APPENDIX A
(10

The Trotter Product Formula

THEOREM (Trotter product formula) Let A and B be linear operators on

a Banach space X such that /A , B and/.+ B are the infinitesimal gener-
01 i rjt .

ators of the contraction semigroups ' 5Q. ,and - respectively. Then

for all Y e X
fAw  (Pear)y

In this appendix we m define some of the terms used above,
indicate how a proof of the theorem goes, and examine some of its

consequences.

A semigroup is a set closed under a binary , associative
operation. Were inverses required to be in the set it would form a

group. A semigroup may or maynot posses an identity.

Definition : A contraction semigroup on Banach space X is a family of

bounded everywhere defined linear operators P, ou.iu mapping X -3>X
such that
L; p Vv Pu> } OE£*E£ ° (A W)
I Ps < 1 O+LtU (A?)
mwo p " o=y y £X (A A)
' i <o

The norm used above is defined as follows:

1 ail - r2  Yyokecic Ccr*l X é X\ .o
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(X-5,
4-4-

(s



and |l is the norm in X . The terra "contraction" coraes from the fact
that llp I~ 1 , since vectors do not grow as they evolve under Vv .

The infinitesimal /4 of p is defined by

wly ~ i (p*y-y) (fi )

on the domain  XX)of all ' 6X for which the limit exists.

Remarks on the Proof of the Theorem. Let il be a positive real number
and let P, G-, | be as defined in the statement of the theorem. By

the definition of genenrators we have

(ow - i)y - (p“f)y + P* &)Y - n(aiB)s-tocn
(.Am -,

where ocpaenotes vectors X such that Jjjwl I X | [y - 0 ¢ Then since
_/\)0

= h (A i P)J -0Ch) (A *)
it follows that
(pw - ) - = OcA) (1)4)

Row we must establish the unifonr.ity of the bound O(p). By using prop-
erties necessarily possesed by infinitesimal generators we show that
for ~in some compact subset of DCX-tB) >h *li(p <& - ~)'~\is uni-
formly bounded. For some ' £ £04t0), £ » 0" s<0 is compact and in

) (4ip)> hence [i Cf5(2 0(h) unifromly in

Let e Then we wish to show that
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To this end we examine

[iitn Coa rrAN / A -6 (A‘O -A, -A - A Aa-n
(P a) - R 1 (pa-R)E +p (pcr-r > ;
+ cp&v~'c pvV -R *) Om )

Next . apply this to v J end use the fact that uP I~ 1 . This .

implies

i-upVy-£ti'H ~2E(?V--R*)R"
04.

where the lim it is uniform.

For the physical application of this formula we let

(A-te) = U-A+V") - £4-0)

Thus it is necessary to know whether, B, and /4i B generate contrac-
ts
tive semigroups. Basically wliat is evolved is®examining J< | where d

is the proposed infinitesimal generator. Recall that

For y there is no problem; y is a multiplication operator and
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-C|f*>
Y - r~*) i JefExj M {x)j5= "

- B

implies Il £ |=" for all =f,

To show that the Laplacian ~ generates a contractive semi-
group we review some elementary facts' and intuitions about the norm.

Generally speaking the norm looks for the largest eigenvalue. If X

is finite dimensional we have (3 % 4=1,---J . Then the
worst case is the biggest | €| , call it | and its eigenvector Of,
for then [10,1 = 1 ™ NQ'I+VINU IE| . Say GI=£ . Its eigenvalues
are a 1where d- are the eigenvalues ofd. Thenll . 1= ' ' \t | =
R«d;
Wiy X . Thus
id ty*C i
Il e I R AT | (A'lO

so that the condition for ¢! to be the generator of a contractive semi-

group is that fedt<Ofor all i

On Hlbexst space , the thing that would be the eigenvector is
not always in the space and the definition of the norm as the lim it
("sup") must be invoked. For example, le tfA be the multiplication

operator by the function exp(-x ). Thus

Myc>) = ; '"f*X) . : -CAM}

Clearly M~(x)ll4 |IM] so that [[tolK 1« Let

V . rx(r-1%0 04-10



then

In' B* £ = N <l 00 (A" )
NN
Tor all finite (v
X 3 A
« »
= n v '7*1 £+ A > ' I -XJ> * » 1 --L,
1 5,.,,, ' oy

