CHAPTER I 1.
Feynman's Path Integrals

The best places to find out about path integrals is in
Feynman's paper (A). Our approach is not to use path integrals as a
way of arriving at quantum mechanics, although Feynman has used this
point in his book with Hibbs : We assume knowledge of

(12)

guantum mechanics and deduce the path integrals formalism from it.

This gets US into the subject quickly.
1.1 Defining the Path Integrals.

The wave function of a non-relativistic spinless particle in

one dimension evolves according to Schroedinger' equation
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Our interest is in the propagator k or Green's function

which satisfies the equation
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in operator notation. In coordinate space this is written for the

propagator as
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£= and Kk are related by
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Knowing ” c¢ bva) means having a solution to the time dependent
Schroedinger' equation in the sense that if is the state
of the system at the time 1 , given by
Y i1 = c dfcOo (1 .4)

is the state at the time 1y . For the time independent H an operator

solution of Eq. O™*?) can immediately be written . as

Gr,,,»" = ©‘'V u A ukAObJ,‘)'} (‘E.-q)
where is the step function. Since jj is assumed to be time
independent we can, without loss of generality 5 take o and

Then for ty 0 we can
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where the argument i"= O has been deleted.

The path integrals arise from the fact that
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Letting c\» /< yields
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with the products in the bracket taken N times. Now ve make use of

a fundamental fact about the exponential of two operators, namely
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This can be proved easily and in a power series expansion the
coeffient of the term is
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In subsequent manipulation we assume that the term is veil

behaved, that is stays bounded when applied to states, and so on. For
reasonable potentials this assumption is justisfied. More is said on

this topic in the appendix A.

VJhat we are now arriving for is to replace the term
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For real numbers ( rather than operators )jthis replacement is a

*

Al expression is conveniently generated by looking at derivative
of op ( PT/n) &§?C- 9 cc*V)/IM) O (A vim).



reflection of a fundamental fact about the exponential. For operators
a bit of care is required, and the trick is to express the difference

of Egs. (ii.'O and CE‘"/Ois a peculiar way;
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Eq. (JIV) is an identity. It contains N terns, each of which has
the factor -OT/im)op N-'?2"VIMN —c>P ETiVyfg which by
Eq.(Tr.'0 is of order . Hence in the lim it the difference

is zero. In appendix A, mention is made for various finer points in

the estimate.

Ue have therefore justisfied the replacement of Eg. (T.ItO by
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From here, getting the path integrals is just a few easy steps. The

identity operator, in the form
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is inserted between each terms in the product in Eq. (Of1180 , yielding
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for convenient we have taken yo0 , The multiplication

operator V is diagonal in coordinate space so that

e> = (-->VIixp/N~ . (1 .1f)
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Next we require coordinate space matrix elements of £ between

states <" land [fy, and to obtain these we insert a complete set of

momentum states
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This requires
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This is the gaussian integration . The general formula is
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More detials of this formula is contained in appendix B. Usine
Eq. (] .it) . EQ. cs *%®) becomes
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Egs. (1.'O and ( !'.»') are inserted into Eg. Or*I* to yield
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Eq. (TT'AiS the path integrals expression for the propagator. A few
words are in order , however, on vh}7 this is called a " path integrals "

or " sum over histories "

Imagine that the points NI XAXI L - are connecte”
by lines. Then we have a broken lines path from to m/b . The sum
in the exponential of Eq. (ir.iiAcan be integrated as a Rieraann sum

of a certain integral along that path:
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The integrand in Eq.(I[,Sf) is well known in classical mechanics. It

is just the lagrangian
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of the classical system which when quantized has the hamiltonian

Eg. O rm®) . Furthermore, the action
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is no less prominant an object in classical mechanics. The argument

in Eq. (T =Y is thus L—S , With X evaluated along the broken line

path connecting *Am*m>— 8 ' 1.7

The integral over the quantitis ' )'*}-}'e- &*N  can ke
interpreted as summing over all possible broken line paths connecting

and X _land Eq. ® ) has become
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where c¢! is called normalized constant and defined to be

g
d p o ol o . (31. )
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from Eq. ([ . ). A final cosmetic expression on Eq. £ + ') is to be

written as
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where the notation 7°"3"leans the mathematical measure of the
60
integration variable *™). Me call this expression M Feynman's path

integration

Il1.2 Gaussian Integration

The simplest path integrals are those in which all the
vsribles appear up to the second degree in the exponent. In quantum
mechanics this corresponds to a case in which the action involves

the path w ?)up to and including the second order.

To illustrate how the method work in such a case, consider 3

particle whose Lagrangian has the form

i\} m W:w>a + ccr)xa+ J(z) X + efTO* 1 Per)
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The action is the integral of this function with respect to the time

between two end points. We wish to determine

AAY)Y = A M. XCO) 22p Ndi 8 X, *1Jz\ >(H.K)
K c z J
the integral is ever all paths which go from to (xt)0 o

Of course , it is possible to carry cut this integral over
all paths in the way which was first described in section 1.1. 3ut we
shall not go through this tedious calculation, since vie can determine

the most important characteristics of the propagator in the following

manner.

Let be the classical, path between the specified end



points . This is the path which is an extremum for the action ]
the notation ‘e have been usine
Ci.V) N

d (it » 9

We can represent xc?) in tcrmsof X Cr) and a new varible >>(?):

xco = * (f) = , (X-H)

That is to say, instead of defining a point on the path by its distance
xf?) from an arbitary coordinate axis, we measure the deviation xf7)

from the calssical path Xcl(l)'

At each =z the variable X(2") and x~f7) differ by the constant
(?). Therefore, clearly, Sx_—dye. for each specific point ?£

in the subdivision of time. In general, we may say sB T)e

The integral for the action can be written
xer> \ £ X, (o o >~ (J.'W O

This canveasily shownthat ve can vrrite
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The integrals over all paths does not depend upon the classical path,

so that the propagator can be written
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Since all paths X(r) start frcm and return to the point x<"0-0,
the integrals over all paths can be a function of tine at the end

points. This means that the propagator can be written as

HCAiVo = F ,0 TrA

So that is determined except for a function of i-

(9) (3)

It follows from the works of Van Vleck and Pauli

that for the local problem, Eq. (fp*t®™can also be W itten as
[ - "\S>;J’f eY\|5" M)

And in M dimensions coordinate space this formula is generalized

to be

[ C»i*oj (IT )

Vrhere ‘fcll) is the #‘~dimensional coordinate space variable. A details

of the evaluations of this result will appear in appendix c .

However, the propagator of Egs. ( Ny or (X 0) are satified
for the system which contain the local potential only. They cannot

be used for the nonlocal potential.



I1.3 Application to the Local Problems.

It is of interest to examine some simple problems of the
guadratic Lagrangian system. The simplest one is of the free particle,

the Lagrangian of this system is given by

X. = 1 X . (IE." )

By the routine calculation of the classical solution XCO of the
equation of motion of this system , the action function can be

evaluated to be
n (IT-M1

Using Van Vleck-Paulil results in Eq. (TT'M), the propagator

becomes

K (AL - ' L , . .
TR Kt Q>f§ tat (77O (Eem )

Another problem is of the free electron moving in two dimensions
under the influence of a constant magnetic field which presented in

perpendicular direction to the plane of electronic motion. The

Lagrangian of such a system, with the symmetric gauge of the magnetic

field, A* = (" "~> S is given to be
- W . A_TA )
L=V .+ )+ (M-T71) (TE O
where  Si. r?% 5 the cyclotron frequency.
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Applying Hamilton' theorem (18) to this lagrangian in both directions



and evaluate the classical solutions X (O and y m for t'ie

corresponding equations. The action function can be calculated to be

4 M C **Yh : (n '4S)

Using Van Vleck-Pauli' result in Eg. Ol ), the propagator becomes
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The last problem we w ill study here is of the simple harmonic

oscillator . The lagrangian of this system is

oU « Yy - L (1'M)

The classical action function of this problem can be evaluated

systematically and it becomes

Vo co
el " R
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Using Van Vleck-Pauli’ result in Eq. , the propagator becomes

012934
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In next section we will take attention on the problem which
contain nonlocal potential. The simplest one is known as the nonlocal
harmonic oscillator.
II.LA Nonlocal Harmonic Oscillator.
Path integral theory of the nonlocal harmonic oscillator was
first done by Bezalc £‘14). The Lagrangian is given by
ft _ _
| = « b A Xerni- XCA")j A7 MNMT 50 |
0
and its corresponding action function SL*<V}]is
t - ) TR *$[y.fry—xfu)/\
or ,51)

And the path integral expression for the propagator is written to be

Nox = AEQL*co] e,>p”
AN Xh) - xco] : (T
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As is shown by Bezak (15) and Sa-yakanit (10) that this

propagator cannot be written in the form of £gs. (jEm ') 01- EEUfO)

But this problem takes the Lagrangian in quadratic form, so that it



17

can be written in the form of Eq.C| %) . However, following

Papadopoulos' idea we can transform the nonlocal problem into the

local one and Egs. (I w' ) and CT-1f)) are satisfy.

At first step towards our attention we express the action

function appear in Eg. by
2
¥ @ o
SE X(z)z = 'Z_V’S[i._ \)xa](fz +~_“.}) S XD dt
d J Y A
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Inserting this action function into the expression of the propagator
in Eq. £ir -5") , our path integral takes the form
b SNt
| . 3
K(&\\l)) = Q&[‘KCNJ 6)( } i L = S [X—VXAXJZ
/ N,
0
a t a
+ g Xty d CI
—_— . ,b
ok } So DAt Ir.54)

He can generate the path integration through the averaging by a linear

exponential functional involving an auxiliary random force *

independent of the time T. More explicitely we have

”
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where ,
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The propagator of Eg. "Tj.r>i)is of the force harmonic oscillator and this

can be found in the literature (18) (17). So that the propagator of the
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nonlocal harmonic oscillator is obtained after inserting the propagator

for the force harmonic oscillator into Eg.

F - integration. The propagator becomes

SJi.'fcf 3 >\ (V>{yA)

1 y <| lef

and performing the

C |-5»)
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