CHAPTER |11

The Propagator

In this chapter ve will evaluate the propagator for the problem
of our interest which contain an electron moving in two dimensions
under the. influence of a constant magnetic field presented in perpen-
dicular direction to the plane of electronic motion and with the
presence of random potential of that plane and also involving the
time varying external force field. In this evaluation we use the con-
figuration soace representation rather than phase space representation.
The random potential ve use here is the soluble model introduced by
Sa-yakanit v in his model of disordered system. It contains the

oscillator with the memory term known as a nonlocal harmonic oscillator.

I11.1 Feynmanl propagator.

Let us denote the plane of an electronic notion by 5
the lagrangian of the electron subjects to the potentials mentioned
above with the symmetric gauge of the magnetic field, the vector

potential A - c-X 9*6,0"1is given by
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where . -= re is the cyclotron frequency, ” denotes the nonlocal
vAct

oscillator frequency, {>£0 and fE]ft}are presented generally for the time

varying external force field in X- and \J- direction respectively.

The required propagator can be written down in the Teynman path integral

form as
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is the action function, c¢DLxf*and €2 CyfO] denote the path
integrations he carried out with the boundary conditions Xfe) =
Ych = >b |, y(°)= and yd) = yb . The propagator in Eq. (. -*J)

can be written as
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The awkward parts of the path integrals of Eg-On.?) appear in the
last exponential functional which involve the square of the integrations
and A respectively. These lead the action function
of such a system to be rather complicated and the path integration
cannot be carried out directly. However, the difficulty can be over-

come as follows

We generate these functions through averaging the linear
exponential functionals involving the auxiliary force and F in
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two dimensions®independent of the time z. We follow Stratonovich'

V70rk by using the identity
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where <> denotes the gaussian average defined by
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Applying Eq.QQA) into Eq. (. £+) , we have
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where V "» is the effective propagator corresponds to the system
of the harmonically bounded charge under the magnetic field and external

time varying force field. It is given by
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This transformed propagator contains only the local action function.

Thus, following from Feynman's formalism of the path integral theory

the effective propagator can be expressed in term of its action function

of an electronic motion bounded by the harmonic oscillator
potential under the magnetic field and the external time varying force

field.From Eq. (.~-'*") >we get
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where (.Qii) is called the pre-exponential - factor for the

effective system which is the function of the time interval t only.

1.2 Effective Propagator.

We shall now concerned with an electron moving in a harmonic

oscillator bowel
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under the constant magnetic field } the external time varying
force fields ” t"and and in the random forces and Fy . From

Eq.OIF'r") , the effective lagrangian is
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Note that this lagrangian appears in quadratic form, so that Van Vleck-

Pauli' result can be used. We w ill get the pre-exponential factor in

Eq. (0.8) , F ( 5 associated with the effective action function
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and which is evaluated in Eq. (TT-V3 by the formuli
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Vhere we use the notation A~ by means of the 2.X1 matrix elements,
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Je now wish to evaluate the effective classical, action function,
a * corresponding to  effective Lagrangian,
To simplify this problem, we introduce the 2x2 faatrix , from

Papadopoulos' work, such as
)& ° IR (e
which obey the relation
J -T (2 .1*1))

That is the matrix 3 plays the role of 2 x 2 imaginary matrix. Let
us also denote the 2x1 matrices for the axis components and for the
force fields, those are
X fo Ont "
*C7> and < fcro +F =
. 7f°d J 1 X\
Cm w'f),

From these notations, the effedtive Lagrangian becomes
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where the notation (—Y means the matrix transposition. Using Hamilton'

theory for this Lagrangian,
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it leads to the equation of motion,
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Subject to the boundary conditions,

Qg " and Y() =Y. . (2 1nd)

The algebra for the solution of the equation of motion in
Eg. (j5M9V)c&n be significantly evaluated by the method of Green’
function and details of the evaluation are contained in appendix D.

We confine ourselves to write dovm the results of the classical solution
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when He -mm -being the Heaviside step function obeying the relation

L
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The details of evaluation of the Green's function are contained in

appendix E.

We now focus our attention on the effective classical action

function
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The complete solution for an effective classical action function is

obtained to be
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For convenient, we denote for the classical action ~ such as
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The pre- exponential factor associated with the effective propagator
can be evaluated exactly by using Egs. (JE.ir) and Qu'”?). It is founded

that
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The details of the evaluation are put in appendix F.

From Egs. GCTfc) |, (nr~?) and ( .<") e obtain the affective

propagator such as
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N1.3 Exact Propagator

Let us now go back to the original propagator in Eqg. Chr*6)
we have

oFu

By splitting. ~co into the two parts

AT - B+ F

then the propagator in & . (ftT-Vf') becomes
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Then we perform the gaussian average of Eq. (rT-6) 9we will obtain
extfkit-
the desiredvpropagator, in the short form,
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and
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The details of the evaluation of the results appear in Eqs. Qur <30,
OMT) , Curw?), (E-M) andCflJ.y)) are contained in appendix G.
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