	reparation of platinum-tin catalysts	41
		3.4 Pr	reparation of trimetallic catalysts	41
	CATA	LYST CH	ARACTERIZATION	42
	1.	Metal a	ctive- site measurement	42
		1.1 M	aterials	42
		1.2 A	pparatus	42
		1.3 P	ocedure	44
	2.	Temper	ature programmed oxidation	44
		2.1 M	aterials	44

	2.2	Apparatus	45		
	2.3	Procedure	45		
3.	Elec	trical conductivity measurement	47		
	3.1	Apparatus	47		
	3.2	Procedure	47		
THE C	ATA]	LYST DEACTIVATION BY PROPANE			
DEHY	DROG	GENATION	48		
1.	Mate	erials	48		
2.	App	ratus	48		
3.	Proc	cedure	51		
	3.1	The operating temperature at 500°C and			
		H ₂ /HC=0	51		
	3.2	The operating temperature at more than			
		500 $^{\circ}$ C and H ₂ /HC = 0	52		
	3.3	The operating temperature at 500°C and			
		$H_2/HC = 2$	52		
DETERMINATION OF COKE DEPOSITION ON					
CATA	LYST	BY METAL ACTIVE SITE			
REGE	NERA	ATION	53		
1.	Mat	erials and apparatus	53		
2.	Prod	cedure	53		
	2.1	The reaction at 500 $^{\circ}$ C and H ₂ /HC = 0	53		
	2.2	The reaction at not 500 °C and H ₂ /HC=0	55		
	2.3	The reaction at 500 $^{\circ}$ C H ₂ /HC =1	55		
	2.4	The reaction at not 500 $^{\circ}$ C and H ₂ /HC =1	55		
RESULTS AND DISCUSSION					
SYNE	RGIS'	TIC EFFECT OF TIN AND LITHIUM FOR			
PROPA	PROPANE DEHYDROGENATION				

V

	1.	Effect of platinum loading	57
	2.	Effect of various promoters	57
	3.	Effect of tin loading on platinum catalyst at	
		different temperature	63
	4.	Effect of lithium loading on platinum-tin catalyst	
		at different temperature	63
	5.	Effect of hydrogen to hydrocarbon on catalyst	
		performance	67
	6.	Comparison of the metal active site among	
		various studied catalysts	67
	7.	Comparison of the electrical conductity among	
		various studied catalysts	70
	DETER	RMINATION OF IRREVERSIBLE COKE	
	DEPOS	SITION ON METAL ACTIVE SITE OF	
	CATA	LYST BY METAL ACTIVE SITE	
	REGE	NERATION METHOD	73
	1.	Effect of various promoters	73
	2.	Effect of hydrogen/hydrocarbon ratio	77
	3.	Effect of reaction temperature	77
	4.	Time dependence on irreversible and reversible	
		coke deposition	77
VI	CON	CLUSIONS AND FURTHER STUDY	93
REFERE	NCES		96
APPEND	IX		101
A.	SAME	PLE CALCULATION OF CATALYST	
	PREP	ARATION	102
B.	META	AL ACTIVE SITE ON CATALYST	
	CALC	CULATION	105

	C.	SPECIFICATION OF ALUMINA SUPPORT (Al ₂ O ₃)	
		TYPE KNH-3 FROM SUMITOMO ALUMINIUM	
		SMELTING CO., LTD	106
VITA	٠		107

LIST OF TABLES

TAI	BLE	PAGE
3.1	Properties of platinum crystals of different sizes with regular	
	faces	13
3.2	Reaction site requirements on platinum crystallites	17
3.3	Mechanisms of coke formation on reforming catalysts	32
4.1	Operating condition of TCD gas detector	42
4.2	Operating condition of gas chromatograph (GC-8 AIT)	45
4.3	Operating condition of gas chromatograph (GC-14 A)	51
5.1	The metal active site of catalysts measured by CO adsorption	70
5.2	The metal active site of catalysts in the high reduced	
	Temperature	71
5.3	The electrical conductivity of various catalyst	71
5.4	% error of metal site after irreversible coke regeneration at	
	500 °C (compared with fresh catalyst)	90

LIST OF FIGURES

FIG	FIGURES		
3.1	Process of calcination and reduction causes formation of	12	
	metallic crystallites		
3.2	Factors affecting the ensemble effect in bimetallic catalysts	22	
3.3	The surface geometry of a Pt/Al ₂ O ₃ catalyst	23	
3.4	Schematic illustrating the stabilization of the catalytic activity		
	of Pt-Re catalysts in the presence of sulfur	24	
3.5	Typical influence of pressure on stability	26	
3.6	The deposition of coke on Pt/Al ₂ O ₃ from various		
	hydrocarbons ; T=500 °C	26	
3.7	Influence of temperature on the rate of coke deposition	27	
3.8	Rate of coke deposit for platinum and platinum - promoted		
	catalysts	29	
3.9	Model for the production of carbon on platinum	30	
3.10	Fraction of irreversible coke on the metal sites of different		
	temperature	31	
3.11	Mechanism of coking and hydrogen cleaning of a Pt		
	crystallite	35	
3.12	Comparison of deactivation model with experimental		
	observation for cyclohexane reversible coking on Pt/Al ₂ O ₃ .		
	Time frame is 20 seconds of coking so coke is reversible in		
	nature	36	
3.13	Effect of time of operation on reversible fraction on a		
	Pt/Al ₂ O ₂ catalyst (17)	36	