But for large enough N this gets arbitrarily close to 1, hence IM] = 1.
However, there is no <*in the Hilbert space such that (alf="lj. Thus 1 is
not an eigenvalue of M , but it does have some special properties with
respect to M it is the spectrum. The spectrum is defined as the comple-
ment of the resolvent set where the resolvent set of an operator A is

the set of 9\ for which ¢ ”-/4") *exists.

Above we have a condition on the eigenvalues of a finite
dimensional matrix c so that it generated a contractive semigroup . In
a Hilbert space it is most convenient to state the condition in terms
of the spectrum. The condition on an operator cis that Re”"o for 'A
in the spectrum. If c = iK, in terms of the eigenvalues ( or spectrum )

*

.. r tc?
of K this means Imm 0 for all i . If e is also to be a contrac-

tive semigroup-evolution in both directions-we must have

lvn = 0 Cd. )

That is , K has only real spectrum, a condition guaranteed by the usual
requirement  that the Hamiltonian be self-adjoint. Thus 1€ ~ =1
which is the statement that the free particle propagation is norm

preserving. To determine whether A-1B generates a contractive semigroup



we examine whether -£>-*v is self-adjoint ( so that its spectrum would
be real ). This question is what mathematicians call perturbation theory
( and physicists never bother to ask ). If it is self-adjoint, then

the conditions for the Trotter formula are satisfied.



APPENDIX B

Gaussian Integration

Functional gaussian integrations w ill be understood to be the
product of many regular gaussian integrals. The simplest is

0o

G() _ ~» N (91)

-r>

which, using Poisson* trick of taking the square and of expressing

the integrand in polar coordinates, is seen to be

G o) _ PE (6 m

- J *

We can generalize it to N degrees of freedom. Let

G («) * 7 e>"N-x.*4 (&m>)
-@
where A is the real symmetric « N X N matrix v:ith elements . W
write
XEAi'3X'3 - XT/X IK Al -A ce.A).

A can be diagonalized by means of a rotation

A * RIT>R , Ra -1 * re.p)
v;ith p a diagonal matrix with entries , 5 N. Then

A exp (-* TKTDf<x)

50
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| 4 .
Gy = JxIX 'A\XN (-7Vi) ie.<n

V7ith 7 = . The jacobi3n is one. In the 7 variables.CQJVA) is

separable in the N -fold product of

O /P . (" ,1G6 Q) ... c<<n (e.s)
(BA)
m1Ch A A (e>do)

provided that all the eigenvalues of A are positive. In a similar

way ve can prove that if %2 are K complex variables
) 1 02"w

where C is an hermitian 1 X « matrix with positive eigenvalues.

Formally, one then defines gaussian path integrals by taking the lim it

N =00

These formulae are valid when the determinant does not vanish.
If it does, it means that some is equal to zero, leading to an infinity
from . integrating over an infinite interval. -ldeally we would
like to devide out the culprit infinite integral. Suppose the symmetric
HX Lmatric A has M zero eigenvalues. In the y variables define

the restricted gaussian integral

ot 1 So‘v J Tm crf ( Xrcy) Ax(y)) (B.ia)
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where we integrate only over the variables corresponding to a non zero
eigenvalue of A . This representation of C? ('O is awkward since
it depends on the right system of coordinates " y " . To make up of

this, invent new variables Y , , Y aaa rewrite Egq. (B.I* as

ct (A -5 m 17-PoAng- A SOy -S eyt

(B.1?)
Now change variables from y to X , using the Jacobi formula
S Ay
v v AYrv otxl‘;x.;"' ofo Ix\ (B.IM
to obtain the final expression
3 fiy |
d No= , I }
) S]iTq(xi cfet 2 0-15

This integral is perfectly well defined. The Y~ are some arbitary
functions of X , and the extra factors I jTT 1 in the measure
effectively restrict the integration from an K-dimensional space to

an N - n dimensional one. As the construction has shown, (jT<>|(A") does
not depend on the specific form ofy N-h . It goes without
saying that the y™x-) should be cleverly chosen so. as to do the job,

i.e., restrict the integration region ; if they do not, the Jacobian

13.x] *s seen  be singular.
Finally we prove one more expression . Consider now

- XTAN 4+ cJIx

F(A ) * \Trex £ (0.IM



We rewrite the exponent by completing the squares

~ 0>X - ~*-14*Voy I\ (x - A Co m'N

provided that /4 ~ exists. Letting

* = A - XA ©
so that , we find
—Ldod [* N —XMA V.
= ,>»>, -
NJ -4 » Vv « y 1"«

I f * [ clef /]
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")

(£>.18)

Again the path eintegral result is formally obtained in the lim it

Id-p o°



APPENDIX ¢

5
General Quadratic Lagrangian )

c.l. Derivation of the propagator by polygonal paths approach.

In this appendix we apply the polygonal paths approach to the
path integral one-dimensional quadratic action characterized' by the

Lagrangian

d = NAd) xe - bthx'M + c¢<bx c<dl)

where , b:band d(b are well-behaved functions of time.

According to the coventional polygonal approach the propagator

is to be evaluated as

) (d-P)

() -T00

where is defined as

K - A» Y« [t s*] A

Here / , the normalization factor required to define the path-differ-

ential measure, is given by

TT (™~ [ jfi he)= A <« Noid ( -*0
if «l
and N, the discretized form of the action defined over the partition
b N :
of the time interval [b intoAsubintervals each of lengh £. With the
notation, , *6=x"

, Xfl«xt , and similarly for the coef-

ficients A, b,d , V& have

s 4
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SN ~ [ K ¢ Xk-"w-.y3+ d ( .5)

The expressions for Afland are then inserted in Eg. @)and the
integrations ->ver X ( -k = 1)2,-..,~-1 ) are performed to obtain KN. In
order to carry out this task it is convenient to introduce the column

vectors Xand Yy having £n-0 components:

X | f v, ]
X 7 h
/ N (C.1)
AN Vom
where
= - 1.* + a,xe
\
(J a < Ni-Ji) "
% - - DE ( )
Vn-l

and an (N - 1)-dimensional symmetric matrix 1? with the following

structure



t GEXINFY] | \ &% *C5<o<[*TP* - £+Ty ]I . fcM)

fc-1 T

with the symbol ~v :|l Jix_v. X denoting the transpose ofy_and (=
k=1

_I @
(97\8) . The gaussiau integral in Eq.(C4)may be readily evaluated as

Ax ARV qp# -<S*Ty/]IT = (v Y 1 Y (-*yvvV)

( -1»)
We obtain thereby

Km- ("Dn/iff ap(iX,) (.,
where
)M (PfA (< */ ) A fcuo
9Cn - *[« I*» + («.1- C/IPY)]. (CD)

Thus to obtain the propagator he we need to evaluate the exponent
and the normalization factor )Nin the limit £-70, N-"oowith [\ =

t * We denote these limits by 9C and p rexpectively.

C.2. Exponent

We introduce a new vector d such that

ALY E140

Written in the component form Eqg.".lIA“reads as
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- , + <Xx + kfj/> uUuu- "1n,v , - , ».11. .,N-,

(p- 13)
with the end-point values defined as

0t e 7T Nt XK Co It)

A
Rearranging the terms in Eq./d 15 and dividing throughout by £ we take

limit £-*0 to obtain the differential equation
~ bchlAth = ciy (Cm ™)

along with the end-point conditions

N -* 0 = / fv> - * = * (C'S)

Note that Eg. (c%l7)is just the classical equation of motion obtained

from the lagrangian in Eqg. (d.|0 « Now consider the exponent 'Tb of Eg. (<?, 0)

which may be re-written as

KL-L
ICN « (y* ke) A *I¥* o (*N- 7~ ")\ +"E NN -~L £ L+ eeyy

Using the definitions of y»in Eq.£ '?) and noting that /0“<*0 and

NtX fJ >we may write

ANM= (/™M1 VEN ( n-<V ))/E - +2 Uu + £CnXil
It is thus clear that on taking £-50 we have

L * - = 0 /-a0 )
eZxy C j J
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It is interesting to note here that the exponent is determined
entirely by the solution (A(l) of the classical equation of motion in

Ege( It) e Further it is easy to verify that

w ~ Sel A, (L")

where & is the action N evaluated along the classical path deter-

mined from Eq.( 'it) .

The expression in Eg. (( .n) for % may be easy in the fona-
that brings out the correct dependence of 9C on the end points and
Xfc. For this purpose we need a formal solution of the classical equation
Eq. CC-1?which depends on the end points and xb according to Eq.((c’ If)
By means of a substitution » Eq. dIl) may be cast in the simpler

form

Xr + s@)V- - | Sk (c.&) a)
with the end-point conditions Eq.(dli) as
D) = /\X, 1 D . InyY). D
and

szel) = - ( e-rox - AA) + DA, (-pic?)

Consequently, if \5 and \* be two independent solutions of the homo-

geneous equation

'*-fg'ﬂ:v (. *)
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satisfying the initial conditions

A}Jc\A) - A = ° = b

Cc-r.l)

e TQ introduce the Green's function of Eq.(d-JI) G"c")such that
(=) =doy )=0,

(IL~') A~ ]V a Xits

@Bcl, ) = (<)
L v~ ] la t >s

& * UG )M Vi Mesy (7v)

Now Eqg. £¢,3] )implies that 61 is independent of and hence we may set

either Sat™ or zt" obtaining thereby

A = 'i't* = A Db (C-J5)

Hence the formal solution of Eq. (‘,<®") satisfying the conditions Eq.cc .5b}

is

This solution and the relation ' zV5/” is inserted in Eqg.c®-M) to

arrive at the following form for the exponent oc -

97 - j_ mAbAb+ AAa? 4 j( Ablas ya _ 3*A*U*LA
( A A N Mo A N A

N G(is) ¢

J [« A N y[7m77h]

r . > - (c<)
where nd we have used the relation “ b/, e



C.3. Normalization factor J) .

In order to determine the normalization factor ), it is
necessary to obtain an expression for detlp . From the definition Eq.£0.£)
of the matrixlp, it is easy to see that A”®, the ktk minor of det*p

satisfies the recursion relation

Ac= (A%, "REDA - Ga,  tel (1)

with

,-C
It is conveniant to set

in Eg. (d sif) so that it becomes

A dl> _ 7 b a a. ) oOh L -t 0 & 0|>|' *. o

* e * W+l AL k-1 / *, k-1 - if.
with the auxiliary conditions
N =0 , (, = & A 1. id m 1)

Rearranging the terms in Eq.(c.)0" and dividing throughout by £ we

arrive the limit £-10, the differential equation

J (aTf) = o (pi\4)
On the other hand, Eq.ic implies in the limit £20 , the end-point
conditions to be satisfied by viz.,

T|><v> . 0 1 . I/ \ (a-Vi)
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Eqg.(m*)is just the homogeneous differential equation corresponding to
EgCon-sequently, its solution satisfying the conditions Eq.E<"-"It)

may be written immediately in terms of \9j as

vach \
y ho - ce Va)

Finally, since det ?i U_l, we have

s = w1 <9) aan

C a*v /4 )

It is easy to check from .Eqgs.£d.2?)and ( .Mthat

2 % =sX[ \ 11 (dm)

[ Tu 9>*eXk] J

Thus the propagator for the quadratic action Eq.(CI.O is given by
k fvo = () (c'.'ih)

where 9Cand pare as in Egs.(cl1)?)and (C V) respectively. It is clear

from EQs.Cckjé) andcCe.'V}) that the propagator in Eq. Cdd'Ois precisely

given by the Van Vleck-Pauli formula ®’ ¢’

This result is generally true for a quadratic action and is useful for

obtaining propagators for two- and three-dimensional quadratic actions

(20)

without explicit path integrations.



APPENDIX D

Solution of Eq.(111.17 b)

From the homogeneous differential equation

*CO + + f «t'd = O (tM)
or
(p* + + Co = ()
when T) * g . The solution for D is

D=-8J i (® o o

- J
where (So =>» S' t IA . We will have

f rto / o
or
ANnqm o (-3 Y~ ¢ (D-M
< 1O = a

The solution is
-e? JC-HWC -n .jC_tw t

to - « 4 4 e B (m

with the boundaries
"> » Jum c@® * nfl). It

After using the boundary conditions, we have

A« nv + i Tfu - « \ (at)
9i SAJ&OV)

and

62
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e ») =

-9x C

1L <»
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(
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appendix e

Evaluation of G(zr, zr')

The Green' function )Jt)of our probiora can be found

from the differential equation

Al + W I "3 79 = s&--6) . O-'0
We can write 5) as /
5% + (3jrg; O 06 <
where
(DD+X3D +71) 8~ = , £5G, (EN
and

( \)-E 3b + 2 x) ~n cBec Ce.j*0

with the boundary conditions

G1Co> ) »
=0
<V )= @24 ) ) '
and
9 C3lL<c,c i& -A 2 G ec 2)] o
a £ 1 Jcec
The solution of Eq.(EJ-) is
N - C jct ccoc. ~ JE-<'oC:
<V'A) - & d + e J (E-)

and the solution of Eq. (E-2)is



§-JCI-CCOC

x B + 5
Using the boundary conditions in EqQ. (e -s) We have
E
ANd~o0) €

© - 310 MAd ]
D - e H) L

9t Y
B _ ‘))')\/ﬂf(I)Z:_l) ﬂZrJ Z*—Ceof
al-®
/ -Sjz: "ftax
and - = — qu)h) £
A0 wiod
From Eq. ( .())we get
G/GO SiV/ c4s))snsFo )
1} - G < M >
From Eq. (( ,"!) we get
G/gO =- —&-——1-

Then we get the Green' function

Sl cran

Qczjz!") = _£->4)"V>£|_ B \ (A:A!A*)l—ft—.é)+

where H me" IS the Heaviside step function.

F . Ce?)

fe.s)

(Ea 0

f(~.u)

5

Hit T

Ce*lVy



APPENDIX F

Evaluation of —) in Eq. (OI’ A).

Hom Van Vieek-Pauii's result, we hawe

1 )&
")
[ ] ° = )<M
We can see from Egs. (jn.*Mynd({5pAi)that
(0]
1 1
* , 9 e»n* A
PR J+
<A+
Then Eq. (F.becomes
— YTiio
F«K( l) (;-KVA +)
- P2K)
when
= 1

(F. 1)

(F-J)

fc

(F9)

(F-M



APPENDIX G

Evaluation of the Exact Propagator

From Eq. we heve the effective propagator

-1
<\ MtdeZifcoSz+.-- \\ f roGr-, ofirddi ]

iy £ 6 A i> 1M

| [ Vre@ z+is NjGo&s/feceftjF |

(<2.1)
From the notation, in Eq.dr.é) ;
, A G- )
£«]|, 0 V IXIfA ) SF
ve have

-«rafi) A-

0 N AVSCE>{(&éz { O(?<*>*>f itaz
A Fe 4 Twor i Fi
| a,r f ? Ifc A
® AN I AN G Vi<°<s<vSM:F

Using the property of gaussian integration , we get CG-N)
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AT h e gl | ek Giveofs
W1 "

Y 5 i )14 1N +pi;,A Ifv M w é

~if  *EN L\ fzicheidde)
[ atha X~tllW -> A"

A\ Ut 1N A (1) {et)Itw)T

We can write Eg. (&.V) in standard repfesentation as

KOV> - Fo:) Gp(£ k) (GS)

where
| : . ol
Symb) = S, nby + g R o fiadz +a+~;% S T2) c/£]Q f<e)sd 1

(4}

ahen ()

(") » fray o+ ) TPyfOH 'jjré)J
T~rco + - f) & m
$C 'a < 0 +
nof 6 0 (G A)

¥ (@ f< ) (-8
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From appendix D, we have

A r<- zr
z = - \ £ -1 M M~1)) 5L+ Tfk { eth
e »|' 60f) /o <]
G
-f -L 1 CO A
From appendix E, we have @ L “« Tl - }]1 JOKW
¥ : t -esc’, N2
(y(/ni-¢c-—3 7 £ 3 ooz
<Ovvvrohc t ot 1 .
+ < y/\ K _'I'))/\ < * *.”/\ *)
= . 1m - «crof)- 0-0)
9J -=JINV>0 ) S 9|-
-m £ 0 A (cozyn AUIA)

Using Eq. [Q-II" in Eq.(El-10) >we get

SVao 3 10 t -1 f)> C*Kf*wathca+mA

-J. A(F+ l- g K “t)*i>V AT ~T7Ar~E ACiy* m
N . L A CK#Tfl- <Kwt»

63.»)
Using Egs. £(p-If) and(El<1«0in Eq. £(*."),we get

1 c -T | fh . T
gft> - VvV 0 +
A E » 4, CKDP*) -K « m b

O©N K f)- £84 £ K c I' )*x  AYA D)7

03 )

Using Eq. ((3. )in Eq. *.% ) , we get



©

Cc

41/70f)

S1071)

e

£

>3

*eJt'r
1

N

)An-0)+ 2

.1 t r

cf—0)-f<

((3.15)
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APPENDIX H

H.l; Limiting procedure of Eqg. (I1V. l1a).

From Eqg. (6 -ii), we have

. = *xvxih o+ - N — (v« (ffl- cTh+~
far
i, N VIXi
. 41 1P)
" c fagg-H- b)) b
where ""PM)

S,y K mD ( A) —fl‘jeA v (M)

e f) c J

Let the magnetic field going to zero, we get

liorq A )Y ANE *xx7
-O- & CPbIVx( fAE ]
o ]
- roelkitk -] CH )

H.2; Limiting procedure of Eq."IV.I*

From Eq. (6-1*0 » we have

e CO

1>

AL O+ — V(VA)T- Ay, 70
A aj]( CI(Y o~ 1Ay -r1 (I

* A |_)_ X N 0)’\ N3 "\)*(S)tTjZ



' T . waen- G H
where  t ©cz) a ) - FVyE*-t NDS)TEF T V.
When the magnetic fie]<J going to zero,we get

IVwi . frcv) - _ | siVvAcV-o'fr) -+
S2- 6 < OB

c »lO”. N AIllIGjT{-t )

jsi'wyt)

[ >*" <H)>
(y-h

(H-f)

1.3; Limiting procedure of Eg. £|v< V) *

From Eq.. (Gr-Ig"we have

c C z jn (3 ¢ . -]
Goit'yYfa f) (ros("+)-( ©"+))

~ - j< 1 53¢
A)- £ ( e Ci'0”0t)j9

when

1. -ftfct-t.)

Qi AVvAr-fo (2

When the magnetic field going to zero, we get
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1\ ) Gjf-Z -, >(A)'t" rd)zS\A( zZ-1-)

37 5Vyi 1) (1 -<bs(#))

0)" ~-)-)- sbv>(ycf-z)) - A

1 £ 7TM(yfcV-zr W
) Nonyt) (L

£ )V cl"z)stMo  2)H Ce-Z)

- ASSIYi(](t-4viad tV Aick  t A

(H ")
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