Chapter |

Introduction

1.1 Background and Rationale

Computer programmers spend a lot of time writing programs
that do simple, mechanical data manipulation such as changing the
format of data, checking its validity, finding items with some
property, summing up numbers, printing reports, and the like.
Although most of these jobs are not complicated, it is a real
annoyance to have to write special purpose programs in conventional
languages like QOBOL or ¢ each time such a task comes up.

The AN language, first implemented on the Unix System in
1977, is designed to make it possible to handle such tasks with ease
and convenience. Because so many things are automatic in AK - input,
field splitting, pattern matching, storage management, initialization
- AXK programs are usually much smaller than they would be in a more
conventional language, thus saving a lot of programmers' valuable
time and labor. As a result, AN rapidly became very popular and the
A language processor has become one of the standard programming
tools on every version of Unix since 1979, and later on has been
implemented on other operating systems such as MDOS and W6 as well.

AK language processors have traditionally been implemented
as interpreters, making program development convenient and fast.
However, this implementation scheme also means that AAK programs wiill
typically run much slower than equivalent programs written in a
compiled language. The performance could be increasingly intolerable
as a working AAK program is applied to bigger and bigger data files.
Thus, for tasks where run time is more important than program
development time, programmers may have to go back to more

conventional, compiled languages like COBOL or ¢ and hear with all
their burdensome syntactic baggage.

In order to help lessen this run-time performance problem, a
new processing scheme for the AAK language, the translation of AK
programs into equivalent ¢ programs has been designed and developed.
An AWK-to-C translator program and its supporting tools have been
constructed for this purpose. With the translator at his or her
disposal, the programmer could continue to enjoy all the conveniences
of writing programs in AAK and then should the performance of the
interpreted program prove too slow for the task at hand, he or she
could use the translator to translate the AN program into an
equivalent ¢ program and then compile it using the system's existing
c compiler to produce a readily executable program that would run
faster than the original interpreted AN program.

In addition to improving the performance of AN programs,
the AWK-to-C translator has another important use. On the system
without an AAK language processor but has a ¢ compiler available, the
AWK-to-C translator ported to this system, together with the existing
¢ compiler constitute a complete implementation of the AAK language
for the system. In other words, the system could then process any AK
program despite the absence of a "real” AK processor.

Therefore, the author believes that the AWK-to-C translator
would serve its purposes well and become one of the useful software
tools frequently used by ANK programmers,

1.2 Objectives

The objective of the study is to design and develop a
complete software system for translating any AAK program into a
functionally equivalent ¢ program. The software system includes an
AWK-to-C translator and a run-time library of subroutines that
support the execution of the generated ¢ program.

1.3 Scope and Limitations

The design and development of the AWK-to-C translation
system are subjected to the following scope and limitations:

1. The A language that the translator recognizes is the
one defined and described in Aho, Kernighan, and Weinberger (1988)*.

2. The ¢ language that the translator used for the generated
programs is the one defined by the 1989 ANSI standard and described
in Kernighan and Richie (1988).

3. The entire AWK-to-C translation system was developed on
the AT&T Unix System V Release 4.0 and has only been tested
successfully on that system. Since many of the Unix-specific language
development tools and library routines was used, the source code
could hardly be ported to other operating systems without omitting
some language features. However, the author has made an effort to
make it reasonably portable among the versions of Unix that have an
ANSI ¢ compiler available.

1.4 Development Procedure

Development of the AWK-to-C translator follows the following
steps :

1. Study the syntax and semantics of the AN language.

2. Write a complete grammar for the A language and check
its correctness by constructing an AAK language recognizer program
based on this grammar. The only function of this program is to check
the syntactic correctness of A programs.

* This version of language definition is also recognized by
the AAK interpreter nawk, which has been bundled with every version
of the Unix System V since Release 3.1.

3. Design and develop & prototype version of the AWK-to-C
translation system that recognizes a small, yet nontrivial subset of
the AWK fanguage. The main purpose of the prototype is to gain some
experiences and to experiment with various ways of implementing many
parts of the AWK lanquage.

4, Design the run-time organization of the translator-
generated programs,

5. Design and develop the production version of the
translation system Dbased on the grammar written in step 3 and using
the run-time organization designed in step £,

6. Test and debug the translation system

T, Do the execution-time performance comparison between the
AWK source programs running with the existing AWK interpreter on the
system and their corresponding translator-generated c programs,

B. Assess the development results, draw conclusions, and
Write the thesis documentation,

L5 Expected Benefits and Applications

The usefulness of the AWK-to-C translator is twofold:

. The AWK-to-C translator serves as an alternative way of
DI0Cess g the AWK language, which is generally faster than using the
traditional AWK interpreter to run AWK programs.?

2 On the systems with & c compiler but without an AWK
lanquage processor the AWK-to-C translation system, together with
the system's c compiler, also serves as a complete implementation of
the AWK language on the system. Such systems could run AWK programs
I two ways. First, the whole AWK-to-C translation system could be
ported to the system and would then be used for translating AWK

programs into c program which, in turn, would be compiled by the <
compiler and run, secondly, the cross-translation method could be
employed; that is, he translator installed on another system could
be used for translating an AWK program and the resulting ¢ program
Would then be ported to the target system to be compiled and run
there,

1.6 Literature Review
L1 AWK Language

15 defined and

B). Chapter 2 of this
stematic manner. The
ples, showing the

The latest version of the AWK lanquage
described in Aho, Kernighan, and Weinberger (19
book covers the entire Ianguage in-a concise, §

t of the book contains & wide variety of exa
breadth of applicability of AWK,

b
J
I

L.6.2 ¢ Language

Kernighan and Ritchie (L388), the classic book on c,
presents the entire ANSI c language in & clear, brief manner. The
appendices also provide a concise language reference manual and a
summary of the facilities of the ¢ standard library.

L83 Programming Language Translation

A good description of the basic theory underlying the
implementation of programming lanquages may be found in Pratt (1984),
Chapter 2 outlines the basic approaches to language implementation,
Chapter 3 through & describes fundamental language constructs and
data objects, and how to implement them on a conventional computer
system,

ture of 4
her ran be found

An in-depth introduction to the basic st
compiler/translator and how its components work t
in Chapter L and 2 of Aho, Sethi, and Ullraan (98
discussion on symbol-table handling techniques is
of Tremblay and Sorenson (1985).

struc
D¢t
b). A
grven rn ch apter &

LA Unix Language Development Tools

The Unix programs lex and yacc was used to develop the
scanner and the parser modules of the AWK-to-C translator. Lex was
originalljg%itten by M. E. Lesk and was described in Lesk and
Schmidt ()while yacewas developed by . G Johason and was
described in Johnson (a A excellent description and examples of

how to use lex and yace togpther to develop a language processor i
in Friedman and Schrigner (:

Kernighan and Pike (]%4) provides excellent detailed
accounts on how to program in the Unix environment, Chapter § of this

book also covers a development of a programmable calculator using lex
and yacc, providing many insights into how a language processor
really works,

	Chapter I Introduction
	1.1 Background and Rationale
	1.2 Objectives
	1.3 Scope and Limitations
	1.4 Development Procedure
	1.5 Expected Benefits and Applications
	1.6 Literature Review