4.1	A flow diagram of the CO adsorption apparatus	43
4.2	A flow diagram of temperature programmed oxidation	46
4.3	A flow diagram of the propane dehydrogenation unit	49
5.1	Effect of platinum loading in propane dehydrogenation at	χ.
	temperature = 500°C, GHSV = 22,525 hr ⁻¹ , weight of	
	catalyst = 0.1 gram and feed = 20% propane in N_2 gas	58
5.2	Temperature programmed oxidation of various coked catalysts	
	for different platinum loading at 500 $^{\circ}$ C and H ₂ /HC = 0	59
5.3	Comparative performance due to Sn and Li loading on	
	Pt/Al ₂ O ₃ catalyst at temperature = 500°C, GHSV = 22525	
	hr-1, weight of catalyst 0.1 gram and feed = 20% propane in	
	N ₂ gas	60
5.4	Temperature programmed oxidation of various coked catalysts	
	for different promoters at 500°C and H ₂ /HC = 0	62
5.5	Comparative performance due to Sn loading on Pt/Al ₂ O ₃	
	catalyst at different temperature 500-650 °C, GHSV = 22525	
	hr weight of catalyst 0.1 gram and feed = 20 % propane in	
	N ₂ gas	64
5.6	Temperature programmed oxidation of various coked catalyst	
	for different tin loading on platinum catalyst at 500°C and	
	$H_2/HC = 0$	65
5.7	Comparative performance due to Li loading on Pt-Sn/Al ₂ O ₃	
	catalyst at different temperature 500-650 °C, GHSV = 22525	
	hr , weight of catalyst 0.1 gram and feed = 20% propane in	
	N ₂ gas	66
5.8	Temperature programmed oxidation of various coked catalyst	
	for different lithium loading on platinum-tin catalyst at	
	500 °C and H ₂ /HC = 0	68

5.9	Comparative performance of Pt-Sn-Li/Al ₂ O ₃ catalyst at	
	different hydrogen/hydrocarbon ratio and temperature 500°C	
	GHSV =22525 hr ⁻¹ weight of catalyst 0.1 : gm and H_2/HC =	
	0, 2	69
5.10	The function of promotor on platinum catalyst for propane	
	dehydrogenation reaction	72
5.11	Temperature programmed oxidation of various coked catalyst	
	for different promoters at 500°C and H ₂ /HC = 0	74
5.12	Total coke, reversible coke and irreversible coke on the metal	
	site of various coke catalyst	75
5.13	Total coke ,reversible coke and irreversible coke on the metal	
	site of 0.3% Pt/Al_2O_3 catalyst with different H_2/HC	78
5.14	Total coke, reversible coke and irreversible coke on the	
	metal site of 0.3% Pt-0.3% $\mathrm{Sn/Al_2O_3}$ catalyst with different	
	H ₂ /HC	79
5.15	Total coke, reversible coke and irreversible coke on the	
	metal site of 0.3% Pt-0.3% Sn-0.6 % Na/Al $_2$ O $_3$ catalyst with	
	different H ₂ /HC	80
5.16	Total coke ,reversible coke and irreversible coke on metal site	
	of 0.3% Pt/Al ₂ O ₃ catalyst vary with reaction temperature at	
	$H_2/HC = 1$	81
5.17	Total coke ,reversible coke and irreversible coke on metal site	
	of 0.3% Pt-0.3 % Sn/Al ₂ O ₃ catalyst vary with reaction	
	temperature at $H_2/HC = 1$	82
5.18	Total coke, reversible coke and irreversible coke on metal	
	site of 0.3 % Pt-0.3 % Na/Al_2O_3 catalyst vary with reaction	
	temperature at $H_2/HC = 1$	83

5.19	Temperature programmed oxidation of coked 0.3 % Pt/Al ₂ O ₃	
	catalyst at H ₂ /HC =1 with different time on stream	84
5.20	Temperature programmed oxidation of coke 0.3% $\mathrm{Sn/Al_2O_3}$	
	catalyst at H ₂ /HC =1 with different time on stream	85
5.21	Temperature programmed oxidation of coke 0.3 % Sn-0.3%	
	Na/Al ₂ O ₃ catalyst at H ₂ /HC =1 with different time on stream.	86
5.22	Proposed model for coke formation	88
5.23	Proposed model for regeneration	9: